1. Prove that if a series $\sum_{n=1}^{\infty} a_{n}$ \qquad
$\lim _{n \rightarrow \infty} a_{n}=0$
Set $S=\sum_{n=1}^{\infty} a_{n}$. By hypothesis
$S_{\odot} \mathbb{R}$. Sit $S_{k}=\sum_{n=1}^{n} a_{n}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(S_{n}-S_{n-1}^{n+1}\right) & =S-S= \\
& =0
\end{aligned}
$$

2. Give an example of a function which has positive derivative on its domain but is not increasing

$$
\begin{aligned}
& f(x)=-\frac{1}{x} \quad f^{\prime}=\frac{1}{x^{2}}>0 \\
& \text { but } f(-1)=1>f(1)=-1
\end{aligned}
$$

3. State and prove Fermat theorem on local maximums and minimums.

Theovenn $f: I \longrightarrow \mathbb{R}$.
x_{0} is internal to I
f is oliffercestiable on I x_{0} is a relative maximin or minium point. Then

$$
f^{\prime}\left(x_{0}\right)=0
$$

Exercises
Exercise 1 (punti 9) Let us consider the function

$$
f(x)=\sqrt{3 x^{2}-2 x}-\sqrt{3} x
$$

(a) determine the maximal domain D of f and the sign of $f(x)$ for every $x \in D$;
(b) compute significative limits and investigate the possibility of asymptotes;
(c) compute the derivative at the points where f is differentiable ; discuss the monotonicity of f; provided they exist, determine the infimum, the supremum, minimum and maximum points(relative and absolute);
(d) plot a qualitative graph of f.

Exercise 2 (punti 7) Let us consider the equation on \mathbb{C}

$$
\quad z^{4}+\alpha i z^{3}+2 \alpha z^{2}=-12 i z-8 \quad(\alpha \in \mathbb{R})
$$

Setting $Z=乙$ one gets alpha=-3
(a) Determine $\alpha \in \mathbb{R}$ such that $z_{0}:=i$ is a solution;
(b) Verify that for the value of α found in (a), also $z_{1}:=2$ is a solution;
(c) Find the remaining solutions.

Exercise 3 (punti 8) (a) Compute the limit

$$
\lim _{x \rightarrow 0^{+}}\left[\cos x-2 x-4 x^{2}\right]^{\frac{1}{x}}
$$

(b) Study the character of the series (is it convergent, divergent, indeterminate?)

$$
\sum_{n=1}^{+\infty}\left[\cos \left(\frac{1}{n}\right)-\frac{2}{n}-\frac{4}{n^{2}}\right]^{n^{2}}
$$

Exercise 4 (punti 8) For every $\alpha \in \mathbb{R}$ consider the function

$$
\left.\left.f_{\alpha}(x)=x(\log (x+1))^{\alpha} \quad x \in\right] 0,1\right]
$$

(a)For which values of the parameter $\alpha \in \widehat{\mathbb{R}}$ is the generalized integral
$1_{1}^{1 \not a}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0_{1}} e \\
& \begin{array}{l}
\text { The series converges by the root test. } \\
\operatorname{lin} \sqrt{l \theta_{n}}=\lim \left[\cos \frac{1}{n}-\frac{2}{n}-\frac{4}{n^{2}}\right]^{n}=\frac{1}{l^{2}}<1
\end{array}
\end{aligned}
$$

Exercise 2
By (() we get $\alpha=-3$ so the equation becomes $P(z)=z^{4}-3 i z^{3}-6 z^{2}+12 i z+8=0$ Since $P(2)=0$, (b) is reified There fore $P(z)$ is siriable by $(z-i)(z-2)=z^{2}-(i+2) z+2 i$

Performing the division we get

$$
\frac{P(z)}{(z-i)(z-z)}=z^{2}+(-2 i+2) z-4 i
$$

Therefore

$$
P(z)=(z-i)(z-2)\left(z^{2}+(-i-2) z-4 i\right)
$$

So we have to find the solutions of

$$
z^{2}+(-2 i+2) z-4 i=0
$$

Applying the standard fonule to solve $2^{\text {ned }}$ de gree epuctions we

$$
\begin{aligned}
& \begin{array}{l}
\text { get } \\
z_{2,3}=i-1+\left(\begin{array}{l}
\text { roots of } \\
\Delta=(i-1)^{2}+4 i \\
=-i+i+2 i+4 i
\end{array}\right)=
\end{array} \\
& =i-1+(\text { roots of } 2 i)= \\
& =\left\{\begin{array}{l}
i-1+\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{2}\right) \\
i-1-\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{2}\right.
\end{array}\right. \\
& \left\{\begin{array}{l}
=i-1+1+i=2 i \\
=i-1-1-i=-2
\end{array}\right.
\end{aligned}
$$

$$
f(x)=\sqrt{3 x^{2}-2 x}-\sqrt{3} x
$$

Domain $=\left\{x \in \mathbb{R}: 3 x^{2}-2 x\right\}=$

$$
=]-\infty, 0]^{(} \cup\left[\frac{2}{3},+\infty[=D\right.
$$

Sign. $f(x) \geqslant 0 \Leftrightarrow \sqrt{3 x^{2}-2 x} \geqslant \sqrt{3} x$

$$
\begin{aligned}
& \Leftrightarrow\left(\left\{\begin{array}{l}
\{, 0\} \\
x \geqslant 0 \\
3 x^{2}-2 x \geqslant 3 x
\end{array}\right.\right. \\
&=\{x \leqslant 0\}
\end{aligned}
$$

The function is coutimons at every $x \in D$
Limits

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} \sqrt{3 x^{2}-2 x}-\sqrt{3} x=+\infty-\infty= \\
& \lim _{x \rightarrow+\infty} \frac{3 x^{2}-2 x-3 x^{2}}{\sqrt{3 x^{2}-2 x}+\sqrt{3} x}=\lim _{x \rightarrow+\infty} \frac{-2 x}{x\left(\sqrt{3 \cdot \frac{2}{x}}+\sqrt{3}\right)} \\
& =\left|-\frac{2}{e \sqrt{3}}\right|=-\frac{1}{\sqrt{3}} \\
& \lim _{x \rightarrow-\infty} \frac{f(x)}{f(x)}=+\infty+\infty=+\infty
\end{aligned}
$$

Asymptote at $-\infty$?

$$
m=\lim _{x \rightarrow-\infty} \frac{f(x)}{x}=\lim _{x \rightarrow-\infty} \frac{\sqrt{3 x^{2}-2 x}-\sqrt{3} x}{x}=
$$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{-y \sqrt{3-\frac{e}{x}}-\sqrt{3} x}{x}=-2 \sqrt{3} \\
& p=\lim _{x \rightarrow-\infty} f\left(x+2 \sqrt{3} x=\sqrt{x^{2}-2 x}-\sqrt[3]{x}+2 \sqrt{3} x\right. \\
& =\lim _{x \rightarrow-\infty} \sqrt{3 x^{2}-2 x}+\sqrt{3} x=+\infty-\infty= \\
& =\frac{-2 x}{x-\left(\sqrt{3-\frac{2}{x}}-\sqrt{3}\right)}=\frac{2}{2 \sqrt{3}}=\frac{1}{\sqrt{3}} \\
& y=-2 \sqrt{3 x}+\frac{1}{\sqrt{3}} \quad \text { is } \\
& =1
\end{aligned}
$$

a oblique asyuptote.
Derivative:

$$
\begin{aligned}
& \forall x \in]-\infty, 0[U] \frac{2}{3},+\infty[=D \\
& f^{\prime}(x)=\frac{6 x-2}{2 \sqrt{3 x^{2}-2 x}}-\sqrt{3}=\frac{3 x-1}{\sqrt{3 x^{2}-2 x}}-\sqrt{3}
\end{aligned}
$$

Monotovicity

$$
\begin{aligned}
& f^{\prime}(x) \geqslant 0 \Leftrightarrow\left\{3 x-1 \geqslant \sqrt{3 x^{2}-2 x} \cdot \sqrt{3}\right\} \cap \dot{D} \\
& \Leftrightarrow\left\{\begin{array}{l}
3 x-1 \geqslant 0 \\
9 x^{2}-5 x+1 \geqslant 9 x^{2}-5 x
\end{array}\right\} \cap \dot{D} \\
& \Leftrightarrow\left\{x \geqslant \frac{1}{3}\right\} \cap D=\left\{x>\frac{2}{3}\right\}
\end{aligned}
$$

\Rightarrow The function is incresing (stridty)

$$
\text { on }] \stackrel{\frac{2}{3},+\infty\left[\underset { \text { by costimitep } } { \Rightarrow } \text { on } \left[\frac{2}{3},+\infty d .\right.\right.}{ }
$$

and striclly decredsing or $]-\infty, 0[\overrightarrow{1}$ on $]-\infty, 0]$.
by catimity
Ri hf derinative at $x=\frac{2}{3}$?
No:

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{2}{3}^{+}}=\frac{3 x-1}{\sqrt{3 x^{2}-2 x}}-\sqrt{3}=+\infty \\
& \text { (the trugent is veutical }
\end{aligned}
$$

Left deristive at o?
No:

$$
\lim _{x \rightarrow 0} f^{\prime}(x)=-\infty
$$

(the tugent is vertial)

