ANALISI MATEMATICA 1
 Information Engineering

23.01.2023

TEMA 1

Exercise 1 (score 9) Consider the function

$$
f(x)=\sqrt{x^{2}+x}-x
$$

(a) Find the maximal domain of f;

$$
\operatorname{Dom}(f)=\left\{x \in \mathbb{R}: x^{2}+x \geq 0\right\}=(-\infty,-1] \cup[0,+\infty) .
$$

(b) compute the limits at significative points and asymptotes
f is continuous at every $x \in \operatorname{Dom}(f)$, so that

$$
\lim _{x \rightarrow-1^{-}} f(x)=f(-1)=1, \quad \lim _{x \rightarrow 0^{+}} f(x)=f(0)=0 ;
$$

moreover

$$
\lim _{x \rightarrow-\infty} f(x)=+\infty
$$

and

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} f(x) \frac{\sqrt{x^{2}+x}+x}{\sqrt{x^{2}+x}+x}=\lim _{x \rightarrow+\infty} \frac{x}{\sqrt{x^{2}+x}+x}=\frac{1}{2},
$$

in particular, $y=\frac{1}{2}$ is a horizontal asymptote for $x \rightarrow+\infty$. Let us compute the asymptote for $x \rightarrow-\infty$:

$$
\lim _{x \rightarrow-\infty} \frac{f(x)}{x}=\lim _{x \rightarrow-\infty}-\sqrt{1+\frac{1}{x}}-1=-2
$$

and

$$
\lim _{x \rightarrow-\infty} f(x)+2 x=\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+x}+x\right) \frac{\sqrt{x^{2}+x}-x}{\sqrt{x^{2}+x}-x}=\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}+x}-x}=-\frac{1}{2} .
$$

Hence $y=-2 x-\frac{1}{2}$ is asymptote for $x \rightarrow-\infty$.
(c) Study the differentiability of f, compute the derivative and possible limits of the derivative; discuss the monotonicity of f, determine if f is upper [lower] bounded, and in the positive case find the supremum [infimum], and relative and absolute minima and maxima ;
f is differentiable in $(-\infty,-1) \cup(0,+\infty)$ because it is a composition and sum of of differentiable functions ; in particular, $x^{2}+x>0$ in $(-\infty,-1) \cup(0,+\infty)$ and \sqrt{y} is differentiable for $y>0$. On those points the derivative is

$$
f^{\prime}(x)=\frac{2 x+1}{2 \sqrt{x^{2}+x}}-1 .
$$

As for the limits, one has

$$
\lim _{x \rightarrow-1^{-}} f^{\prime}(x)=-\infty, \quad \lim _{x \rightarrow 0^{+}} f^{\prime}(x)=+\infty,
$$

Figure 1: Graph di f

In particular, f is not differentiable at $x=-1$ and $x=0$. For every $x \in(-\infty,-1) \cup(0,+\infty)$ we have

$$
f^{\prime}(x)=0 \Leftrightarrow 2 x+1=2 \sqrt{x^{2}+x}
$$

and there are no solutions to this equation because $(2 x+1)^{2}=4 x^{2}+4 x+1 \neq 4 x^{2}+4 x=\left(2 \sqrt{x^{2}+x}\right)^{2}$. Moreover $f^{\prime}(x)<0$ for every $x \in(-\infty,-1)$ and $f^{\prime}(x)>0$ for every $x \in(0,+\infty)$, hence f is decreasing in $(-\infty,-1]$ and increasing in $[0,+\infty)$; moreover -1 and 0 are relative minimum points, 0 is an absolute minimum point and $f(0)=0$ is the infimum (actually minimum) di f. There are no relative maximum points and the supremum is $+\infty$.
(d) plot a qualitative graph of f.

See picture 1.
Exercise 2 (score 7) Consider the complex polynomial equation:

$$
z^{3}+\alpha z^{2}+i z=-\alpha i \quad(\alpha \in \mathbb{R})
$$

(a) Determine the value of the parameter α such that this equation has $z_{0}:=4$ as a solution;

By imposing that the equation holds true for $z=4$ we get $64+16 \alpha+4 i=-\alpha i$ hence $\alpha=-\frac{64+4 i}{16+i}=$ $-4 \frac{16+i}{16+i}=-4$.
(b) If α is as in pont a), find the remaining solutions of the equation.

We have $z^{3}-4 z^{2}+i z-4 i=(z-4)\left(z^{2}+i\right)$ hence the remaining solutions are the square roots of di $-i$: for compute them, observe that $|-i|=1$ and $\operatorname{Arg}(-i)=-\frac{\pi}{2}$. Hence z_{1} and z_{2} have modulus 1 and argument $-\frac{\pi}{4}$ and $-\frac{\pi}{4}+\pi=\frac{3 \pi}{4}$ respectively, that is

$$
\begin{aligned}
& z_{1}=e^{-i \frac{\pi}{4}}=\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i \\
& z_{2}=e^{i \frac{3 \pi}{4}}=\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)=-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i
\end{aligned}
$$

Another path to get the same result would have consisted in first observing that $z^{3}+\alpha z^{2}+i z+\alpha i=$ $\left(z^{2}+i\right)(z+\alpha)$ and then concluding that the solutions are $-\alpha, z_{1}, z_{2}$, where the roots z_{1} and z_{2} are computed as in point (b).

Exercise 3 (score 8) (a) Compute the limit

$$
\lim _{x \rightarrow 0^{+}}[1-\arcsin x]^{\frac{1}{x}} .
$$

Since the exponential function is continuous, we have

$$
\lim _{x \rightarrow 0^{+}}[1-\arcsin (x)]^{\frac{1}{x}}=e^{\lim _{x \rightarrow 0^{+}} \frac{\log (1-\arcsin (x))}{x}}=\frac{1}{e},
$$

because

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{\log (1-\arcsin (x))}{x}=\lim _{x \rightarrow 0^{+}} \frac{\log (1-(x+o(x))}{x} & =\lim _{x \rightarrow 0^{+}} \frac{-(x+o(x))+o(-x-o(x))}{x}= \\
\lim _{x \rightarrow 0^{+}} \frac{-x+o(x)}{x} & =-1
\end{aligned}
$$

(b) Study the character of the seris

$$
\sum_{n=1}^{+\infty}\left[1-\arcsin \left(\frac{1}{n}\right)\right]^{n^{2}}
$$

We begin by observing that the terms of this series are positive for every $n \geq 1$. Therefore we can apply the root test:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left[1-\arcsin \left(\frac{1}{n}\right)\right]^{n^{2}}}=\lim _{n \rightarrow \infty}\left[1-\arcsin \left(\frac{1}{n}\right)\right]^{n}=\frac{1}{e}
$$

because, by the change of variable $x=\frac{1}{n}$ and by point (a), we get

$$
\lim _{n \rightarrow \infty}\left[1-\arcsin \left(\frac{1}{n}\right)\right]^{n}=\lim _{x \rightarrow 0^{+}}[1-\arcsin (x)]^{\frac{1}{x}}=\frac{1}{e}<1
$$

so the series is convergent.
Exercise 4 (score 8) Consider the family of functions

$$
f_{\alpha}(x)=(x-2) \arctan \left(x^{\alpha}\right) \quad \alpha \in \mathbb{R}
$$

(a) Compute

$$
\begin{gathered}
\int f_{1}(x) d x \\
\int f_{1}(x) d x=\int[(x-2) \arctan x] d x=\frac{(x-2)^{2}}{2} \arctan x-\int\left[\frac{(x-2)^{2}}{2\left(1+x^{2}\right)}\right] d x+c \quad c \in \mathbb{R}
\end{gathered}
$$

Now

$$
\frac{(x-2)^{2}}{2\left(1+x^{2}\right)}=\frac{x^{2}+1}{2\left(x^{2}+1\right)}+\frac{3}{2\left(x^{2}+1\right)}-\frac{4 x}{2\left(x^{2}+1\right)}
$$

so that

$$
\int f_{1}(x) d x=\frac{(x-2)^{2}-3}{2} \arctan x-\frac{1}{2} x+\log \left(x^{2}+1\right)+c \quad c \in \mathbb{R}
$$

(b)Determine for which values of the parameter $\alpha \in \mathbb{R}$, the integral

$$
\int_{1}^{+\infty} f_{\alpha}(x) d x
$$

is convergent.
There is no problem at the extreme 1 , for f_{α} is continuous at every $x \geq 1$. Hence we have to compute

$$
\lim _{k \rightarrow+\infty} \int_{1}^{k} f_{\alpha}(x) d x=\lim _{k \rightarrow+\infty} \int_{1}^{k}\left((x-2) \arctan \left(x^{\alpha}\right)\right) d x
$$

If $\alpha \geq 0$, one has $f_{\alpha} \sim(x-2)$ for $x \rightarrow+\infty$, so, by the asymptotic comparison test, the integral is not convergent.

If instead $\alpha<0$, by $\arctan y=y+o(y)$ one has $f_{\alpha} \sim \frac{1}{x^{-1-\alpha}}$, so by the asymptotic comparison test, the integral is convergent if and only if $-1-\alpha>1$, i.and., if and only if $\alpha<-2$

Some Taylor expansions:

$$
\begin{aligned}
& \arcsin (x)=x+\frac{1}{6} x^{3}+\frac{3}{40} x^{5}+o\left(x^{6}\right) \\
& \arctan (x)=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{2 n+1}+o\left(x^{2 n+2}\right) \quad \forall n \geq 0
\end{aligned}
$$

CALCULUS 1
 Information Engineering

23.01.2023

TEMA 2

Exercise 1 (score 9) Consider the function

$$
f(x)=x-\sqrt{x^{2}-x}
$$

(a) find the domain of f;

$$
\operatorname{Dom}(f)=\left\{x \in \mathbb{R}: x^{2}-x \geq 0\right\}=(-\infty, 0] \cup[1,+\infty) .
$$

(b) compute the limits at significative points and asymptotes
f is continuous for every $x \in \operatorname{Dom}(f)$ hence

$$
\lim _{x \rightarrow 0^{-}} f(x)=f(0)=0, \quad \lim _{x \rightarrow 1^{+}} f(x)=f(1)=1 ;
$$

moreover

$$
\lim _{x \rightarrow-\infty} f(x)=-\infty
$$

and

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} f(x) \frac{x+\sqrt{x^{2}-x}}{x+\sqrt{x^{2}-x}}=\lim _{x \rightarrow+\infty} \frac{x}{x+\sqrt{x^{2}-x}}=\frac{1}{2},
$$

in particular, $y=\frac{1}{2}$ is horizontal asymptote for $x \rightarrow+\infty$. Let us compute the asymptote for $x \rightarrow-\infty$:

$$
\lim _{x \rightarrow-\infty} \frac{f(x)}{x}=\lim _{x \rightarrow-\infty} 1+\sqrt{1-\frac{1}{x}}=2
$$

and

$$
\lim _{x \rightarrow-\infty} f(x)-2 x=\lim _{x \rightarrow-\infty}-\left(x+\sqrt{x^{2}-x}\right) \frac{x-\sqrt{x^{2}-x}}{x-\sqrt{x^{2}-x}}=\lim _{x \rightarrow-\infty}-\frac{x}{x-\sqrt{x^{2}-x}}=-\frac{1}{2} .
$$

Hence $y=2 x-\frac{1}{2}$ is asymptote for $x \rightarrow-\infty$.
(c) study the differentiability of f; compute the derivative and its limits (at non-interior points); discuss the monotonicity of f and determine the infimum and the supremum di f ed eventuali points of minimo and maximum relativo ed assoluto;
f is differentiable in $(-\infty, 0) \cup(1,+\infty)$ because it is a composition and sum of differentiable functions ; in particular, $x^{2}-x>0$ in $(-\infty, 0) \cup(1,+\infty)$ and \sqrt{y} is differentiable for $y>0$. At these points the derivative is

$$
f^{\prime}(x)=1-\frac{2 x-1}{2 \sqrt{x^{2}-x}} .
$$

As for the limits of the derivative, one has

$$
\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=+\infty, \quad \lim _{x \rightarrow 1^{+}} f^{\prime}(x)=-\infty,
$$

Figure 2: Graph di f

In particular, f is not differentiable nei points $x=0$ and $x=1$. For every $x \in(-\infty, 0) \cup(1,+\infty)$ we have

$$
f^{\prime}(x)=0 \Leftrightarrow 2 x-1=2 \sqrt{x^{2}-x}
$$

and there are no solutions to this equation because $(2 x-1)^{2}=4 x^{2}-4 x+1 \neq 4 x^{2}-4 x=\left(2 \sqrt{x^{2}-x}\right)^{2}$. Moreover $f^{\prime}(x)>0$ for every $x \in(-\infty, 0)$ and $f^{\prime}(x)<0$ for every $x \in(1,+\infty)$, hence f is increasing in $(-\infty, 0]$ and decreasing in $[1,+\infty)$; moreover 0 and 1 are relative maximum points, 1 is an absolute maximum point, and $f(1)=1$ is the supremum (maximum) di f. The function is not lower bounded.
(d) plot a qualitative graph of f.

See picture 2 .
Exercise 2 (score 7) Consider the complex polynomial equation:

$$
z^{3}+\alpha z^{2}+i z=-\alpha i \quad(\alpha \in \mathbb{R})
$$

(a) Determine the value of the parameter α such that this equation has $z_{0}:=-4$ as a solution;

By imposing that the equation holds true for $z=-4$ we get $-64+16 \alpha-4 i=-\alpha i$ hence $\alpha=\frac{64+4 i}{16+i}=$ $4 \frac{16+i}{16+i}=4$.
(b) Find the remaining roots

We have $z^{3}+4 z^{2}+i z+4 i=(z+4)\left(z^{2}+i\right)$ hence the remaining solutions are the square roots of $-i$: since $|-i|=1$ and $\operatorname{Arg}(-i)=-\frac{\pi}{2}$ the roots z_{1} and z_{2} have modulus 1 and argument $-\frac{\pi}{4}$ and $-\frac{\pi}{4}+\pi=\frac{3 \pi}{4}$ respectively, that is

$$
\begin{aligned}
& z_{1}=e^{-i \frac{\pi}{4}}=\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i, \\
& z_{2}=e^{i \frac{3 \pi}{4}}=\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)=-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i .
\end{aligned}
$$

As an alternative, we might have observed that $z^{3}+\alpha z^{2}+i z+\alpha i=\left(z^{2}+i\right)(z+\alpha)$, so the solutions are $-\alpha, z_{1}, z_{2}$: the roots z_{1} and z_{2} are as in (b) and for point (a) to be verified it is necessary and suffic $-\alpha=-4$. If α is as in pont a), find the remaining solutions of the equation.

Exercise 3 (score 8) (a) Compute the limit

$$
\lim _{x \rightarrow 0^{+}}[1-\sinh (x)]^{\frac{1}{x}}
$$

Since the exponential function is continuous, we have

$$
\lim _{x \rightarrow 0^{+}}[1-\sinh (x)]^{\frac{1}{x}}=e^{\lim _{x \rightarrow 0^{+}} \frac{\log (1-\sinh (x))}{x}}=\frac{1}{e}
$$

because

$$
\begin{gathered}
\lim _{x \rightarrow 0^{+}} \frac{\log (1-\sinh (x))}{x}=\lim _{x \rightarrow 0^{+}} \frac{\log (1-(x+o(x))}{x}=\lim _{x \rightarrow 0^{+}} \frac{-(x+o(x))+o(-x-o(x))}{x}= \\
\lim _{x \rightarrow 0^{+}} \frac{-x+o(x)}{x}=-1
\end{gathered}
$$

(b) Study the character of the seris

$$
\sum_{n=1}^{+\infty}\left[1-\sinh \left(\frac{1}{n}\right)\right]^{n^{2}}
$$

We begin by observing that the terms of this series are positive for every $n \geq 2$. Therefore we can apply the root test:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left[1-\sinh \left(\frac{1}{n}\right)\right]^{n^{2}}}=\lim _{n \rightarrow \infty}\left[1-\sinh \left(\frac{1}{n}\right)\right]^{n}=\frac{1}{e}
$$

because, by the change of variable $x=\frac{1}{n}$ and by point (a), we get

$$
\lim _{n \rightarrow \infty}\left[1-\sinh \left(\frac{1}{n}\right)\right]^{n}=\lim _{x \rightarrow 0^{+}}[1-\sinh (x)]^{\frac{1}{x}}=\frac{1}{e}<1
$$

so the series is convergent.

Exercise 4 (score 8) Consider the family of functions

$$
f_{\alpha}(x)=(x+1) \arctan \left(x^{\alpha}\right)
$$

(a) Compute

$$
\begin{gathered}
\int f_{1}(x) d x \\
\int f_{1}(x) d x=\int[(x+1) \arctan x] d x=\frac{(x+1)^{2}}{2} \arctan x-\int\left[\frac{(x+1)^{2}}{2\left(1+x^{2}\right)}\right] d x+c \quad c \in \mathbb{R}
\end{gathered}
$$

Now

$$
\frac{(x+1)^{2}}{2\left(1+x^{2}\right)}=\frac{x^{2}+1}{2\left(x^{2}+1\right)}+\frac{2 x}{2\left(x^{2}+1\right)}
$$

so that

$$
\int f_{1}(x) d x=\frac{(x+1)^{2}}{2} \arctan x-\frac{1}{2} x-\frac{1}{2} \log \left(\left(x^{2}+1\right)\right)+c \quad c \in \mathbb{R}
$$

(b)Determine for which values of the parameter $\alpha \in \mathbb{R}$, the integral

$$
\int_{1}^{+\infty} f_{\alpha}(x) d x
$$

is convergent.
There is no problem at the extreme 1 , for f_{α} is continuous at every $x \geq 1$. Hence we have to compute

$$
\lim _{k \rightarrow+\infty} \int_{1}^{k} f_{\alpha}(x) d x=\lim _{k \rightarrow+\infty} \int_{1}^{k}\left((x+1) \arctan \left(x^{\alpha}\right)\right) d x
$$

If $\alpha \geq 0$, one has $f_{\alpha} \sim(x+1)$ for $x \rightarrow+\infty$, so, by the asymptotic comparison test, the integral is not convergent.

If instead $\alpha<0$, by $\arctan y=y+o(y)$ one has $f_{\alpha} \sim \frac{1}{x^{-1-\alpha}}$, so by the asymptotic comparison test, the integral is convergent if and only if $-1-\alpha>1$, i.and., if and only if $\alpha<-2$

Tempo: due ore and mezza (comprensive of domande of teoria). Viene corretto solo ciò che ànd scritto sul foglio intestato. È vietato tenere libri, appunti, telefoni and calcolatrici di qualsiasi tipo.

Some Taylor expansions:

$$
\begin{aligned}
& \sinh (x)=x+\frac{1}{6} x^{3}+\frac{1}{5!} x^{5}+\cdots+\frac{x^{2 n+1}}{(2 n+1)!}+o\left(x^{2 n+2}\right) \\
& \arctan (x)=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{2 n+1}+o\left(x^{2 n+2}\right) \quad \forall n \geq 0
\end{aligned}
$$

CALCULUS 1
 Information Engineering

23.01.2023

TEMA 3

Exercise 1 (score 9) Consider the function

$$
f(x)=\sqrt{x^{2}+2 x}-x
$$

(a) determinare il dominio di f ed eventuali simmetrie (is not richiesto lo studio del segno);

$$
\operatorname{Dom}(f)=\left\{x \in \mathbb{R}: x^{2}+2 x \geq 0\right\}=(-\infty,-2] \cup[0,+\infty) .
$$

(b) compute the limits at significative points and asymptotes
f is continuous for every $x \in \operatorname{Dom}(f)$ hence

$$
\lim _{x \rightarrow-2^{-}} f(x)=f(-2)=2, \quad \lim _{x \rightarrow 0^{+}} f(x)=f(0)=0
$$

moreover

$$
\lim _{x \rightarrow-\infty} f(x)=+\infty
$$

and

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} f(x) \frac{\sqrt{x^{2}+2 x}+x}{\sqrt{x^{2}+2 x}+x}=\lim _{x \rightarrow+\infty} \frac{2 x}{\sqrt{x^{2}+2 x}+x}=1,
$$

in particular, $y=1$ is horizontal asymptote for $x \rightarrow+\infty$. Let us compute the asymptote for $x \rightarrow-\infty$:

$$
\lim _{x \rightarrow-\infty} \frac{f(x)}{x}=\lim _{x \rightarrow-\infty}-\sqrt{1+\frac{2}{x}}-1=-2
$$

and

$$
\lim _{x \rightarrow-\infty} f(x)+2 x=\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+2 x}+x\right) \frac{\sqrt{x^{2}+2 x}-x}{\sqrt{x^{2}+2 x}-x}=\lim _{x \rightarrow-\infty} \frac{2 x}{\sqrt{x^{2}+x}-x}=-1 .
$$

Hence $y=-2 x-1$ is asymptote for $x \rightarrow-\infty$.
(c) studiare la derivabilità di f nel suo dominio, calcolare la derivata prima ed eventuali limiti della derivata, ove necessario; discuss the monotonicity of f and determine the infimum and the supremum di f ed relative or absolute minimum and maximum points;
f is differentiable on $(-\infty,-2) \cup(0,+\infty)$ because it is a composition and sum of differentiable functions ; in particular, $x^{2}+2 x>0$ in $(-\infty,-2) \cup(0,+\infty)$ and \sqrt{y} is differentiable for $y>0$. The derivative is

$$
f^{\prime}(x)=\frac{x+1}{\sqrt{x^{2}+2 x}}-1 .
$$

As for the derivative limits, one has:

$$
\lim _{x \rightarrow-2^{-}} f^{\prime}(x)=-\infty, \quad \lim _{x \rightarrow 0^{+}} f^{\prime}(x)=+\infty,
$$

Figure 3: Graph di f

In particular, f is not differentiable at the points $x=-2$ and $x=0$. For every $x \in(-\infty,-2) \cup(0,+\infty)$ we have

$$
f^{\prime}(x)=0 \Leftrightarrow x+1=\sqrt{x^{2}+2 x}
$$

and there are no solutions to this equation because $(x+1)^{2}=x^{2}+2 x+1 \neq x^{2}+2 x=\left(\sqrt{x^{2}+2 x}\right)^{2}$. Moreover $f^{\prime}(x)<0$ for every $x \in(-\infty,-2)$ and $f^{\prime}(x)>0$ for every $x \in(0,+\infty)$, hence f is decreasing in $(-\infty,-2]$ and increasing in $[0,+\infty)$; moreover -2 and 0 are relative minimum points, 0 is an absolute minimum point and $f(0)=0$ is the infimum (actually minimum) di f. There are no relative maximum points and the supremum is $+\infty$.
(d) plot a qualitative graph of f.

See picture 3 .
Exercise 2 (score 7) Consider the complex polynomial equation:

$$
z^{3}+\alpha z^{2}+i z=-\alpha i \quad(\alpha \in \mathbb{R})
$$

(a) Determine the value of the parameter α such that this equation has $z_{0}:=3$ as a solution;

By imposing that the equation holds true for $z=3$ we get $27+9 \alpha+3 i=-\alpha i$ hence $\alpha=-\frac{27+3 i}{9+i}=$ $-3 \frac{9+i}{9+i}=-3$.
(b) If α is as in pont a), find the remaining solutions of the equation.

We have $z^{3}-3 z^{2}+i z-3 i=(z-3)\left(z^{2}+i\right)$ hence the remaining solutions are the square roots of $-i$: to compute them let us observe that $|-i|=1$ and $\operatorname{Arg}(-i)=-\frac{\pi}{2}$. As a consequence the two roots z_{1} and z_{2} have modulus 1 and argument $-\frac{\pi}{4}$ and $-\frac{\pi}{4}+\pi=\frac{3 \pi}{4}$, respectivaly, so that

$$
\begin{aligned}
& z_{1}=e^{-i \frac{\pi}{4}}=\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i \\
& z_{2}=e^{i \frac{3 \pi}{4}}=\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)=-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i
\end{aligned}
$$

As an alternative method, we might consider the factorization $z^{3}+\alpha z^{2}+i z+\alpha i=\left(z^{2}+i\right)(z+\alpha)$ and conclude in a obvious way.

Exercise 3 (score 8) (a) Compute the limit

$$
\lim _{x \rightarrow 0^{+}}[1-\sin (x)]^{\frac{1}{x}}
$$

Since the exponential function is continuous, we have

$$
\lim _{x \rightarrow 0^{+}}[1-\sin (x)]^{\frac{1}{x}}=e^{\lim _{x \rightarrow 0^{+}} \frac{\log (1-\sin (x))}{x}}=\frac{1}{e}
$$

because

$$
\begin{gathered}
\lim _{x \rightarrow 0^{+}} \frac{\log (1-\sin (x))}{x}=\lim _{x \rightarrow 0^{+}} \frac{\log (1-(x+o(x))}{x}=\lim _{x \rightarrow 0^{+}} \frac{-(x+o(x))+o(-x-o(x))}{x}= \\
\lim _{x \rightarrow 0^{+}} \frac{-x+o(x)}{x}=-1
\end{gathered}
$$

(b) Study the character of the seris

$$
\sum_{n=1}^{+\infty}\left[1-\sin \left(\frac{1}{n}\right)\right]^{n^{2}}
$$

We begin by observing that the terms of this series are positive. Therefore we can apply the root test:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left[1-\sin \left(\frac{1}{n}\right)\right]^{n^{2}}}=\lim _{n \rightarrow \infty}\left[1-\sin \left(\frac{1}{n}\right)\right]^{n}=\frac{1}{e}
$$

because, by the change of variable $x=\frac{1}{n}$ and by point (a), we get

$$
\lim _{n \rightarrow \infty}\left[1-\sin \left(\frac{1}{n}\right)\right]^{n}=\lim _{x \rightarrow 0^{+}}[1-\sin (x)]^{\frac{1}{x}}=\frac{1}{e}<1
$$

so the series is convergent.

Exercise 4 (score 8) Consider the family of functions

$$
f_{\alpha}(x)=(x-1) \arctan \left(x^{\alpha}\right)
$$

(a) Compute

$$
\begin{gathered}
\int f_{1}(x) d x \\
\int f_{1}(x) d x=\int[(x-1) \arctan x] d x=\frac{(x-1)^{2}}{2} \arctan x-\int\left[\frac{(x-1)^{2}}{2\left(1+x^{2}\right)}\right] d x+c \quad c \in \mathbb{R}
\end{gathered}
$$

Now

$$
\frac{(x-1)^{2}}{2\left(1+x^{2}\right)}=\frac{x^{2}+1}{2\left(x^{2}+1\right)}-\frac{1}{2} \frac{4 x}{2\left(x^{2}+1\right)}
$$

so that

$$
\int f_{1}(x) d x=\frac{(x-1)^{2}}{2} \arctan x-\frac{1}{2} x+\frac{1}{2} \log \left(2\left(x^{2}+1\right)\right)+c \quad c \in \mathbb{R}
$$

(b)Determine for which values of the parameter $\alpha \in \mathbb{R}$, the integral

$$
\int_{1}^{+\infty} f_{\alpha}(x) d x
$$

is convergent.
There is no problem at the extreme 1 , for f_{α} is continuous at every $x \geq 1$. Hence we have to compute

$$
\lim _{k \rightarrow+\infty} \int_{1}^{k} f_{\alpha}(x) d x=\lim _{k \rightarrow+\infty} \int_{1}^{k}\left((x-1) \arctan \left(x^{\alpha}\right)\right) d x
$$

If $\alpha \geq 0$, one has $f_{\alpha} \sim(x-1)$ for $x \rightarrow+\infty$, so, by the asymptotic comparison test, the integral is not convergent.

If instead $\alpha<0$, by $\arctan y=y+o(y)$ one has $f_{\alpha} \sim \frac{1}{x^{-1-\alpha}}$, so by the asymptotic comparison test, the integral is convergent if and only if $-1-\alpha>1$, i.and., if and only if $\alpha<-2$

Some Taylor expansions:

$$
\begin{aligned}
& \sin (x)=x-\frac{1}{6} x^{3}+\frac{1}{5!} x^{5}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+o\left(x^{2 n+2}\right) \\
& \arctan (x)=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{2 n+1}+o\left(x^{2 n+2}\right) \quad \forall n \geq 0
\end{aligned}
$$

CALCULUS 1
 Information Engineering

23.01.2023

TEMA 4

Exercise 1 (score 9) Consider the function

$$
f(x)=x-\sqrt{x^{2}-2 x}
$$

(a) find the domain of f;

$$
\operatorname{Dom}(f)=\left\{x \in \mathbb{R}: x^{2}-2 x \geq 0\right\}=(-\infty, 0] \cup[2,+\infty)
$$

(b) compute the limits at significative points and asymptotes
f is continuous for every $x \in \operatorname{Dom}(f)$ hence

$$
\lim _{x \rightarrow 0^{-}} f(x)=f(0)=0, \quad \lim _{x \rightarrow 2^{+}} f(x)=f(2)=2
$$

moreover

$$
\lim _{x \rightarrow-\infty} f(x)=-\infty
$$

and

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} f(x) \frac{x+\sqrt{x^{2}-2 x}}{x+\sqrt{x^{2}-2 x}}=\lim _{x \rightarrow+\infty} \frac{x}{x+\sqrt{x^{2}-2 x}}=1
$$

in particular, $y=1$ is horizontal asymptote for $x \rightarrow+\infty$. Let us compute the asymptote for $x \rightarrow-\infty$:

$$
\lim _{x \rightarrow-\infty} \frac{f(x)}{x}=\lim _{x \rightarrow-\infty} 1+\sqrt{1-\frac{2}{x}}=2
$$

and

$$
\lim _{x \rightarrow-\infty} f(x)-2 x=\lim _{x \rightarrow-\infty}-\left(x+\sqrt{x^{2}-2 x}\right) \frac{x-\sqrt{x^{2}-2 x}}{x-\sqrt{x^{2}-2 x}}=\lim _{x \rightarrow-\infty}-\frac{2 x}{x-\sqrt{x^{2}-x}}=-1 .
$$

Hence $y=2 x-1$ is asymptote for $x \rightarrow-\infty$.
(c) Study the differentiability of f, compute the derivative and possible limits of the derivative; discuss the monotonicity of f, determine if f is upper [lower] bounded, and in the positive case find the supremum [infimum], and relative and absolute minima and maxima (if they exist) ;
f is differentiable in $(-\infty, 0) \cup(2,+\infty)$ because it is a composition and sum of differentiable functions; in particular, $x^{2}-2 x>0$ in $(-\infty, 0) \cup(2,+\infty)$ and \sqrt{y} is differentiable for $y>0$. At these points the derivative is

$$
f^{\prime}(x)=1-\frac{x-1}{\sqrt{x^{2}-2 x}} .
$$

As for the limits of the derivative, one has:

$$
\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=+\infty, \quad \lim _{x \rightarrow 2^{+}} f^{\prime}(x)=-\infty,
$$

Figure 4: Graph di f

In particular, f is not differentiable nei points $x=0$ and $x=2$. For every $x \in(-\infty, 0) \cup(2,+\infty)$ we have

$$
f^{\prime}(x)=0 \Leftrightarrow x-1=2 \sqrt{x^{2}-2 x}
$$

and there are no solutions to this equation because $(x-1)^{2}=x^{2}-2 x+1 \neq x^{2}-2 x=\left(\sqrt{x^{2}-2 x}\right)^{2}$. Moreover $f^{\prime}(x)>0$ for every $x \in(-\infty, 0)$ and $f^{\prime}(x)<0$ for every $x \in(2,+\infty)$, hence f is increasing in $(-\infty, 0]$ and decreasing in $[2,+\infty)$; moreover 0 and 2 are relative maximum points, 2 is an absolute maximum point, and $f(2)=2$ is the supremum (maximum) di f. There are no relative minimum points and the function is not lower bounded;
(d) plot a qualitative graph of f.

See picture 4.
Exercise 2 (score 7) Consider the complex polynomial equation:

$$
z^{3}+\alpha z^{2}+i z=-\alpha i \quad(\alpha \in \mathbb{R})
$$

(a) Determine the value of the parameter α such that this equation has $z_{0}:=-3$ as a solution;

By imposing that the equation holds true for $z=-3$ we get $-27+9 \alpha-3 i=-\alpha i$ hence $\alpha=\frac{27+3 i}{9+i}=$ $3 \frac{9+i}{9+i}=3$.
(b) If α is as in pont a), find the remaining solutions of the equation.

We have $z^{3}+3 z^{2}+i z+3 i=(z+3)\left(z^{2}+i\right)$ hence le altre soluzioni sono le due radici quadrate di $-i$: for calcolarle osserviamo che $|-i|=1$ and $\operatorname{Arg}(-i)=-\frac{\pi}{2}$ and of conseguenza le due radici z_{1} and z_{2} hanno modulo 1 and argument $-\frac{\pi}{4}$ and $-\frac{\pi}{4}+\pi=\frac{3 \pi}{4}$ respectively, that is

$$
\begin{aligned}
& z_{1}=e^{-i \frac{\pi}{4}}=\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i \\
& z_{2}=e^{i \frac{3 \pi}{4}}=\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)=-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i
\end{aligned}
$$

In alternative, we might have observed that $z^{3}+\alpha z^{2}+i z+\alpha i=\left(z^{2}+i\right)(z+\alpha)$, hence the solutions are $-\alpha, z_{1}, z_{2}$: the roots z_{1} and z_{2} are computed as in (b) and for (a)(to be satisfied it is necessary and sufficient that $-\alpha=-3$.

Exercise 3 (score 8) (a) Compute the limit

$$
\lim _{x \rightarrow 0^{+}}[1-\tan (x)]^{\frac{1}{x}}
$$

Since the exponential function is continuous, we have

$$
\lim _{x \rightarrow 0^{+}}[1-\tan (x)]^{\frac{1}{x}}=e^{\lim _{x \rightarrow 0^{+}} \frac{\log (1-\tan (x))}{x}}=\frac{1}{e}
$$

because

$$
\begin{gathered}
\lim _{x \rightarrow 0^{+}} \frac{\log (1-\tan (x))}{x}=\lim _{x \rightarrow 0^{+}} \frac{\log (1-(x+o(x))}{x}=\lim _{x \rightarrow 0^{+}} \frac{-(x+o(x))+o(-x-o(x))}{x}= \\
\lim _{x \rightarrow 0^{+}} \frac{-x+o(x)}{x}=-1
\end{gathered}
$$

(b) Study the character of the seris

$$
\sum_{n=1}^{+\infty}\left[1-\tan \left(\frac{1}{n}\right)\right]^{n^{2}}
$$

We begin by observing that the terms of this series are positive for every $n \geq 2$. Therefore we can apply the root test:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left[1-\tan \left(\frac{1}{n}\right)\right]^{n^{2}}}=\lim _{n \rightarrow \infty}\left[1-\tan \left(\frac{1}{n}\right)\right]^{n}=\frac{1}{e}
$$

because, by the change of variable $x=\frac{1}{n}$ and by point (a), we get

$$
\lim _{n \rightarrow \infty}\left[1-\tan \left(\frac{1}{n}\right)\right]^{n}=\lim _{x \rightarrow 0^{+}}[1-\tan (x)]^{\frac{1}{x}}=\frac{1}{e}<1
$$

so the series is convergent.

Exercise 4 (score 8) Consider the family of functions

$$
f_{\alpha}(x)=(x+2) \arctan \left(x^{\alpha}\right)
$$

(a) Compute

$$
\begin{gathered}
\int f_{1}(x) d x \\
\int f_{1}(x) d x=\int[(x+2) \arctan x] d x=\frac{(x+2)^{2}}{2} \arctan x-\int\left[\frac{(x+2)^{2}}{2\left(1+x^{2}\right)}\right] d x+c \quad c \in \mathbb{R}
\end{gathered}
$$

Now

$$
\frac{(x+2)^{2}}{2\left(1+x^{2}\right)}=\frac{x^{2}+1}{2\left(x^{2}+1\right)}+\frac{3}{2\left(x^{2}+1\right)}+\frac{4 x}{2\left(x^{2}+1\right)}
$$

so that

$$
\int f_{1}(x) d x=\frac{(x+2)^{2}-3}{2} \arctan x-\frac{1}{2} x-\log \left(2\left(x^{2}+1\right)\right)+c \quad c \in \mathbb{R}
$$

(b)Determine for which values of the parameter $\alpha \in \mathbb{R}$, the integral

$$
\int_{1}^{+\infty} f_{\alpha}(x) d x
$$

is convergent.
There is no problem at the extreme 1 , for f_{α} is continuous at every $x \geq 1$. Hence we have to compute

$$
\lim _{k \rightarrow+\infty} \int_{1}^{k} f_{\alpha}(x) d x=\lim _{k \rightarrow+\infty} \int_{1}^{k}\left((x+2) \arctan \left(x^{\alpha}\right)\right) d x
$$

If $\alpha \geq 0$, one has $f_{\alpha} \sim(x+2)$ for $x \rightarrow+\infty$, so, by the asymptotic comparison test, the integral is not convergent.

If instead $\alpha<0$, by $\arctan y=y+o(y)$ one has $f_{\alpha} \sim \frac{1}{x^{-1-\alpha}}$, so by the asymptotic comparison test, the integral is convergent if and only if $-1-\alpha>1$, i.and., if and only if $\alpha<-2$

Some Taylor expansions:

$$
\begin{aligned}
& \tan (x)=x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+o\left(x^{6}\right) \\
& \arctan (x)=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{2 n+1}+o\left(x^{2 n+2}\right) \quad \forall n \geq 0
\end{aligned}
$$

