Answer the following questions, providing a motivation for each answer.

(In case of negative answer the "motivation" is a counterexample)

1. Is it true that a continuous function defined on the interval $] 1,3]$ has an absolute maximum and an absolute minimum?
NO. A counterexample is the function $f:] 1,3] \rightarrow \mathbb{R}$,

$$
f(x)= \begin{cases}-x^{2} & \forall x \in] 1,2[\\ -6+x & \forall x \in[2,3]\end{cases}
$$

f has a absolute minimum at $x=2$ but it hasn't an absolute maximum.
2. Is it true that a continuous function defined on the interval $] 1,3$] has a relative maximum and a relative minimum?
NO. A counterexample is the function $f:] 1,3] \rightarrow \mathbb{R}$,

$$
f(x)=\left\{\begin{array}{l}
\left.-x^{2} \quad \forall x \in\right] 1,2[\\
-2-x \quad \forall x \in[2,3]
\end{array}\right.
$$

f has an absolute (hence relative) minimum at $x=3$ but it hasn't an absolute maximum.
3. Consider a function $f:]-1,1[\rightarrow \mathbb{R}$, and assume that it is differentiable on $]-1,1[\backslash\{0\}$ and that the limit $\lim _{x \rightarrow 0} f^{\prime}(x)$ does NOT exist. Can we conclude that the function f is not differentiable at $x=0$? NO. The function

$$
f(x):=\left\{\begin{array}{l}
x^{2} \sin \left(\frac{1}{x}\right) \quad \forall x \neq 0 \\
0 \quad \text { for } x=0
\end{array}\right.
$$

is differentiable at any point: indeed, if $x \neq 0 f^{\prime}(x)=2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right)$, while for $x=0$ one can compute the derivative as limit of the differential quotient (do it by exercise), so obtaining that $f^{\prime}(0)=0$.
However the limit

$$
\lim _{x \rightarrow 0} f^{\prime}(x)=\lim _{x \rightarrow 0} 2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right)
$$

does not exist.
4. Suppose that a function $f:[0,1] \rightarrow \mathbb{R}$ is differentiable at all points of $] 0,1[$ and that f is continuous at $x=0$ and $x=1$. Can we conclude that f is integrable?
YES. Indeed f is differentiable, hence continuous on $] 0,1[$, moreover it is continuous at $x=0$ and $x=1$. Therefore it is continuous on the closed and bounded interval $[0,1]$, hence it is integrable on $[0,1]$.
5. Let $\sum_{n=1}^{\infty} a_{n}$ be a convergent series which does not converge absolutely. Can we conclude that

$$
\lim _{n \rightarrow \infty}\left(a_{n}\right)^{4}=0 ?
$$

YES. A necessary condition for the series to be convergent is $\lim _{n \rightarrow \infty} a_{n}=0$. Hence one also has $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$. In particular there is \bar{n} such that $\left|a_{n}\right|<1$ for all $n>\bar{n}$. Therefore, for all $n>\bar{n}$ one has $0 \leq a_{n}^{4}=\left|a_{n}\right|^{4} \leq\left|a_{n}\right|$, and by the two policemen theorem one concludes that $\lim _{n \rightarrow \infty} a_{n}^{4}=0$
6. Let $\sum_{n=1}^{\infty} a_{n}$ be a convergent series. Is it true that the series $\sum_{n=1}^{\infty} b_{n}$, with $b_{n}=-a_{n} \forall n \in \mathbb{N}$, is a convergent series as well?
YES. Since $\sum_{n=1}^{\infty} a_{n}$ is convergent one has $\lim _{k \rightarrow \infty} S_{k}^{a}=S \in \mathbb{R}$, where, for every $k, S_{k}^{a}:=a_{1}+\cdots+a_{k}$. Setting $S_{k}^{b}:=b_{1}+\cdots+b_{k}=-a_{1}+\cdots-a_{k}=-S_{k}^{a}$, one gets $\lim _{k \rightarrow \infty} S_{k}^{b}=-S$, i.e. the series $\sum_{n=1}^{\infty} b_{n}$ converges (and its sum is $-S$).
7. Consider a complex polynomial $P(z)=b_{5} z^{5}+b_{4} z^{4}+b_{3} z^{3}+b_{2} z^{2}+b_{1} Z+b_{0} \quad\left(b_{0}, \ldots, b_{5} \in \mathbb{C}\right)$. Is it true that the equation $P(z)=0$ has at least one real solution?
NO. A simple counterexample is

$$
P(z):=(z+i)^{5}=z^{5}+5 i z^{4}-10 z^{3}-10 i z^{2}+5 i z+i
$$

and the only solution of $P(z)=0$ is $-i$.
8. Same as in the previous question but with $b_{0}, \ldots, b_{5} \in \mathbb{R}$

YES. By the Fundamental Theorem of Algebra we know that there are 5 solutions (when counted with their multiplicity). Moreover, since the coefficients of $P(z)$ are real, for every solution $z=x+i y$, also its conjugate $\bar{z}=x-i y$ is a solution. Therefore, there must be at least one solution \hat{z} which coincides with its conjugate. This is possible if and only if \bar{z} is a real number.
9. Consider a function $f:\left[0,+\infty\left[\rightarrow \mathbb{R}\right.\right.$ and assume that the series $\sum_{n=1}^{\infty} a_{n}$, where $a_{n}:=f(n) \forall n \in \mathbb{N}$, converges. Can we conclude that $\lim _{x \rightarrow \infty} f(x)=0$?
NO. A counterexample is

$$
f(x):= \begin{cases}\frac{1}{x^{2}} & \forall x \in \mathbb{N} \\ 1 & \forall x \in[0,+\infty[\backslash \mathbb{N}\end{cases}
$$

The limit $\lim _{x \rightarrow \infty} f(x)$ does not exist.

