

UNIVERSITÀ DEGLI STUDI DI PADOVA

Segnali e Sistemi

(canale 2)

Laurea in Ing. Biomedica Anno II, secondo semestre, A.A. 22/23

Informazioni generali

Tomaso Erseghe

tomaso.erseghe@unipd.it

Orario di ricevimento

in classe

durante la pausa, all'inizio e alla fine della lezione

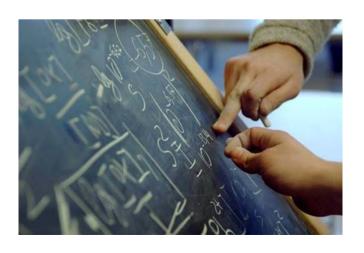
in ufficio/su zoom

DEI/A, II piano, corridoio di destra, interno 7656 su appuntamento

Orario lezioni

Lun 10:30-12:00 Mer 10:30-12:00 Gio 8:30-10:00

30 Lezioni


+ 6 Esperienze in Lab (MatLab)

Dal 27 febbraio 2023 al 31 maggio 2023

No registrazione delle lezioni!

Tempistiche previste

... se tutto fila liscio

Marzo 2023

IVIAPZO ZUZO											
Lunedi	Martedi	Mercoledi	Giovedi	Venerdi	Sabato	Pomenica					
R	48	1 <u>e2</u>	2	3 egnali	nel ten	s npo					
6	7	8	9	10	11	12					
13	14	15 Le8	16	17 sistemi	18 nel ter	19 mpo					
20	21	22	23	24	25	26					
27	28	29	30 Le13	31 trasfo	rmata d	di Fouri					

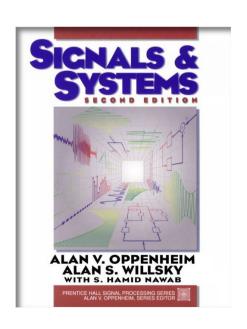
serie di Fourier Maggio 2023

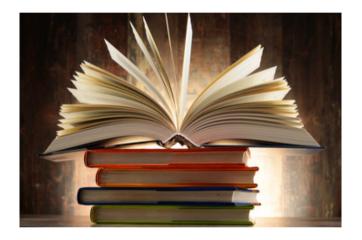
<u>ai rouriei</u>		IAIW	AAIA T	440			
Lunedi	Martedi	Mercoledi	Giovedi	Venerdi	Sabato	Pomenica	
¹ X	2	3	4	5	6	1	
8 Le23	9	10	11/2	teoren	13 na del	14 campio	namento
15	16	17 1e26	18	19 trasfo	20 rmata	21 di Lapla	ace
22	23	24	25	26	27	28	
²⁹ Le30	30	31	trasfo	mata Z	eta	2	
						@MichelZbinden.com	l

Libro di testo

Segnali e Sistemi di Lorenzo Finesso Libreria Progetto

Ultima edizione




... e appunti dalle lezioni

Libro di testo (bis)

Signals and Systems, 2nd Edition by Oppenheim, Willsky, Nawab published by Pearson

Sito web

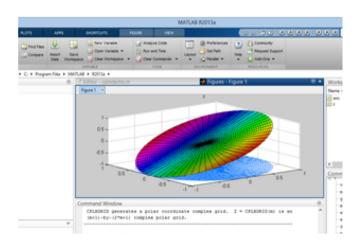
stem.elearning.unipd.it

SEGNALI E SISTEMI (Canale 2) 22/23

iscrivetevi subito!

MATLAB MATrix LABoratory by MathWorks

MATLAB "is a numerical computer environment which allows matrix manipulations, plotting of functions and data, implementation of algorithms" [wiki]



Total Academic Headcount

licenza di tipo Campus e Student

Consente agli studenti di accedere a MATLAB attraverso computer dell'università, in tutta la struttura. Gli studenti possono inoltre installare MATLAB sui propri *computer personali*.

https://www.csia.unipd.it/servizi/servizi-utenti-istituzionali/contratti-software-e-licenze/matlab

Aula Taliercio Ritiro Credenziali

Stesse credenziali del primo semestre!!!

Modalità esame

No compitini

1 test di autovalutazione in classe

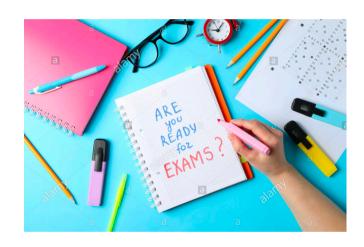
prova MATLAB (per +2 o lode)

4+1 appelli

- ♦ Bressanone
- ♦ Mar 5 settembre 2023, 14:00
- ♦ Ven 9 febbraio 2024, 10:30

Modalità esame (2)

Compito scritto 2h 30min


3 esercizi

- ♦ 7 punti ciascuno

3 domande

- ♦ 3 punti ciascuna

Bonus +2 con la prova MatLab

Commenti degli studenti del 3º anno

... Vengono date per scontate molte conoscenze di base di Segnali e Sistemi, sebbene sia passato un anno dallo svolgimento di quest'ultimo. ...

... quando si utilizzano formule di Segnali e Sistemi bisognerebbe fare un rapido richiamo su quelle cose, senza darle assolutamente per scontate...

Contenuti del corso

Una breve rassegna

Segnali Definizione

signal

[...]

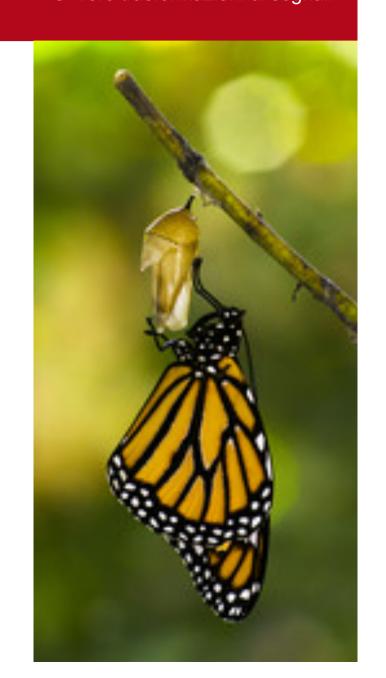
4

a: an object used to *transmit or convey information* beyond the range of human voice

b: the sound or image conveyed in telegraphy, *telephony*, radio, radar, or *television*

c: a detectable physical quantity or impulse (as a voltage, current, or magnetic field strength) by which messages or information can be transmitted

Sistemi Ovvero trasformazioni di segnali

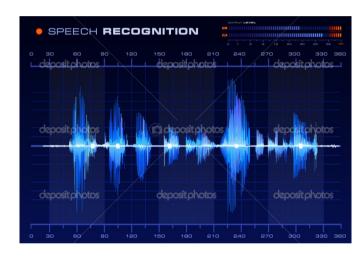

transformation

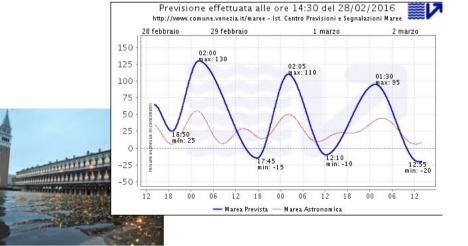
[...]

3

- a (1): the operation of **changing** (as by rotation or mapping) one configuration or expression into another **in accordance with a mathematical rule**; [...]
- a (2): the formula that effects a transformation

b: a **mathematical correspondence** that assigns exactly one element of one set to each element of the same or another set

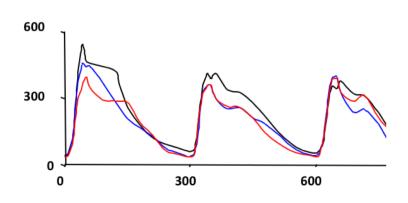



Esempi di segnali

Fisici ed artificiali

Voce umana (fluttuazioni di pressione acustica)

Livello di marea a Venezia



Esempi di segnali Fisici ed artificiali

Elettrocardiogramma

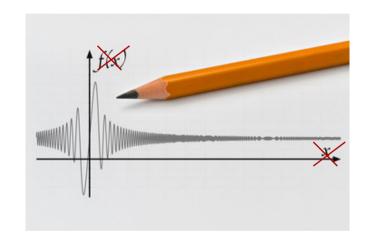
Concentrazione di insulina nel sangue

Esempi di segnali

Fisici ed artificiali

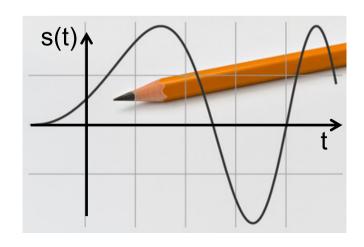
Inflazione mensile (articifiale)

Cambio Euro/\$ giornaliero (articifiale)


Modello di riferimento

Il segnale come funzione (che contiene informazione)

La convenzione è definire il segnale come s(t)

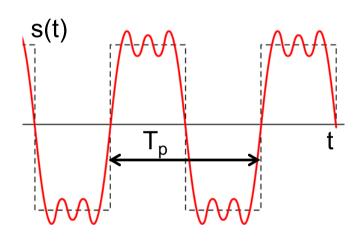

s = segnale

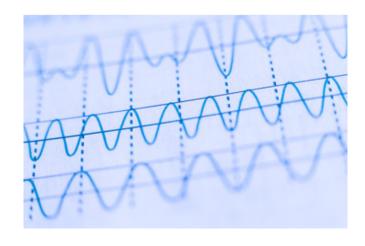
t = tempo (tipicamente, ma non solo... anche spazio)

dominio ($t \in D$) e **codominio** ($s \in C$) definiscono la tipologia di segnale

es., segnale *continuo* se D = C = \mathcal{R} (numeri reali)

Segnali periodici


Segnali la cui forma si ripete

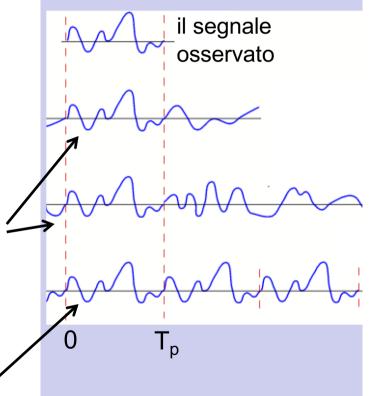

Soddisfano la proprietà fondamentale

$$s(t+T_p) = s(t)$$

con T_p il *periodo* del segnale

... e sono univocamente definiti nell'*intervallo* fondamentale $[0, T_p)$ o in qualunque altro periodo

Segnali periodici (2)


Come modello per segnali definiti in un intervallo limitato

Modello per segnali *ad estensione limitata*

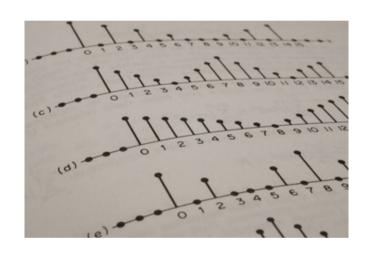
... ovvero definiti in una finestra temporale limitata e duplicati per *ripetizione periodica* (o periodizzazione)

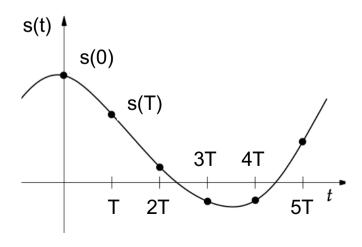
possibili forme al di fuori del periodo di osservazione

risultato della *ripetizione periodica* del segnale

Segnali a tempo discreto

Che includono i cosiddetti segnali "campionati"


Segnali a dominio discreto


$$D = Z(T) = \{ nT, n \in Z \}$$

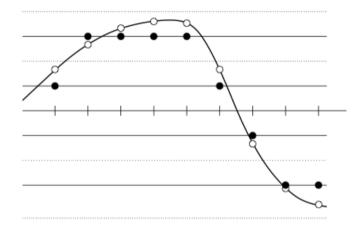
con T *periodo di campionamento*

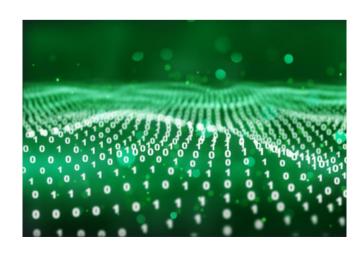
... la nostra convenzione per il segnale a tempo discreto è s(n) ma ne esitono altre: s_n , s(nT), s[n], etc.

Possono derivare da segnali a tempo continuo attraverso una operazione di *campionamento* che registra il valore del segnale originario a intervalli di tempo regolari

Segnali digitali

Ovvero a tempo ed ampiezza discreti


Segnali ad ampiezze discrete

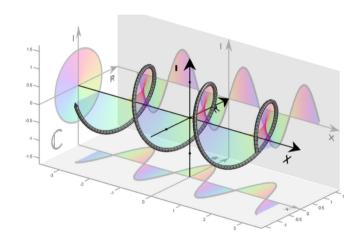

$$C = \{ c_0, c_1, c_2, c_3, \dots \}$$

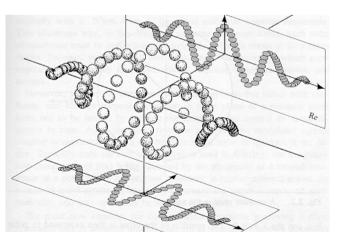
in cui il codominio tipicamente ha cardinalità finita (numero finito di possibili livelli del segnale)

Sono chiamati segnali **digitali** in quanto esprimibili tramite flussi di **bit**

Possono essere derivati da un segnale continuo tramite campionamento e quantizzazione, ovvero tramite una analog-to-digital-conversion (ADC)

Segnali a valori complessi


Segnali le cui ampiezze sono valori complessi


D = C (numeri complessi)

Possono essere interpretati come segnali *vettoriali* a valori reali

$$\underline{\mathbf{s}}(t) = [\mathcal{R}[\mathbf{s}(t)], \mathcal{I}[\mathbf{s}(t)]]$$

con \mathcal{R} la parte reale, e \mathcal{I} la parte immaginaria

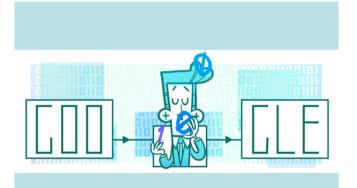
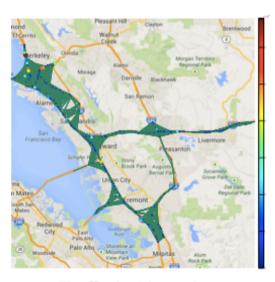
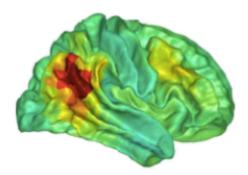

Segnali multidimensionali

Immagine in b/n - s(x,y) segnale bidimensionale (2D) con coordinate spaziali

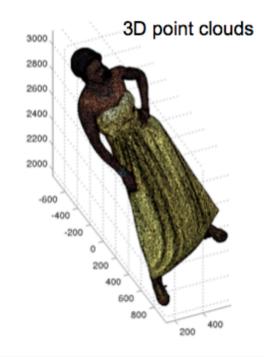
Immagine a colori - $\underline{\mathbf{s}}(x,y) = [r(x,y), g(x,y), b(x,y)]$ Segnale 2D vettoriale con coordinate spaziali

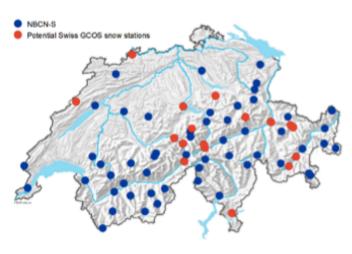
Video a colori - $\underline{\mathbf{s}}(x,y,t) = [r(x,y,t), g(x,y,t), b(x,y,t)]$ Segnale 3D vettoriale con coordinate spaziali e temporali



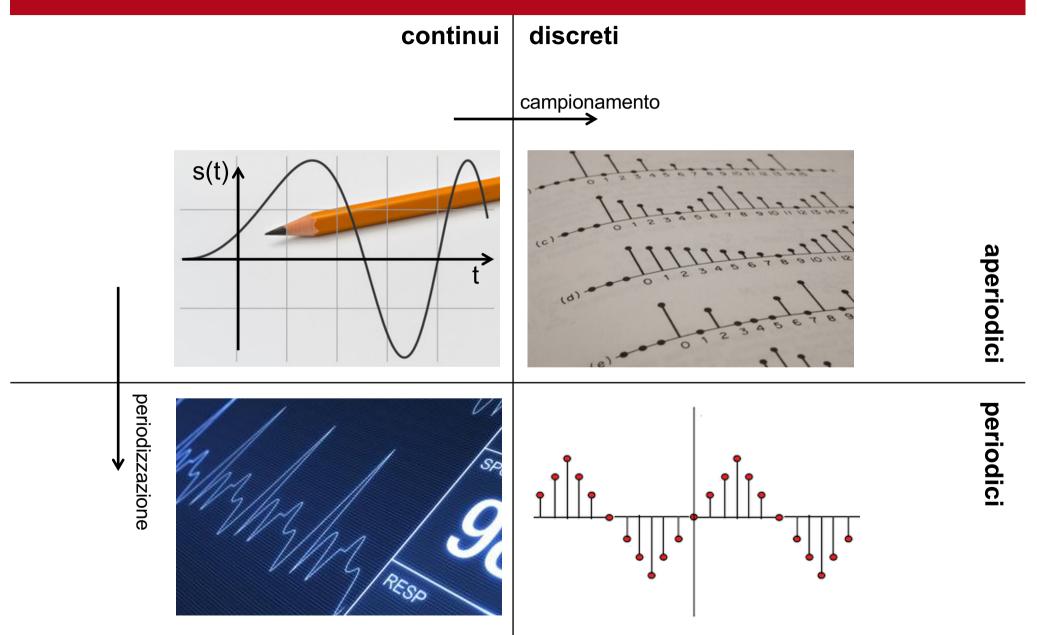


Segnali su grafi complessi


I segnali complessi del mondo della rete


Traffic bottlenecks


Brain signals


Sensor networks

Mobility patterns

Le 4 classi fondamentali

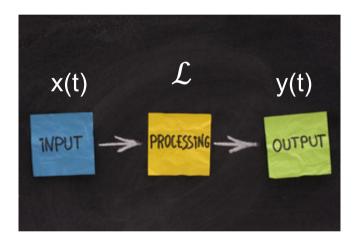
Sempre monodimensionali (1D) e a valori complessi

Sistemi LTI

Sistemi lineari e tempo invarianti

La classe più interessante di sistemi sono le trasformazioni LTI, con proprietà di

Linearità


Principio di sovrapposizione degli effetti

$$a x(t) \rightarrow a y(t)$$

 $x_1(t) + x_2(t) \rightarrow y_1(t) + y_2(t)$

Tempo-invarianza

Principio di ripetibilità dell'esperimento

$$x(t-t_0) \rightarrow y(t-t_0)$$

La convoluzione

Una rappresentazione efficiente per sistemi LTI

Le trasformazioni LTI sono esprimibili tramite una operazione di *convoluzione*

... in forma integrale nel caso continuo

... in forma di **sommatoria** nel caso discreto

la *risposta impulsiva* h identifica univocamente la trasformazione

$$y(t) = \int_{-\infty}^{+\infty} x(u)h(t-u)du$$

$$y_n = \sum_{k=-\infty}^{+\infty} x_k h_{n-k}$$

A cosa ci serve?

Un esempio bioingegneristico

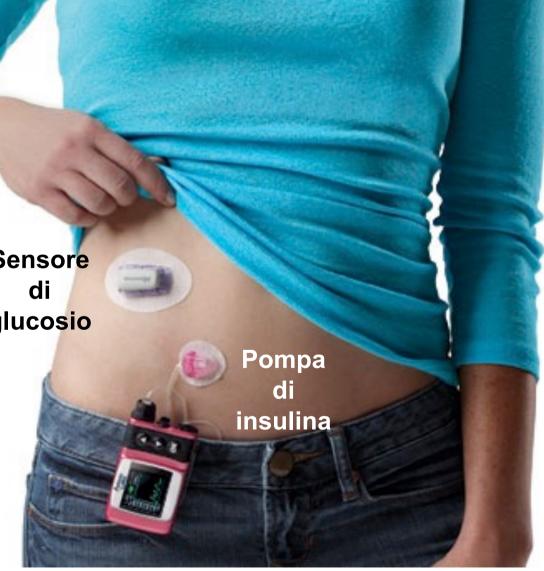
concentrazione di un farmaco nel sangue, data la modalità di somministrazione

Ingresso x(t) = quantità somministrata (nel tempo)

Risposta impulsiva h(t) = come il farmaco si trasferisce nel sangue (nel tempo)

<u>Uscita</u> y(t) = concentrazione del farmaco nel sangue

Il pancreas artificiale


Un esempio bioingegneristico

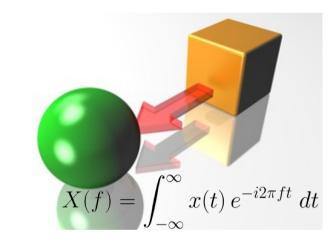
Algoritmi di controllo ed elaborazione dati

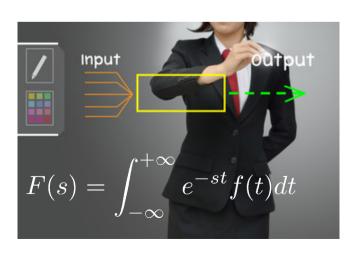
18:32 120 mg/dl 0.96

Sensore di glucosio

Comunicazione wireless

Le trasformate


Ovvero rappresentazioni alternative dei segnali


A volte è meglio dare una rappresentazione alternativa al segnale

tf. di Fourier \rightarrow esprime il segnale come composizione di *esponenziali a esponenti immaginari* e $^{i\,2\pi\,f\,t}$

tf. di Laplace \rightarrow esprime il segnale come composizione di esponenziali a esponenti complessi e $(r+i\omega)t$

... ma non sono trasformazioni LTI (sono solo lineari)

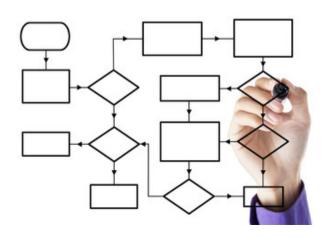
La trasformata di Fourier

Ovvero la rappresentazione in frequenza

La trasformata di Fourier è una rappresentazione del segnale che ne evidenzia il contenuto alle varie *frequenze* (segnale come somma di sinusoidi)

Sistemi LTI e trasformate

Ovvero a cosa servono le trasformate


Nel dominio delle trasformate la *convoluzione* diventa un **prodotto**

$$y(t) = x*h(t)$$
 (convoluzione)

$$Y(f) = X(f) H(f) (prodotto)$$

... ovvero sistemi LTI anche complessi si studiano meglio usando una trasformata

Prospetto temporale

Segnali nel tempo (5 lez)

Durata, Area, Valor medio, Energia Potenza

<u>Traslazione, Scala, Periodizzazione</u>

Esponenziali, Impulsi, e Altri segnali notevoli

Sistemi nel tempo (6 lez)

Invertibilità, Memoria, **Stabilità**, Linearità
I sistemi LTI, La **convoluzione** e sue proprietà
Autofunzioni, Filtraggio, Connessione di sistemi
Risposta a sinusoidi e esponenziali complessi

La trasformata di Fourier (13 lez)

Serie di Fourier e sue properietà

Trasformata di Fourier e sue proprietà
Relazione periodico-aperiodico

Trasformata per segnali discreti e sue proprietà

Il teorema del campionamento

La trasformata di Laplace (4 lez)

Trasformata di Laplace e sue proprietà

Equazioni differenziali, Risposta libera e forzata Soluzione di equazioni differenziali tramite la trasformata di Laplace

Esempi di applicazione

La trasformata Zeta (2 lez)

Trasformata Zeta e sue proprietà

Soluzione tramite trasformata Zeta di sistemi descritti da equazioni alle differenze

Note storiche

sui tre maggiori protagonisti del nostro corso

Pierre-Simon Laplace

1749-1827

Pierre-Simon Laplace

Beaumont-en-Auge (Normandia) 23/3/1749 Parigi 5/3/1827

Matematico, fisico, astronomo e nobile francese

Sebbene la trasformazione oggi nota come trasformata di Laplace sia originariamente stata introdotta nel 1744 da Eulero, nel 1785 Laplace comprese per primo come usare questa trasformazione per risolvere le **equazioni differenzial**i. La forma usata da Laplace corrisponde a quella oggi nota come **trasformata z**.

La versione moderna della trasformata di Laplace è dovuta a G. Doetsch (1937)

Jean Baptiste Joseph Fourier

1768-1830

Jean Baptiste Joseph Fourier

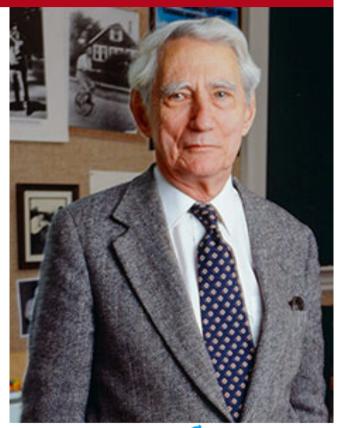
Auxerre (Borgogna) 21/3/1768 Parigi 16/5/1830

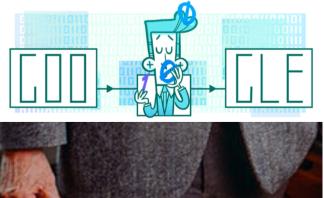
Allievo di Laplace e Lagrange Matematico e fisico francese

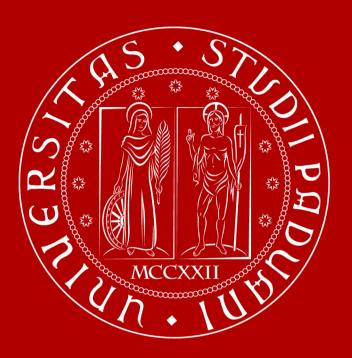
A Fourier si deve l'idea di **serie di Fourier**, sviluppata per la soluzione di equazioni legate alla diffusione del calore a partire dal 1807 (l'opera più ampia, "Théorie analytique de la chaleur," è del 1822)

I risultati di Fourier sono successivamente stati riformulati con maggiore rigore da Dirichlet e Riemann nella seconda metà dell'ottocento

Claude Elwood Shannon


1916-2001


Claude Elwood Shannon


Petoskey (Michigan) 30/4/1916 Medford (Massachusetts) 24/2/2001

Ingegnere e matematico statunitense Padre della teoria dell'informazione

Shannon è riconosciuto come il padre del **Teorema del** campionamento (1949), una applicazione della Serie di Fourier che rivela il legame tra segnali a tempo continuo (analogici) e segnali a tempo discreto (digitali)

UNIVERSITÀ DEGLI STUDI DI PADOVA

Segnali e Sistemi

(canale 2)