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1 Introduction
This document includes advanced notes for the course of Functional Languages, MD in Computer
Science, University of Padova. Here you will find the formalization of an ML-like functional language,
with details of the syntax, the type system and the semantics.

Table 1 shows the syntax of terms. Our calculus resembles the core ML language [1] with condi-
tional, tuples and a sample binary operator added on top of it. Let-rec is syntactically restricted to
lambda abstractions for enabling the definition of strict semantics in Section 3.

Table 1: Syntax of terms.

e ::= expressions
L literal

| x variable identifier
| λx.e lambda abstraction
| e e application
| let x = e in e let binding
| let rec f = λx.e in e recursive let binding
| if e then e else e conditional
| (e, .. , e) tuple
| e+ e plus binop

L ::= literals
n integers

| m floats
| true | false booleans
| "abc" strings
| ’a’ chars
| () unit

where x and f are identifiers, n ∈ Z, m ∈ R

2 Type System
Type systems are used for verifying the correctness of programs. Type checking and other advanced
forms of typing such as type inference happen at compile-time in strongly-typed programming lan-
guages. Table 2 shows the syntax of types, type schemes, typing environments and substitutions. Mind
that c represent type names, a.k.a. type constructors, such as int, float etc [5]. Parametric types
are not supported. Type variables have form of greek letters α, β, γ etc.
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Table 2: Syntax of types and related..

τ ::= types
c type constructor

| τ → τ arrow type
| α, β, γ, .. type variables
| τ ∗ .. ∗ τ tuple type

σ ::= ∀α.τ type schemes

Γ ::= typing environment
∅

| Γ, (x : σ)

θ ::= substitutions
∅

| θ, [α 7→ τ ]

where c are identifiers

2.1 Preliminaries
Before delving into the details of the typing rules, a number of utility functions must be defined. The
following function ftv1 calculates the free type variables occurring in a type τ , a type scheme σ or an
environment Γ.

ftv : (τ ∪ σ ∪ Γ) → P(α)

ftv(c) = ∅
ftv(α) = α
ftv(τ1 → τ2) = ftv(τ1) ∪ ftv(τ2)
ftv(τ1 ∗ .. ∗ τn) =

⋃n
i=1 ftv(τi)

ftv(∀α.τ) = ftv(τ) \ { α }

ftv(∅) = ∅
ftv(Γ, (x : σ)) = ftv(σ) ∪ ftv(Γ)

Generalization promotes a type τ into a type scheme σ by quantifying type variables that represent
polymorphic types through the forall universal quantifier (∀):

gen : Γ× τ → σ
genΓ(τ) = ∀α.τ where α = ftv(τ) \ ftv(Γ)

Only type variables not occurring free in the environment can be quantified, hence the extra
parameter Γ. Generalization takes place at let-binding time, as revealed by rules (Let) and (Let-
Rec) in Tables 3 and 4. Instantiation is the opposite operation, converting a type scheme into a type
by refreshing its polymorphic type variables, i.e. those quantified by the forall. Instantiation takes
place in rule (Var) at lookup time, i.e. when a variable identifier is encountered. As a matter of fact,
function inst basically relies on another function, namely re, that refreshes type variables occurring

1Mind that when the domain of a function includes a set-union, it means the function is defined on multiple domain
sets. Also, in the codomain a powerset appears: if A is a set, P(A) is the powerset of A, i.e. the set of sets of A.
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in a type:

inst : σ → τ
inst(∀α.τ) = reα(τ)

re : P(α)× τ → τ
reα(c) = c
reα(α) = α if α ̸∈ α
reα(α) = β if α ∈ α and with β fresh
reα(τ1 → τ2) = reα(τ1) → reα(τ2)
reα(τ1 ∗ .. ∗ τn) = reα(τ1) ∗ .. ∗ reα(τn) with n ≥ 2

2.1.1 More on Type Variables

To refresh type variables means to replace, for instance, a type variable whose name is α with a new type
variable β, where the name β has never been used before. For example, let τ = α → β → β → int∗α∗γ,
then refreshing its type variables means to replace type variables occurring in τ with new ones having
unused names, thus yielding to δ → ϵ → ϵ → int ∗ δ ∗ ζ. All occurrences of α has been replaced with
δ; occurrences of β with ϵ; and occurrences of γ with ζ. This is equivalent to applying the substitution
[α 7→ δ;β 7→ ϵ; γ 7→ ζ] to the type τ . More on substitutions in Section 2.3.1.

An implementation must produce new fresh names when refreshing, granting they haven’t been
used before in the typing context. Type variables must therefore be unique identifiers. A type α →
int ∗α → β would then be encoded as 1 → int ∗ 1 → 2, where α is actually encoded by the number 1
and β by the number 2. Refreshing such type is extremely simple: for each type variable a new fresh
number must be produced, leading to 2 → int ∗ 2 → 3.

Mind that this is not a plain increment: this is a full replacement with new numbers not occurring
before. For example, consider the following scenario with multiple types in the typing context including
a variety of type variables:

original type implementation refreshed
α → α 1 → 1 7 → 7
β ∗ β → γ 2 ∗ 2 → 3 8 ∗ 8 → 9
δ → ζ → η → η 4 → 6 → 5 → 5 10 → 12 → 11 → 11

A common encoding is through integer numbers produced by a global counter that is incremented
each time a new fresh type variable is required. Obviously, such a counter would always provide
numbers never used before.

2.2 Type rules
Type rules for expressions are shown in Table 3. Type judgements are logical formulas of form Γ ⊢
e : τ . It is interesting to point out that unannotated lambdas cannot be typed, hence the rule (Abs-
Annotated) adding a type annotation τ1 to the lambda parameter x. Notably, such type annotation
is promoted to a dummy type scheme ∀∅.τ1 when bound to the environment, which is basically a
monomorphic type.

The same goes for let-rec bindings, which require an explicit type scheme annotation σ as shown by
rule (Let-Rec-Annotated). The reason why let-rec bindings require an annotation, whereas plain
let bindings in rule (Let) do not, is due to the need to extend the environment with some type scheme
σ bound to the recursive identifier x when typing e1: this is necessary because x would occur in it.
Also, the form of bindable recursive expressions is restricted to lambdas.

Rules for literals are trivial and only a sample rule (Lit-Int) for integers is shown. Rule (Plus)
shows how to deal with binary operators.

2.3 Type Inference
Type inference, a.k.a. type reconstruction, is an advanced typing mechanism through which types are
deduced from the code rather than being annotated by the programmer in the program text. Type
inference rules are shown in Table 4. The original ML type inference algorithm [1][3] is here formulated
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Table 3: Type rules for expressions.

Lit-Int
⋄

Γ ⊢ n : int

Var
x ∈ dom(Γ) Γ(x) = σ τ = inst(σ)

Γ ⊢ x : τ

Abs-Annotated
Γ, (x : ∀∅.τ1) ⊢ e : τ2

Γ ⊢ λx : τ1.e : τ1 → τ2

App
Γ ⊢ e1 : τ2 → τ1 Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : τ1

If
Γ ⊢ e1 : bool Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ if e1 then e2 else e3 : τ

Tup
Γ ⊢ ei : τi (∀i ∈ [1, n])

Γ ⊢ (e1, .. , en) : τ1 ∗ .. ∗ τn

Let
Γ ⊢ e1 : τ1 σ1 = genΓ(τ1) Γ, (x : σ1) ⊢ e2 : τ2

Γ ⊢ let x = e1 in e2 : τ2

Plus
Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int

Let-Rec-Annotated
σ ≡ ∀α.τ1 → τ2 Γ, (f : σ), (x : τ1) ⊢ e1 : τ2 Γ, (f : σ) ⊢ e2 : τ3

Γ ⊢ let rec f : σ = λx.e1 in e2 : τ3

in terms of syntax-directed rules [8]. Type judgements are logical formulas of form Γ ⊢ e : τ ▷ θ, i.e.
yielding two outputs, a type and a substitution, for which θ(τ) ≡ τ holds. This means that the output
type τ is granted to be less general as possible, hence the output substitution θ does not need to be
applied to it.

2.3.1 Substitutions

Table 2 defines substitutions θ syntactically as a map from type variables α to types τ . For the
sake of brevity, we often use the compact notation [α1 7→ τ1; ..;αn 7→ τn] with n ≥ 1 in place of
∅, [α1 7→ τ1], .., [αn 7→ τn].

Substitutions can also be seen as functions from types to types [6]: a substitution application
θ(τ) consists in producing a new type τ ′ where all occurrences of each type variable αi ∈ dom(θ) are
replaced with the mapped type τi ∈ codom(θ), such that αi ̸∈ τ ′. Substitutions can also be applied to
environments and type schemes, leading to the following overall definition of application:

θ : (τ → τ) ∪ (σ → σ) ∪ (Γ → Γ)

θ(c) = c
θ(α) = τ if [α 7→ τ ] ∈ θ
θ(α) = α if α ̸∈ dom(θ)
θ(τ1 → τ2) = θ(τ1) → θ(τ2)
θ(τ1 ∗ .. ∗ τn) = θ(τ1) ∗ .. ∗ θ(τn) with n ≥ 2

θ(∀α.τ) = ∀α.θ′(τ) with θ′ = θ \ {αi 7→ τi | αi ∈ α}

θ(∅) = ∅
θ(Γ, (x : σ)) = θ(Γ), (x : θ(σ))

When applying a substitution θ to a type scheme σ ≡ ∀α.τ , only the type component τ must be
affected. This is necessary because type variables quantified by the ∀ must not be touched, as they
are meant to represent polymorphic types. Substitution θ must thefore be restricted to a smaller
substitution θ′ whose domain does not include the quantified type variables α.

Substitution composition [7] is defined like function composition: let θ1 and θ2 be two substitutions,
then the composition θ2 ◦ θ1 yields a new substitution θ′ such that θ′(τ) = θ2(θ1(τ)). Composition
can also be defined constructively: let θ1 = [α1 7→ τ1 .. αn 7→ τn] and θ2 = [β1 7→ τ ′1 .. βm 7→ τ ′m] for
n ≥ 1 and m ≥ 1, then θ2 ◦ θ1 = [β1 7→ θ1(τ

′
1) .. βm 7→ θ1(τ

′
m);α1 7→ τ1 .. αn 7→ τn] where if αi = βj

for some i ∈ [1, n] and j ∈ [1,m] then τi ≡ τ ′j . The last constraint means that the domains of the
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Table 4: Type inference algorithm as syntax-directed rules.

I-Lit-Int
⋄

Γ ⊢ n : int▷∅

I-Var
x ∈ dom(Γ) Γ(x) = σ τ = inst(σ)

Γ ⊢ x : τ ▷∅

I-Abs
Γ, (x : ∀∅.α) ⊢ e : τ2 ▷ θ1 τ1 = θ1(α)

Γ ⊢ λx.e : τ1 → τ2 ▷ θ1

I-App
Γ ⊢ e1 : τ1 ▷ θ1 θ1(Γ) ⊢ e2 : τ2 ▷ θ2
U(τ1; τ2 → α) = θ3 (α fresh)
τ = θ3(α) θ4 = θ3 ◦ θ2

Γ ⊢ e1 e2 : τ ▷ θ4

I-If
Γ ⊢ e1 : τ1 ▷ θ1 U(τ1; bool) = θ2
θ3 = θ2 ◦ θ1 θ3(Γ) ⊢ e2 : τ2 ▷ θ4
θ5 = θ4 ◦ θ3 θ5(Γ) ⊢ e3 : τ3 ▷ θ6
θ7 = θ6 ◦ θ5 U(θ7(τ2); θ7(τ3)) = θ8
τ = θ8(τ2) θ9 = θ8 ◦ θ7
Γ ⊢ if e1 then e2 else e3 : τ ▷ θ8

I-Tup
θ0 = ∅
θi−1(Γ) ⊢ ei : τi ▷ θi (∀i ∈ [1, n])

Γ ⊢ (e1, .. , en) : τ1 ∗ .. ∗ τn ▷ θn

I-Plus
Γ ⊢ e1 : τ1 ▷ θ1 U(τ1; int) = θ2 θ3 = θ2 ◦ θ1
θ3(Γ) ⊢ e1 : τ2 ▷ θ4 U(τ2; int) = θ5 θ6 = θ5 ◦ θ4

Γ ⊢ e1 + e2 : int▷ θ6

I-Let
Γ ⊢ e1 : τ1 ▷ θ1 σ1 = genθ1(Γ)(τ1)
θ1(Γ), (x : σ1) ⊢ e2 : τ2 ▷ θ2 θ3 = θ2 ◦ θ1

Γ ⊢ let x = e1 in e2 : τ2 ▷ θ3

I-Let-Rec
Γ, (f : ∀∅.α) ⊢ λx.e1 : τ1 ▷ θ1 (α fresh)
σ1 = genθ1(Γ)(τ1) θ1(Γ), (f : σ1) ⊢ e2 : τ2 ▷ θ2 θ3 = θ2 ◦ θ1

Γ ⊢ let rec f = λx.e1 in e2 : τ2 ▷ θ3

two substitutions must be disjoint, unless if the same type variable appears in both domains then they
must map into the same type, otherwise composition leads to an error state2.

Finally, circularity is not allowed: given a substitution θ = [α1 7→ τ1 .. αn 7→ τn] for n ≥ 1, then
αi ̸∈ τi forall i ∈ [1, n].

2.3.2 Unification

Unification is crucial for type inference and appears every time a type of some form is required, e.g. in
rules (I-App) and (I-If) in Table 4. Given two types τ1 and τ2, unification calculates a substitution that
makes the two types equal. More formally, U(τ1; τ2) calculates a substitution θ such that θ(τ1) ≡ θ(τ2).
Such substituion θ is called the most greater unifier (MGU) [9]. The Martelli-Montanari unification
algorithm [4] efficiently calculated the MGU:

2Mind that an error state is something related to computer implementations, not to mathematics or logic. It means
that if a certain state occurs in an implementation, then an error must be raised. A compiler, for example, would fail in
that case.
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U : τ × τ → θ
U(c1; c2) = ∅ if c1 ≡ c2
U(α; τ) = U(τ ; α) = [α 7→ τ ]
U(τ1 → τ2; τ3 → τ4) = U(τ1; τ3) ◦U(τ2; τ4)
U(τ1 ∗ .. ∗ τn; τ ′1 ∗ .. ∗ τ ′n) = U(τ1; τ ′1) ◦ .. ◦U(τn; τ ′n) with n ≥ 2

Notably, not all combinations of cases are defined: undefined cases would lead to an error state in
an implementation.

3 Operational Semantics
Semantics represent the behaviour of programs. Program evaluation happens at run-time, either by
running the machine code produced by a compiler or by evaluating the code in case the language is
interpreted.

Table 5 shows the syntax of values and evaluation environments. Closures and rec-closures are
basically pairs and triples, respectively.

Table 5: Syntax of values and related. Definitions for literals L and expressions e come from Table 1.

v ::= values
| L literal
| ⟨λx.e; ∆⟩ closure
| ⟨λx.e; f ; ∆⟩ rec-closure
| (v, .., v) tuple of values

∆ ::= evaluation environment
∅

| ∆, (x⇝ v)

x and f are identifiers

Table 6 shows the evaluation rules for expressions. Semantics can be expressed in a number of
ways: the kind of semantics defined in this document are called operational semantics [2].

Rule (E-App) deals with closures, whereas rule (E-App-Rec) is triggered when the left expression
of the application evaluates to a rec-closure. Rule (E-Plus) shows how to deal with binary arithmetic
operators for intergers: evaluation of operands produces an integer literal of form n, with n ∈ Z,
as of Table 1. Special operator ⊕ stands for the actual addition between two integer numbers. An
implementation would invoke the plus operator in the host language in this case, truly producing the
sum between the two values.
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Table 6: Operational semantics as evaluation rules.

E-Lit-Int
⋄
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