Answer the following questions, providing a motivation for each answer.

(In case of negative answer the "motivation" is a counterexample)

1. Is it true that a continuous function defined on the interval] 1,3] has an absolute maximum and an absolute minimum?
2. Is it true that a continuous function defined on the interval $] 1,3]$ has a relative maximum and a relative minimum?
3. Consider a function $f:]-1,1[\rightarrow \mathbb{R}$, and assume that it is differentiable on $]-1,1[\backslash\{0\}$ and that the limit $\lim _{x \rightarrow 0} f^{\prime}(x)$ does NOT exist. Can we conclude that the function f is not differentiable at $x=0$?
4. Suppose that a function $f:[0,1] \rightarrow \mathbb{R}$ is differentiable at all points of $] 0,1[$ and that f is continuous at $x=0$ and $x=1$. Can we conclude that f is integrable?
5. Let $\sum_{n=1}^{\infty} a_{n}$ be a convergent series which does not converge absolutely. Can we conclude that

$$
\lim _{n \rightarrow \infty}\left(a_{n}\right)^{4}=0 ?
$$

6. Let $\sum_{n=1}^{\infty} a_{n}$ be a convergent series. Is it true that the series $\sum_{n=1}^{\infty} b_{n}$, with $b_{n}=-a_{n} \forall n \in \mathbb{N}$, is a convergent series as well?
7. Consider a complex polynomial $P(z)=b_{5} z^{5}+b_{4} z^{4}+b_{3} z^{3}+b_{2} z^{2}+b_{1} Z+b_{0} \quad\left(b_{0}, \ldots, b_{5} \in \mathbb{C}\right)$. Is it true that the equation $P(z)=0$ has at least one real solution?
8. Same as in the previous question but with $b_{0}, \ldots, b_{5} \in \mathbb{R}$
9. Consider a function $f:\left[0,+\infty\left[\rightarrow \mathbb{R}\right.\right.$ and assume that the series $\sum_{n=1}^{\infty} a_{n}$, where $a_{n}:=f(n) \forall n \in \mathbb{N}$, converges. Can we conclude that $\lim _{x \rightarrow \infty} f(x)=0$?
