
ANALISI MATEMATICA 1
Information Engineering

23.01.2023

TEMA 1

Exercise 1 (score 9) Consider the function

f(x) =
√
x2 + x− x

(a) Find the maximal domain of f ;

Dom(f) = {x ∈ IR : x2 + x ≥ 0} = (−∞,−1] ∪ [0,+∞).

(b) compute the limits at significative points and asymptotes

f is continuous at every x ∈ Dom(f), so that

lim
x→−1−

f(x) = f(−1) = 1, lim
x→0+

f(x) = f(0) = 0;

moreover
lim

x→−∞
f(x) = +∞

and

lim
x→+∞

f(x) = lim
x→+∞

f(x)

√
x2 + x+ x√
x2 + x+ x

= lim
x→+∞

x√
x2 + x+ x

=
1

2
,

in particular, y = 1
2 is a horizontal asymptote for x → +∞. Let us compute the asymptote for x → −∞:

lim
x→−∞

f(x)

x
= lim

x→−∞
−
√
1 +

1

x
− 1 = −2

and

lim
x→−∞

f(x) + 2x = lim
x→−∞

(√
x2 + x+ x

) √
x2 + x− x√
x2 + x− x

= lim
x→−∞

x√
x2 + x− x

= −1

2
.

Hence y = −2x− 1
2 is asymptote for x → −∞.

(c) Study the differentiability of f , compute the derivative and possible limits of the derivative; discuss
the monotonicity of f , determine if f is upper [lower] bounded, and in the positive case find the supremum
[infimum], and relative and absolute minima and maxima ;

f is differentiable in (−∞,−1) ∪ (0,+∞) because it is a composition and sum of of differentiable
functions ; in particular, x2 + x > 0 in (−∞,−1) ∪ (0,+∞) and

√
y is differentiable for y > 0. On those

points the derivative is

f ′(x) =
2x+ 1

2
√
x2 + x

− 1.

As for the limits, one has

, lim
x→−1−

f ′(x) = −∞, lim
x→0+

f ′(x) = +∞,



Figure 1: Graph di f

In particular, f is not differentiable at x = −1 and x = 0. For every x ∈ (−∞,−1) ∪ (0,+∞) we have

f ′(x) = 0 ⇔ 2x+ 1 = 2
√

x2 + x

and there are no solutions to this equation because (2x + 1)2 = 4x2 + 4x + 1 ̸= 4x2 + 4x = (2
√
x2 + x)2.

Moreover f ′(x) < 0 for every x ∈ (−∞,−1) and f ′(x) > 0 for every x ∈ (0,+∞), hence f is decreasing
in (−∞,−1] and increasing in [0,+∞); moreover −1 and 0 are relative minimum points, 0 is an absolute
minimum point and f(0) = 0 is the infimum (actually minimum) di f .There are no relative maximum
points and the supremum is +∞.

(d) plot a qualitative graph of f .

See picture 1.

Exercise 2 (score 7) Consider the complex polynomial equation:

z3 + αz2 + iz = −αi (α ∈ IR)

(a) Determine the value of the parameter α such that this equation has z0 := 4 as a solution;

By imposing that the equation holds true for z = 4 we get 64 + 16α + 4i = −αi hence α = −64+4i
16+i =

−416+i
16+i = −4.

(b) If α is as in pont a), find the remaining solutions of the equation.

We have z3 − 4z2 + iz − 4i = (z − 4)(z2 + i) hence the remaining solutions are the square roots of di
−i: for compute them, observe that | − i| = 1 and Arg(−i) = −π

2 . Hence z1 and z2 have modulus 1 and
argument −π

4 and −π
4 + π = 3π

4 respectively, that is

z1 = e−iπ
4 = cos

(
−π

4

)
+ i sin

(
−π

4

)
=

1√
2
− 1√

2
i,

z2 = ei
3π
4 = cos

(
3π

4

)
+ i sin

(
3π

4

)
= − 1√

2
+

1√
2
i.



Another path to get the same result would have consisted in first observing that z3 + αz2 + iz + αi =
(z2+i)(z+α) and then concluding that the solutions are −α, z1, z2, where the roots z1 and z2 are computed
as in point (b).

Exercise 3 (score 8) (a) Compute the limit

lim
x→0+

[1− arcsinx]
1
x .

Since the exponential function is continuous, we have

lim
x→0+

[1− arcsin(x)]
1
x = e

lim
x→0+

log(1−arcsin(x))
x

=
1

e
,

because

lim
x→0+

log(1− arcsin(x))

x
= lim

x→0+

log(1− (x+ o(x))

x
= lim

x→0+

−(x+ o(x)) + o
(
− x− o(x)

)
x

=

lim
x→0+

−x+ o
(
x
)

x
= −1

(b) Study the character of the seris

+∞∑
n=1

[
1− arcsin

(
1

n

)]n2

.

We begin by observing that the terms of this series are positive for every n ≥ 1. Therefore we can
apply the root test:

lim
n→∞

n

√[
1− arcsin

(
1

n

)]n2

= lim
n→∞

[
1− arcsin

(
1

n

)]n
=

1

e

because, by the change of variable x = 1
n and by point (a), we get

lim
n→∞

[
1− arcsin

(
1

n

)]n
= lim

x→0+
[1− arcsin(x)]

1
x =

1

e
< 1,

so the series is convergent.

Exercise 4 (score 8) Consider the family of functions

fα(x) = (x− 2) arctan(xα) α ∈ IR

(a) Compute ∫
f1(x) dx

∫
f1(x) dx =

∫ [
(x− 2) arctanx

]
dx =

(x− 2)2

2
arctanx−

∫ [
(x− 2)2

2(1 + x2)

]
dx+ c c ∈ R

Now
(x− 2)2

2(1 + x2)
=

x2 + 1

2(x2 + 1)
+

3

2(x2 + 1)
− 4x

2(x2 + 1)



so that ∫
f1(x) dx =

(x− 2)2 − 3

2
arctanx− 1

2
x+ log(x2 + 1) + c c ∈ R

(b)Determine for which values of the parameter α ∈ R, the integral∫ +∞

1
fα(x) dx

is convergent.

There is no problem at the extreme 1, for fα is continuous at every x ≥ 1. Hence we have to compute

lim
k→+∞

∫ k

1
fα(x) dx = lim

k→+∞

∫ k

1

(
(x− 2) arctan(xα)

)
dx

If α ≥ 0, one has fα ∼ (x − 2) for x → +∞, so, by the asymptotic comparison test, the integral is not
convergent.

If instead α < 0, by arctan y = y+ o(y) one has fα ∼ 1
x−1−α , so by the asymptotic comparison test, the

integral is convergent if and only if −1− α > 1, i.and., if and only if α < −2

Some Taylor expansions:

arcsin(x) = x+
1

6
x3 +

3

40
x5 + o(x6),

arctan(x) = x− 1

3
x3 +

1

5
x5 + · · ·+ (−1)n

x2n+1

2n+ 1
+ o(x2n+2) ∀n ≥ 0
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Exercise 1 (score 9) Consider the function

f(x) = x−
√

x2 − x

(a) find the domain of f ;

Dom(f) = {x ∈ IR : x2 − x ≥ 0} = (−∞, 0] ∪ [1,+∞).

(b) compute the limits at significative points and asymptotes

f is continuous for every x ∈ Dom(f) hence

lim
x→0−

f(x) = f(0) = 0, lim
x→1+

f(x) = f(1) = 1;

moreover
lim

x→−∞
f(x) = −∞

and

lim
x→+∞

f(x) = lim
x→+∞

f(x)
x+

√
x2 − x

x+
√
x2 − x

= lim
x→+∞

x

x+
√
x2 − x

=
1

2
,

in particular, y = 1
2 is horizontal asymptote for x → +∞. Let us compute the asymptote for x → −∞:

lim
x→−∞

f(x)

x
= lim

x→−∞
1 +

√
1− 1

x
= 2

and

lim
x→−∞

f(x)− 2x = lim
x→−∞

−
(
x+

√
x2 − x

) x−
√
x2 − x

x−
√
x2 − x

= lim
x→−∞

− x

x−
√
x2 − x

= −1

2
.

Hence y = 2x− 1
2 is asymptote for x → −∞.

(c) study the differentiability of f ; compute the derivative and its limits (at non-interior points); discuss
the monotonicity of f and determine the infimum and the supremum di f ed eventuali points of minimo
and maximum relativo ed assoluto;

f is differentiable in (−∞, 0)∪ (1,+∞) because it is a composition and sum of differentiable functions
; in particular, x2 − x > 0 in (−∞, 0) ∪ (1,+∞) and

√
y is differentiable for y > 0. At these points the

derivative is

f ′(x) = 1− 2x− 1

2
√
x2 − x

.

As for the limits of the derivative, one has

lim
x→0−

f ′(x) = +∞, lim
x→1+

f ′(x) = −∞,



Figure 2: Graph di f

In particular, f is not differentiable nei points x = 0 and x = 1. For every x ∈ (−∞, 0)∪ (1,+∞) we have

f ′(x) = 0 ⇔ 2x− 1 = 2
√

x2 − x

and there are no solutions to this equation because(2x − 1)2 = 4x2 − 4x + 1 ̸= 4x2 − 4x = (2
√
x2 − x)2.

Moreover f ′(x) > 0 for every x ∈ (−∞, 0) and f ′(x) < 0 for every x ∈ (1,+∞), hence f is increasing
in (−∞, 0] and decreasing in [1,+∞); moreover 0 and 1 are relative maximum points, 1 is an absolute
maximum point, and f(1) = 1 is the supremum (maximum) di f .The function is not lower bounded.

(d) plot a qualitative graph of f .

See picture 2.

Exercise 2 (score 7) Consider the complex polynomial equation:

z3 + αz2 + iz = −αi (α ∈ IR)

(a) Determine the value of the parameter α such that this equation has z0 := −4 as a solution;

By imposing that the equation holds true for z = −4 we get −64 + 16α− 4i = −αi hence α = 64+4i
16+i =

416+i
16+i = 4.

(b) Find the remaining roots

We have z3 + 4z2 + iz + 4i = (z + 4)(z2 + i) hence the remaining solutions are the square roots of −i:
since |− i| = 1 and Arg(−i) = −π

2 the roots z1 and z2 have modulus 1 and argument −π
4 and −π

4 +π = 3π
4

respectively, that is

z1 = e−iπ
4 = cos

(
−π

4

)
+ i sin

(
−π

4

)
=

1√
2
− 1√

2
i,

z2 = ei
3π
4 = cos

(
3π

4

)
+ i sin

(
3π

4

)
= − 1√

2
+

1√
2
i.



As an alternative, we might have observed that z3 + αz2 + iz + αi = (z2 + i)(z + α), so the solutions
are −α, z1, z2: the roots z1 and z2 are as in (b) and for point (a) to be verified it is necessary and suffic
−α = −4. If α is as in pont a), find the remaining solutions of the equation.

Exercise 3 (score 8) (a) Compute the limit

lim
x→0+

[1− sinh(x)]
1
x .

Since the exponential function is continuous, we have

lim
x→0+

[1− sinh(x)]
1
x = e

lim
x→0+

log(1−sinh(x))
x

=
1

e
,

because

lim
x→0+

log(1− sinh(x))

x
= lim

x→0+

log(1− (x+ o(x))

x
= lim

x→0+

−(x+ o(x)) + o
(
− x− o(x)

)
x

=

lim
x→0+

−x+ o
(
x
)

x
= −1

(b) Study the character of the seris

+∞∑
n=1

[
1− sinh

(
1

n

)]n2

.

We begin by observing that the terms of this series are positive for every n ≥ 2. Therefore we can
apply the root test:

lim
n→∞

n

√[
1− sinh

(
1

n

)]n2

= lim
n→∞

[
1− sinh

(
1

n

)]n
=

1

e

because, by the change of variable x = 1
n and by point (a), we get

lim
n→∞

[
1− sinh

(
1

n

)]n
= lim

x→0+
[1− sinh(x)]

1
x =

1

e
< 1,

so the series is convergent.

Exercise 4 (score 8) Consider the family of functions

fα(x) = (x+ 1) arctan(xα)

(a) Compute ∫
f1(x) dx

∫
f1(x) dx =

∫ [
(x+ 1) arctanx

]
dx =

(x+ 1)2

2
arctanx−

∫ [
(x+ 1)2

2(1 + x2)

]
dx+ c c ∈ R

Now
(x+ 1)2

2(1 + x2)
=

x2 + 1

2(x2 + 1)
+

2x

2(x2 + 1)



so that ∫
f1(x) dx =

(x+ 1)2

2
arctanx− 1

2
x− 1

2
log((x2 + 1)) + c c ∈ R

(b)Determine for which values of the parameter α ∈ R, the integral∫ +∞

1
fα(x) dx

is convergent.

There is no problem at the extreme 1, for fα is continuous at every x ≥ 1. Hence we have to compute

lim
k→+∞

∫ k

1
fα(x) dx = lim

k→+∞

∫ k

1

(
(x+ 1) arctan(xα)

)
dx

If α ≥ 0, one has fα ∼ (x + 1) for x → +∞, so, by the asymptotic comparison test, the integral is not
convergent.

If instead α < 0, by arctan y = y+ o(y) one has fα ∼ 1
x−1−α , so by the asymptotic comparison test, the

integral is convergent if and only if −1− α > 1, i.and., if and only if α < −2

Tempo: due ore and mezza (comprensive of domande of teoria). Viene corretto solo ciò che ànd scritto sul foglio intestato.
È vietato tenere libri, appunti, telefoni and calcolatrici di qualsiasi tipo.

Some Taylor expansions:

sinh(x) = x+
1

6
x3 +

1

5!
x5 + · · ·+ x2n+1

(2n+ 1)!
+ o(x2n+2),

arctan(x) = x− 1

3
x3 +

1

5
x5 + · · ·+ (−1)n

x2n+1

2n+ 1
+ o(x2n+2) ∀n ≥ 0
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Exercise 1 (score 9) Consider the function

f(x) =
√

x2 + 2x− x

(a) determinare il dominio di f ed eventuali simmetrie (is not richiesto lo studio del segno);

Dom(f) = {x ∈ IR : x2 + 2x ≥ 0} = (−∞,−2] ∪ [0,+∞).

(b) compute the limits at significative points and asymptotes

f is continuous for every x ∈ Dom(f) hence

lim
x→−2−

f(x) = f(−2) = 2, lim
x→0+

f(x) = f(0) = 0;

moreover
lim

x→−∞
f(x) = +∞

and

lim
x→+∞

f(x) = lim
x→+∞

f(x)

√
x2 + 2x+ x√
x2 + 2x+ x

= lim
x→+∞

2x√
x2 + 2x+ x

= 1,

in particular, y = 1 is horizontal asymptote for x → +∞. Let us compute the asymptote for x → −∞:

lim
x→−∞

f(x)

x
= lim

x→−∞
−
√
1 +

2

x
− 1 = −2

and

lim
x→−∞

f(x) + 2x = lim
x→−∞

(√
x2 + 2x+ x

) √
x2 + 2x− x√
x2 + 2x− x

= lim
x→−∞

2x√
x2 + x− x

= −1.

Hence y = −2x− 1 is asymptote for x → −∞.

(c) studiare la derivabilità di f nel suo dominio, calcolare la derivata prima ed eventuali limiti della
derivata, ove necessario; discuss the monotonicity of f and determine the infimum and the supremum di f
ed relative or absolute minimum and maximum points;

f is differentiable on (−∞,−2)∪(0,+∞) because it is a composition and sum of differentiable functions
; in particular, x2 + 2x > 0 in (−∞,−2) ∪ (0,+∞) and

√
y is differentiable for y > 0. The derivative is

f ′(x) =
x+ 1√
x2 + 2x

− 1.

As for the derivative limits, one has:

lim
x→−2−

f ′(x) = −∞, lim
x→0+

f ′(x) = +∞,



Figure 3: Graph di f

In particular, f is not differentiable at the points x = −2 and x = 0. For every x ∈ (−∞,−2) ∪ (0,+∞)
we have

f ′(x) = 0 ⇔ x+ 1 =
√

x2 + 2x

and there are no solutions to this equation because(x + 1)2 = x2 + 2x + 1 ̸= x2 + 2x = (
√
x2 + 2x)2.

Moreover f ′(x) < 0 for every x ∈ (−∞,−2) and f ′(x) > 0 for every x ∈ (0,+∞), hence f is decreasing
in (−∞,−2] and increasing in [0,+∞); moreover −2 and 0 are relative minimum points, 0 is an absolute
minimum point and f(0) = 0 is the infimum (actually minimum) di f . There are no relative maximum
points and the supremum is +∞.

(d) plot a qualitative graph of f .

See picture 3.

Exercise 2 (score 7) Consider the complex polynomial equation:

z3 + αz2 + iz = −αi (α ∈ IR)

(a) Determine the value of the parameter α such that this equation has z0 := 3 as a solution;

By imposing that the equation holds true for z = 3 we get 27 + 9α + 3i = −αi hence α = −27+3i
9+i =

−39+i
9+i = −3.

(b) If α is as in pont a), find the remaining solutions of the equation.

We have z3 − 3z2 + iz − 3i = (z − 3)(z2 + i) hence the remaining solutions are the square roots of −i:
to compute them let us observe that | − i| = 1 and Arg(−i) = −π

2 . As a consequence the two roots z1 and
z2 have modulus 1 and argument −π

4 and −π
4 + π = 3π

4 , respectivaly, so that

z1 = e−iπ
4 = cos

(
−π

4

)
+ i sin

(
−π

4

)
=

1√
2
− 1√

2
i,

z2 = ei
3π
4 = cos

(
3π

4

)
+ i sin

(
3π

4

)
= − 1√

2
+

1√
2
i.



As an alternative method, we might consider the factorization z3 +αz2 + iz+αi = (z2 + i)(z+α) and
conclude in a obvious way.

Exercise 3 (score 8) (a) Compute the limit

lim
x→0+

[1− sin(x)]
1
x .

Since the exponential function is continuous, we have

lim
x→0+

[1− sin(x)]
1
x = e

lim
x→0+

log(1−sin(x))
x

=
1

e
,

because

lim
x→0+

log(1− sin(x))

x
= lim

x→0+

log(1− (x+ o(x))

x
= lim

x→0+

−(x+ o(x)) + o
(
− x− o(x)

)
x

=

lim
x→0+

−x+ o
(
x
)

x
= −1

(b) Study the character of the seris

+∞∑
n=1

[
1− sin

(
1

n

)]n2

.

We begin by observing that the terms of this series are positive. Therefore we can apply the root test:

lim
n→∞

n

√[
1− sin

(
1

n

)]n2

= lim
n→∞

[
1− sin

(
1

n

)]n
=

1

e

because, by the change of variable x = 1
n and by point (a), we get

lim
n→∞

[
1− sin

(
1

n

)]n
= lim

x→0+
[1− sin(x)]

1
x =

1

e
< 1,

so the series is convergent.

Exercise 4 (score 8) Consider the family of functions

fα(x) = (x− 1) arctan(xα)

(a) Compute ∫
f1(x) dx

∫
f1(x) dx =

∫ [
(x− 1) arctanx

]
dx =

(x− 1)2

2
arctanx−

∫ [
(x− 1)2

2(1 + x2)

]
dx+ c c ∈ R

Now
(x− 1)2

2(1 + x2)
=

x2 + 1

2(x2 + 1)
− 1

2

4x

2(x2 + 1)



so that ∫
f1(x) dx =

(x− 1)2

2
arctanx− 1

2
x+

1

2
log(2(x2 + 1)) + c c ∈ R

(b)Determine for which values of the parameter α ∈ R, the integral∫ +∞

1
fα(x) dx

is convergent.

There is no problem at the extreme 1, for fα is continuous at every x ≥ 1. Hence we have to compute

lim
k→+∞

∫ k

1
fα(x) dx = lim

k→+∞

∫ k

1

(
(x− 1) arctan(xα)

)
dx

If α ≥ 0, one has fα ∼ (x − 1) for x → +∞, so, by the asymptotic comparison test, the integral is not
convergent.

If instead α < 0, by arctan y = y+ o(y) one has fα ∼ 1
x−1−α , so by the asymptotic comparison test, the

integral is convergent if and only if −1− α > 1, i.and., if and only if α < −2

Some Taylor expansions:

sin(x) = x− 1

6
x3 +

1

5!
x5 + · · ·+ (−1)n

x2n+1

(2n+ 1)!
+ o(x2n+2),

arctan(x) = x− 1

3
x3 +

1

5
x5 + · · ·+ (−1)n

x2n+1

2n+ 1
+ o(x2n+2) ∀n ≥ 0
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Exercise 1 (score 9) Consider the function

f(x) = x−
√

x2 − 2x

(a) find the domain of f ;

Dom(f) = {x ∈ IR : x2 − 2x ≥ 0} = (−∞, 0] ∪ [2,+∞).

(b) compute the limits at significative points and asymptotes

f is continuous for every x ∈ Dom(f) hence

lim
x→0−

f(x) = f(0) = 0, lim
x→2+

f(x) = f(2) = 2;

moreover
lim

x→−∞
f(x) = −∞

and

lim
x→+∞

f(x) = lim
x→+∞

f(x)
x+

√
x2 − 2x

x+
√
x2 − 2x

= lim
x→+∞

x

x+
√
x2 − 2x

= 1,

in particular, y = 1 is horizontal asymptote for x → +∞. Let us compute the asymptote for x → −∞:

lim
x→−∞

f(x)

x
= lim

x→−∞
1 +

√
1− 2

x
= 2

and

lim
x→−∞

f(x)− 2x = lim
x→−∞

−
(
x+

√
x2 − 2x

) x−
√
x2 − 2x

x−
√
x2 − 2x

= lim
x→−∞

− 2x

x−
√
x2 − x

= −1.

Hence y = 2x− 1 is asymptote for x → −∞.

(c) Study the differentiability of f , compute the derivative and possible limits of the derivative; discuss
the monotonicity of f , determine if f is upper [lower] bounded, and in the positive case find the supremum
[infimum], and relative and absolute minima and maxima (if they exist) ;

f is differentiable in (−∞, 0)∪ (2,+∞) because it is a composition and sum of differentiable functions;
in particular, x2 − 2x > 0 in (−∞, 0) ∪ (2,+∞) and

√
y is differentiable for y > 0. At these points the

derivative is

f ′(x) = 1− x− 1√
x2 − 2x

.

As for the limits of the derivative, one has:

lim
x→0−

f ′(x) = +∞, lim
x→2+

f ′(x) = −∞,



Figure 4: Graph di f

In particular, f is not differentiable nei points x = 0 and x = 2. For every x ∈ (−∞, 0)∪ (2,+∞) we have

f ′(x) = 0 ⇔ x− 1 = 2
√
x2 − 2x

and there are no solutions to this equation because(x − 1)2 = x2 − 2x + 1 ̸= x2 − 2x = (
√
x2 − 2x)2.

Moreover f ′(x) > 0 for every x ∈ (−∞, 0) and f ′(x) < 0 for every x ∈ (2,+∞), hence f is increasing
in (−∞, 0] and decreasing in [2,+∞); moreover 0 and 2 are relative maximum points, 2 is an absolute
maximum point, and f(2) = 2 is the supremum (maximum) di f . There are no relative minimum points
and the function is not lower bounded;

(d) plot a qualitative graph of f .

See picture 4.

Exercise 2 (score 7) Consider the complex polynomial equation:

z3 + αz2 + iz = −αi (α ∈ IR)

(a) Determine the value of the parameter α such that this equation has z0 := −3 as a solution;

By imposing that the equation holds true for z = −3 we get −27 + 9α− 3i = −αi hence α = 27+3i
9+i =

39+i
9+i = 3.

(b) If α is as in pont a), find the remaining solutions of the equation.

We have z3 + 3z2 + iz + 3i = (z + 3)(z2 + i) hence le altre soluzioni sono le due radici quadrate di
−i: for calcolarle osserviamo che | − i| = 1 and Arg(−i) = −π

2 and of conseguenza le due radici z1 and z2
hanno modulo 1 and argument −π

4 and −π
4 + π = 3π

4 respectively, that is

z1 = e−iπ
4 = cos

(
−π

4

)
+ i sin

(
−π

4

)
=

1√
2
− 1√

2
i,

z2 = ei
3π
4 = cos

(
3π

4

)
+ i sin

(
3π

4

)
= − 1√

2
+

1√
2
i.



In alternative, we might have observed that z3 + αz2 + iz + αi = (z2 + i)(z + α), hence the solutions
are −α, z1, z2: the roots z1 and z2 are computed as in (b) and for (a)( to be satisfied it is necessary and
sufficient that −α = −3.

Exercise 3 (score 8) (a) Compute the limit

lim
x→0+

[1− tan(x)]
1
x .

Since the exponential function is continuous, we have

lim
x→0+

[1− tan(x)]
1
x = e

lim
x→0+

log(1−tan(x))
x

=
1

e
,

because

lim
x→0+

log(1− tan(x))

x
= lim

x→0+

log(1− (x+ o(x))

x
= lim

x→0+

−(x+ o(x)) + o
(
− x− o(x)

)
x

=

lim
x→0+

−x+ o
(
x
)

x
= −1

(b) Study the character of the seris

+∞∑
n=1

[
1− tan

(
1

n

)]n2

.

We begin by observing that the terms of this series are positive for every n ≥ 2. Therefore we can apply
the root test:

lim
n→∞

n

√[
1− tan

(
1

n

)]n2

= lim
n→∞

[
1− tan

(
1

n

)]n
=

1

e

because, by the change of variable x = 1
n and by point (a), we get

lim
n→∞

[
1− tan

(
1

n

)]n
= lim

x→0+
[1− tan(x)]

1
x =

1

e
< 1,

so the series is convergent.

Exercise 4 (score 8) Consider the family of functions

fα(x) = (x+ 2) arctan(xα)

(a) Compute ∫
f1(x) dx

∫
f1(x) dx =

∫ [
(x+ 2) arctanx

]
dx =

(x+ 2)2

2
arctanx−

∫ [
(x+ 2)2

2(1 + x2)

]
dx+ c c ∈ R

Now
(x+ 2)2

2(1 + x2)
=

x2 + 1

2(x2 + 1)
+

3

2(x2 + 1)
+

4x

2(x2 + 1)



so that ∫
f1(x) dx =

(x+ 2)2 − 3

2
arctanx− 1

2
x− log(2(x2 + 1)) + c c ∈ R

(b)Determine for which values of the parameter α ∈ R, the integral∫ +∞

1
fα(x) dx

is convergent.

There is no problem at the extreme 1, for fα is continuous at every x ≥ 1. Hence we have to compute

lim
k→+∞

∫ k

1
fα(x) dx = lim

k→+∞

∫ k

1

(
(x+ 2) arctan(xα)

)
dx

If α ≥ 0, one has fα ∼ (x + 2) for x → +∞, so, by the asymptotic comparison test, the integral is not
convergent.

If instead α < 0, by arctan y = y+ o(y) one has fα ∼ 1
x−1−α , so by the asymptotic comparison test, the

integral is convergent if and only if −1− α > 1, i.and., if and only if α < −2

Some Taylor expansions:

tan(x) = x+
1

3
x3 +

2

15
x5 + o(x6),

arctan(x) = x− 1

3
x3 +

1

5
x5 + · · ·+ (−1)n

x2n+1

2n+ 1
+ o(x2n+2) ∀n ≥ 0


