Lesson 1 - Second Quantization of Light Unit 1.2 Quantization of the electromagnetic field

Luca Salasnich

Dipartimento di Fisica e Astronomia "Galileo Galilei", Università di Padova

Structure of Matter - MSc in Physics

Classical energy and Fourier expansion (I)

A familiar result of electromagnetism is that the classical energy of the electromagnetic field in vacuum is given by

$$H = \int d^3 \mathbf{r} \left(\frac{\varepsilon_0}{2} \mathbf{E}(\mathbf{r}, t)^2 + \frac{1}{2\mu_0} \mathbf{B}(\mathbf{r}, t)^2 \right) . \tag{1}$$

Remember that in the Coulomb gauge we have

$$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t}, \qquad (2)$$

$$\mathbf{B} = \mathbf{\nabla} \wedge \mathbf{A} , \qquad (3)$$

and consequently

$$H = \int d^3 \mathbf{r} \left(\frac{\varepsilon_0}{2} \left(\frac{\partial \mathbf{A}(\mathbf{r}, t)}{\partial t} \right)^2 + \frac{1}{2\mu_0} \left(\mathbf{\nabla} \wedge \mathbf{A}(\mathbf{r}, t) \right)^2 \right) \tag{4}$$

Classical energy and Fourier expansion (II)

We now expand the vector potential $\mathbf{A}(\mathbf{r},t)$ as a Fourier series of monochromatic plane waves:

$$\mathbf{A}(\mathbf{r},t) = \sum_{\mathbf{k}} \sum_{s} \left[A_{\mathbf{k}s}(t) \frac{e^{i\mathbf{k}\cdot\mathbf{r}}}{\sqrt{V}} + A_{\mathbf{k}s}^{*}(t) \frac{e^{-i\mathbf{k}\cdot\mathbf{r}}}{\sqrt{V}} \right] \varepsilon_{\mathbf{k}s} , \qquad (5)$$

where

$$A_{\mathbf{k}s}(t) = A_{\mathbf{k}s}(0) e^{-i\omega_k t} \tag{6}$$

and

$$A_{\mathbf{k}s}^*(t) = A_{\mathbf{k}s}^*(0) \ e^{i\omega_k t} \tag{7}$$

are the dimensional complex conjugate coefficients of the expansion, the complex plane waves $e^{i\mathbf{k}\cdot\mathbf{r}}/\sqrt{V}$ normalized in a volume V are the basis functions of the expansion, and $\varepsilon_{\mathbf{k}1}$ and $\varepsilon_{\mathbf{k}2}$ are two mutually orthogonal real unit vectors of polarization which are also orthogonal to \mathbf{k} . Inserting this Fourier expansion into the total energy H of the electromagnetic field we get

$$H = \sum_{\mathbf{k}} \sum_{\mathbf{s}} \epsilon_0 \omega_k^2 \left(A_{\mathbf{k}\mathbf{s}}^* A_{\mathbf{k}\mathbf{s}} + A_{\mathbf{k}\mathbf{s}} A_{\mathbf{k}\mathbf{s}}^* \right) . \tag{8}$$

Classical energy and Fourier expansion (III)

It is now convenient to introduce dimensionless complex coefficients $a_{\mathbf{k}s}(t)$ and $a_{\mathbf{k}s}^*(t)$ related to the dimensional complex coefficients $A_{\mathbf{k}s}(t)$ and $A_{\mathbf{k}s}^*(t)$ by

$$A_{\mathbf{k}s}(t) = \sqrt{\frac{\hbar}{2\varepsilon_0 \omega_k}} \, a_{\mathbf{k}s}(t) \,. \tag{9}$$

$$A_{\mathbf{k}s}^*(t) = \sqrt{\frac{\hbar}{2\varepsilon_0 \omega_k}} \, a_{\mathbf{k}s}^*(t) \,. \tag{10}$$

In this way the energy H reads

$$H = \sum_{\mathbf{k}} \sum_{s} \frac{\hbar \omega_{k}}{2} \left(a_{\mathbf{k}s}^{*} a_{\mathbf{k}s} + a_{\mathbf{k}s} a_{\mathbf{k}s}^{*} \right) . \tag{11}$$

Instead of using the complex amplitudes $a_{\mathbf{k}s}^*(t)$ and $a_{\mathbf{k}s}(t)$ one can introduce the real variables

$$q_{\mathsf{k}\mathsf{s}}(t) = \sqrt{\frac{2\hbar}{\omega_{\mathsf{k}}}} \frac{1}{2} \left(a_{\mathsf{k}\mathsf{s}}(t) + a_{\mathsf{k}\mathsf{s}}^*(t) \right) \tag{12}$$

$$p_{ks}(t) = \sqrt{2\hbar\omega_k} \frac{1}{2i} \left(a_{ks}(t) - a_{ks}^*(t) \right) .$$
 (13)

Quantization of the single modes (I)

In this way the energy of the radiation field reads

$$H = \sum_{\mathbf{k}} \sum_{s} \left(\frac{p_{\mathbf{k},s}^2}{2} + \frac{1}{2} \omega_k^2 \, q_{\mathbf{k}s}^2 \right) . \tag{14}$$

This energy resembles that of infinitely many harmonic oscillators with unitary mass and frequency ω_k .

In 1927 Paul Dirac performed the quantization of the classical Hamiltonian (14) by promoting the real coordinates $q_{\mathbf{k}s}$ and the real momenta $p_{\mathbf{k}s}$ to operators:

$$q_{\mathbf{k}s} \to \hat{q}_{\mathbf{k}s} \;, \tag{15}$$

$$p_{\mathbf{k}s} \to \hat{p}_{\mathbf{k}s} \;, \tag{16}$$

satisfying the commutation relations

$$[\hat{q}_{\mathbf{k}s}, \hat{p}_{\mathbf{k}'s'}] = i\hbar \, \delta_{\mathbf{k},\mathbf{k}'} \, \delta_{s,s'} \,, \tag{17}$$

where $[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$.

Quantization of the single modes (II)

The quantum Hamiltonian is thus given by

$$\hat{H} = \sum_{\mathbf{k}} \sum_{s} \left(\frac{\hat{p}_{\mathbf{k},s}^2}{2} + \frac{1}{2} \omega_k^2 \, \hat{q}_{\mathbf{k}s}^2 \right) . \tag{18}$$

Following a standard approach for the canonical quantization of the Harmonic oscillator, we introduce annihilation and creation operators

$$\hat{a}_{ks} = \sqrt{\frac{\omega_k}{2\hbar}} \left(\hat{q}_{ks} + \frac{i}{\omega_k} \, \hat{p}_{ks} \right) , \qquad (19)$$

$$\hat{a}_{ks}^{+} = \sqrt{\frac{\omega_k}{2\hbar}} \left(\hat{q}_{ks} - \frac{i}{\omega_k} \, \hat{p}_{ks} \right) , \qquad (20)$$

which satisfy the commutation relations

$$[\hat{\mathbf{a}}_{\mathbf{k}s}, \hat{\mathbf{a}}_{\mathbf{k}'s'}^{+}] = \delta_{\mathbf{k},\mathbf{k}'} \,\delta_{s,s'} \,, \tag{21}$$

and the quantum Hamiltonian (18) becomes

$$\hat{H} = \sum_{\mathbf{k}} \sum_{\mathbf{s}} \hbar \omega_{\mathbf{k}} \left(\hat{\mathbf{a}}_{\mathbf{k}\mathbf{s}}^{\dagger} \hat{\mathbf{a}}_{\mathbf{k}\mathbf{s}} + \frac{1}{2} \right) . \tag{22}$$

Ladder operators and their properties (I)

The operators \hat{a}_{ks} and \hat{a}_{ks}^+ act in the Fock space \mathcal{F} , i.e. the infinite dimensional Hilbert space of "number representation" introduced in 1932 by Vladimir Fock. A generic state of this Fock space \mathcal{F} is given by

$$|\dots n_{\mathbf{k}s} \dots n_{\mathbf{k}'s'} \dots n_{\mathbf{k}''s''} \dots\rangle,$$
 (23)

meaning that there are $n_{\mathbf{k}s}$ photons with wavevector \mathbf{k} and polarization s, $n_{\mathbf{k}'s'}$ photons with wavevector \mathbf{k}' and polarization s', $n_{\mathbf{k}''s''}$ photons with wavevector \mathbf{k}'' and polarization s'', et cetera.

Notice that in the definition of the Fock space ${\cal F}$ one must include the space of 0 photons, containing only the vacuum state

$$|0\rangle = |\dots 0 \dots 0 \dots 0 \dots \rangle . \tag{24}$$

The operators $\hat{a}_{\mathbf{k}s}$ and $\hat{a}_{\mathbf{k}s}^+$ are called ladder operators, or annihilation and creation operators, because they respectively destroy and create one photon with wavevector \mathbf{k} and polarization s, namely

$$\hat{a}_{\mathbf{k}s}|\dots n_{\mathbf{k}s}\dots\rangle = \sqrt{n_{\mathbf{k}s}}|\dots n_{\mathbf{k}s}-1\dots\rangle,$$
 (25)

$$\hat{a}_{\mathbf{k}s}^{+}|\dots n_{\mathbf{k}s}\dots\rangle = \sqrt{n_{\mathbf{k}s}+1}|\dots n_{\mathbf{k}s}+1\dots\rangle.$$
 (26)

Ladder operators and their properties (II)

From Eqs. (25) and (26) it follows immediately that

$$\hat{N}_{\mathbf{k}s} = \hat{a}_{\mathbf{k}s}^{+} \hat{a}_{\mathbf{k}s} \tag{27}$$

is the number operator which counts the number of photons in the single-particle state $|\mathbf{k}s\rangle$, i.e.

$$\hat{N}_{\mathbf{k}s}|\dots n_{\mathbf{k}s}\dots\rangle = n_{\mathbf{k}s}|\dots n_{\mathbf{k}s}\dots\rangle. \tag{28}$$

The quantum Hamiltonian of the light can be then written as

$$\hat{H} = \sum_{\mathbf{k}} \sum_{s} \hbar \omega_{k} \left(\hat{N}_{\mathbf{k}s} + \frac{1}{2} \right) . \tag{29}$$

In the case of the quantum electromagnetic field there is an infinite number of quantum harmonic oscillators and the total zero-point energy is given by

$$E_{vac} = \sum_{\mathbf{k}} \sum_{s} \frac{1}{2} \hbar \omega_{\mathbf{k}} . \tag{30}$$

This infinite constant E_{vac} is usually eliminated by simply shifting to zero the energy associated to the vacuum state $|0\rangle$.