Master's degree course in CONTROL SYSTEMS ENGINEERING

Olga Bernardi: MATHEMATICAL PHYSICS

Tullio Levi-Civita and the Parallel Transport Theory

Franco Cardin

Il 21 Novembre 2016 il Dipartimento di Matematica è stato intitolato al matematico Tullio Levi-Civita (Padova, 29 marzo 1873 Roma, 29 dicembre 1941). Tullio Levi-Civita, che fu studente e (1897-1919) professore presso il nostro Ateneo, è un nome di cui i matematici padovani sono fieri, come lo sono per quello di Galileo Galilei. Nella primavera del 1915, a pochi mesi dalla pubblicazione della Relatività Generale, LeviCivita si accorse di un errore che ne avrebbe minato la validità e scrisse ad Einstein per segnalarglielo. Einstein, dopo una iniziale riluttanza, riconobbe la correttezza delle obiezioni del padovano, a cui rimase grato per tutta la vita ("spaghetti and Levi-Civita" fu la risposta data da Einstein a un cronista che gli chiedeva cosa amasse di più dell'Italia). Levi-Civita si occupò di molti altri argomenti: la teoria del Trasporto Parallelo, che porta il suo nome, risulterà l'elemento fondante della moderna teoria delle Connessioni; oltre alla geometria della Relatività Generale, si occupò dalla stabilità delle orbite dei pianeti fino alla matematica dei cavi intercontinentali del telegrafo.

Le leggi di "difesa della razza" del 1938 lo allontanarono definitivamente dall'università e da tutte le istituzioni scientifiche italiane, mentre nel mondo libero se ne celebrava la grandezza.

TULLIO LEVI-CIVITA

He was born on 29 March 1873 in Padova, via Daniele Manin, 7. Later, until the end of 1918, he lived in via Altinate, 14.

via Daniele Manin, 7

via Altinate, 14

His father should be remembered: Giacomo Levi-Civita, 1846-1922. 'Garibaldino' in Aspromonte at 16, with Garibaldi again in 1866 in Trentino.

Memorable fact: Giacomo is a young lawyer, in 1880 he definitively claimed for the city of Padova the Giotto frescoes of the Scrovegni Chapel (at that time property of Gradenigo family), which were about to be detached and sold to a british museum.

He will be a beloved Mayor of Padova from 1904 to 1910, Senator of the Kingdom of Italy from 1908.

Tullio Levi-Civita attends the Liceo Tito Livio. As professor of Mathematics: Paolo Gazzaniga, a very effective teacher and skilled on Number Theory.

The young Tullio feels himself "ready" to demonstrate the independence, or otherwise, of Euclid's 5° Postulate from the other 4!

Gazzaniga does not discourage him, he follows him as a tutor and teacher, aware that the important 'disappointment' will become a growth for his pupil.

Gazzaniga will still be his professor at the University!

High school graduation, July 1890: Tullio was one of the very few students who opted for the writing of Mathematics!

Tullio Levi-Civita studies Mathematics in Padova

Here, the great meeting of his scientific life, under the direction of

Gregorio Ricci Curbastro

he graduated in Mathematics in 1894
Title of his thesis: "Sugli Invarianti Assoluti"
andi invariantiassoluti

1．Tha mo sidtoma fol filmation si．fo ．．．．fo do

 comasionsta，fe contravoscionsa．Si balla de：
－Velenminare litte lo effuetsionse ST fommato

＂－ma batfommentiono corbhersio ：

dimen，te eipfonemine prixislowato dill duriont

fumitionm del seshemac od anche loso critleprale．
2．Curiss fi dो pmona，che mefencodote ort ine
fouthidam difema，ne dadannino inn inver．

$$
\sum \sum_{i} \int\left\{\int _ { 1 } \left[\left\{l_{1}=1\right.\right.\right.
$$

（60）

Gregorio Ricci Curbastro

(Lugo di Romagna, 12 Jan 1853 - Bologna, 6 Aug 1925):
Student at the S. Normale di Pisa of Enrico Betti, Eugenio Beltrami, Ulisse Dini. As soon as he graduated, he goes on a study trip to Munich (a kind of Post-doc!): There, he meets Felix Klein, learns the new recent geometric theory on CURVATURE
introduced by Bernhard Riemann, who was the great pupil of Carl Friedrich Gauss.

Here a list of the papers by Levi-Civita in the first two years, 1894-96, after his Math Graduation:

Tullio Levi-Civita, Sugli infiniti ed infinitesimi attuali quali elementi analitici, Atti del R. Istituto Veneto, 1893.
Tullio Levi-Civita, Sugli invarianti assoluti [Dissertazione di laurea] Atti del R. Istituto Veneto, 1893-94.
Tullio Levi-Civita, Sui gruppi di operazioni funzionali, Rendiconti del R. Istituto lombardo di scienze e lettere, 1895.
Tullio Levi-Civita, Alcune osservazioni alla nota Sui gruppi di operazioni funzionali, Rendiconti del R. Istituto lombardo di scienze e lettere, 1895.
Tullio Levi-Civita, I gruppi di operazioni funzionali e l'inversione degli integrali definiti
(Rendiconti del R. Istituto lombardo di scienze e lettere, 1895.
Tullio Levi-Civita, Di una espressione analitica atta a rappresentare il numero dei numeri primi compresi in un determinato intervallo (Atti della R. Accademia dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, 1895.
Tullio Levi-Civita, Sull'inversione degli integrali definiti nel campo reale (Atti della R. Accademia delle scienze di Torino, 1895-96.
Tullio Levi-Civita, Sulla distribuzione indotta in un cilindro indefinito da un sistema simmetrico di masse, Atti della R. Accademia dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, 1895.
Tullio Levi-Civita, Sugli integrali algebrici delle equazioni dinamiche (Atti della R. Accademia delle scienze di Torino, 1895-96.
Tullio Levi-Civita, Sulle trasformazioni delle equazioni dinamiche (Annali di Mat. pura ed applicata, 1896.

In 1898, at age of 25 , Levi-Civita became the holder of the chair of Rational Mechanics in Padova.

The team Ricci \& Levi-Civita is wonderful! there is a flourishing of modern Differential Geometry, Tensor Calculus, Theory of Invariants ... they called all this the

Absolute Differential Calculus

Covariante Derivative: it was introduced by Gregorio Ricci Curbastro in 1888, later developed with Tullio Levi-Civita in Riemannian metric theory, up to the definitive arrangement in the important review article, a booklet of 76 pages, requested by Felix Klein:
G. Ricci Curbastro, T. Levi-Civita: Methodes de calcul differentiel absolu et leurs applications, Mathematische Annalen 54 (1-2): 125-201, 1901.

Ricci and Levi-Civita (following the ideas of Elwin Bruno Christoffel) observed in fact that Christoffel's symbols, which they used to define curvature, could have provided a notion of differentiation that generalized the classical derivative of a vector field \mathbf{Y} along the direction of another vector field X,

- Classically: $\frac{d}{d t} Y^{\alpha}(x(t))=\frac{\partial Y^{\alpha}}{\partial x^{\beta}} \frac{d x^{\beta}}{d t}=\underbrace{\frac{\partial Y^{\alpha}}{\partial x^{\beta}} X^{\beta}}$, $\frac{d x^{\beta}(t)}{d t}=X^{\beta}(x(t))$
- Covariant Derivative:

$$
\begin{array}{r}
\left(D_{X} Y\right)^{\alpha}=\left(D_{\frac{\partial}{\partial x^{\beta}}} Y^{\alpha}\right) X^{\beta}:=\sum_{\beta}(\underbrace{\frac{\partial Y^{\alpha}}{\partial x^{\beta}}}_{\text {standard term }}+\underbrace{\Gamma_{\beta \gamma}^{\alpha} Y^{\gamma}}_{\text {new term }}) X^{\beta} \\
\underbrace{\Gamma_{\beta \gamma}^{\alpha}}=\sum_{\rho} \underbrace{\frac{1}{2}\left(g_{\rho \beta, \gamma}+g_{\gamma \rho, \beta}-g_{\beta \gamma, \rho}\right)}_{[\beta \gamma, \rho] \text {; Christoffel's symbols sof } 10 \text { kind }} g^{\rho \alpha} \\
\text { Christoffel's symbols of } 2^{0} \text { kind }
\end{array}
$$

This new derivative turned out to be covariant, in the sense that it satisfied Riemann's requirement that objects in geometry must be independent of their description in a particular coordinate system.

But there was a problem.
That wonderful theory was received (very) coldly by the math community:
Tullio Levi-Civita, from that year 1901, stopped researching Differential Geometry,
and substantially, so did his master Gregorio Ricci Curbastro.
Tullio L-C came back to dealing with Differential Geometry precisely with his mail correspondence with Einstein, in 1915, arriving after at the general definition of Parallel Transport in 1916. (Sketched later)

In those first 15 years of the new century Tullio studied and published admirable researches in

- theory of stability,
- analytical mechanics
and mainly in
- celestial mechanics, the Newtonian Three-Body Problem.

He anticipates, in 1899, although restricted to the finite-dimensional case only, the well-known Theorem by Emmy Noether of 1918:

$$
\text { SYMMETRIES } \quad \Longrightarrow \quad \text { FIRST INTEGRALS }
$$

INTERPRETAZIONE GRUPPALE DEGLI INTEGRALI DI UN SISTEMA CANONICO (*)
"Rend. Acc. Lincei », s. 3^{3}, vol. VIII, 2° sem. 1899, pp. 235-238

But 1915 is coming:
Albert Einstein, Berlin

General Relativity, before Levi-Civita:

Einstein A., 1912, Zur Theorie des statischen Gravitationsfeldes Annalen der Physik, 38 (1912), pp. 443-458 (Reprinted as Vol. 4, Doc. 4 CPAE)

Einstein A., 1913, Zum gegenwrtigen Stande des Gravitationsproblems Physikalische Zeitschrift, 14 (1913), pp. 124-1266 (Reprinted as Vol. 4, Doc. 17 CPAE)
Einstein, A., \& Grossmann, M. (1913). Entwurf einer verallgemeinerten Relativittstheorie und einer Theorie der Gravitation. Leipzig: Teubner (Reprinted in CPAE, Vol. 4, Doc. 13).

Einstein A., 1914, Die formale Grundlage der allgemeinen Relativittstheorie. Sitzungsberichte der Koniglich Preussischen Akademie der Wissenschaften (pp. 79-801) (Reprinted as Vol. 6, Document 9 CPAE).

Entwurf: draft, sketch

Another character:
Max Abraham, Politecnico di Milano

Max Abraham, Polytechnic University of Milano, is a 'classical physicist',
he had been a strong supporter of the existence of the ether and that the electron was a perfectly rigid sphere with a charge uniformly distributed on its surface.

At the beginning of 1915, in a meeting with Tullio Levi-Civita, old friend of him, Max invites Tullio to read and then to 'criticize' the Entwurf.

But for Tullio Levi-Civita is instead a shock:
He is now reading the theory of his teacher Ricci Curbastro and himself,
that theory 'becomes physics'!
Tullio immediately writes to Einstein (we are in March):
"It's a beautiful theory, but there is a mistake!"

Einstein denies, the correspondence is very dense.
At the end, Einstein admits (it's May 5), and thanks Tullio, but the correspondence broke off dramatically:
On May 7 Italy left the 'Triple Alliance' and on May 24 it declared war on Austria.

But now, the gravitational equations are finally correct!

Relatività Generale, After Levi-Civita:

Einstein A., 1916a, Die Grundlage der allgemeinen Relativittstheorie Annalen der Physik, 49 (7) (1916), pp. 769-822 (Reprinted as Vol. 6, Doc. 30 CPAE)

Einstein A., 1916b, Uber Friedrich Kottlers Abhandlung ber Einsteins quivalenzhypothese und die Gravitation Annalen der Physik, 356 (22) (1916), pp. 639-642 (Reprinted as Vol. 6, Doc. 40 CPAE)

Einstein warmly expresses his gratitude to Levi Civita !

Einstein, to the question "what does he love about Italy?" will always answer: "spaghetti and Levi-Civita".

Equations of General Relativity:

$$
\begin{gathered}
\underbrace{A^{\alpha \beta}}_{\text {"Levi-Civita" curvature tensor }}=\frac{8 \pi \gamma}{c^{4}} \underbrace{\mathcal{U}^{\alpha \beta}}_{\text {matter }} \\
\left(A^{\alpha \beta}=A^{\alpha \beta}\left(g_{\rho \sigma}, g_{\rho \sigma, \gamma}, g_{\rho \sigma, \gamma \delta}\right)\right)
\end{gathered}
$$

December 1916: Tullio Levi-Civita introduces the

Parallel Transport Theory

Francesco Severi,

a master of italian algebraic geometry

There was a friendship between Francesco Severi and Tullio Levi Civita.
But Severi changed sides, became a fascist, attended scientific conferences in a black shirt and orbace.

Severi suggested to Minister Gentile to oblige

 university professors to take an oath of allegiance to the regime, 1931 dell'Università di Roma; nello sfondo, a destra, si riconosee Enrico Bompiani.

The fascist racial laws against Jews arrived in 1938.

By explicit intervention of Francesco Severi,
it was forbidden to Castelnuovo, Enriques e Levi-Civita, the day after the promulgation of the racial laws, to enter the library of the Mathematical Institute of Rome.
from: Giorgio Israel e Pietro Nastasi, Scienza e razza nell'Italia fascista (Bologna, Il Mulino, 1998), see p. 258

In the next slide, the letter of dismissal of Levi-Civita.

OGGETTO : Personale di razza ebraica.

Dalla Vostra scheda di censimento personale risul= ta che appartenete alla razza ebraica.

Siete stato, pertanto, sospeso dal servizio a decorre= re dal I6 ottobre I938 XVI a norma del R.D.L. 5-9-I938 no 1390.

Con osservanza,
MI RETTORE

Levi-Civita dies in 1941 December 29 in Roma.

November 21, 2016:
The Department of Mathematics was intitolated to Tullio Levi-Civita

Now, some ideas about the

Parallel Transport
Theory

In an Euclidean 2-space \mathbb{E}, a plane, take a point A and an applied vector \mathbf{V} attached to A.
Naturally, we describe the straight line:

Now, take another point B :

${ }^{B}$, by the 5° Postulate we can consider the unique straight line through B which is parallel to the above straight line $A+\mathbb{R} \mathbf{V}$

We speak of equivalent (equipollenti) vectors and we can write this parallel straight line through B, simply by ${ }^{\dot{x}} B_{\rho}+\mathbb{R} \mathbf{V}$

Look: we are really using the same symbol \mathbf{V} for two equivalent vectors, but rigorously they are different, because attached to different points!

We will say: the vector \mathbf{V}, attached to B, is the parallelly transported of the vector V , attached to A :

$$
(A, \mathbf{V}) \in \underbrace{T_{A} \mathbb{E}}_{\text {tangent space at } A} \rightsquigarrow(B, \mathbf{V}) \in \underbrace{T_{B} \mathbb{E}}_{\text {tangent space at } B}
$$

The above discussion could seem a little trivial,
but all becomes cumbersome and intriguing
when we try to extend these arguments
from the Euclidean 2-plane, or Euclidean 3-space, to a generic, fully non linear, 2 -surface Σ !

Trasporto Parallelo di un veltore v lungo

Se ora $l a$ curre $l e^{\prime}$ sapra 2d uma superficie S, come si trasporta il vettore v ?
Or2 il nostro "nemiverjo" nor = $\mathbb{R}^{3}=\{0, x, y, z\}$, bens: S.
I vettcri trasporitio paraliela mente doveruno essere tangenti $+~ S . M a$ qual è l_{2} riaett1 giust L_{1} ? (Levi-Civit2)

Let consider a 2 -surface $\Sigma \subset \mathbb{R}^{3}$ by parametric equation:
$\mathbb{R}^{2} \supset U \ni\left(u^{1}, u^{2}\right) \longmapsto O P\left(u^{1}, u^{2}\right) \in \mathbb{R}^{3},\left.\quad \operatorname{rank} d O P\right|_{U}=\max (=2)$,
the triple of vectors:

$$
\left(\frac{\partial O P}{\partial u^{1}}, \frac{\partial O P}{\partial u^{2}}, n:=\frac{\frac{\partial O P}{\partial u^{1}} \times \frac{\partial O P}{\partial u^{2}}}{\left\|\frac{\partial O P}{\partial u^{1}} \times \frac{\partial O P}{\partial u^{2}}\right\|}\right)
$$

is linearly independent in \mathbb{R}^{3}, the pair $\left(\frac{\partial O P}{\partial u^{1}}, \frac{\partial O P}{\partial u^{2}}\right)$ is a basis of the tangent space $T_{O P} \Sigma$

Main Problem:

Given
(i) a curve over $\Sigma, \quad \ell:[0,1] \ni \lambda \rightarrow \ell(\lambda)=\left.u^{\alpha}(\lambda)\right|_{\alpha=1,2} \in \Sigma$, and
(ii) a vector $V_{0} \in T_{\ell(0)} \Sigma$,
what is the 'reasonable' curve of vectors

$$
\tilde{\ell}:[0,1] \ni \lambda \rightarrow \tilde{\ell}(\lambda)=(\ell(\lambda), V(\lambda)) \in T \Sigma \quad V(0)=V_{0}
$$

parallelly transporting V_{0} along ℓ ?

A first 'naive' trial (rem: we want $V \cdot n \equiv 0$, that is, $V \in T \Sigma$)

$$
\begin{equation*}
V(\lambda): \quad V(\lambda)=V_{0}-\left(V_{0} \cdot n(\lambda)\right) n(\lambda) \tag{0.1}
\end{equation*}
$$

$(n(\lambda)$ means $n(\ell(\lambda)))$ in other words, we are transporting V_{0} along the curve ℓ by using the 'Euclidean' structure of \mathbb{R}^{3}, removing, point after point, the normal component of V_{0}. The derivative with respect to λ is

$$
\dot{V}=-\left(V_{0} \cdot \dot{n}\right) n-\left(V_{0} \cdot n\right) \dot{n}
$$

Since $n \cdot \dot{n} \equiv 0$, by multiplying (0.1) by \dot{n}, we have $V \cdot \dot{n}=V_{0} \cdot \dot{n}$, so that

$$
\begin{equation*}
\dot{V}=-(V \cdot \dot{n}) n-\left(V_{0} \cdot n\right) \dot{n} \tag{0.2}
\end{equation*}
$$

$$
\dot{V}=-(V \cdot \dot{n}) n-\left(V_{0} \cdot n\right) \dot{n}
$$

Drawbacks:
i) we are using heavily the Euclidean environment \mathbb{R}^{3} in which Σ is embedded,
ii) the term $-\left(V_{0} \cdot n\right) \dot{n}$ is definitely non local.

The solution proposal by Levi-Civita will be exactly that of neglecting that last term $-\left(V_{0} \cdot n\right) \dot{n}$, that is, just considering

$$
\begin{equation*}
\dot{V}=-(V \cdot \dot{n}) n \quad \text { or }: \quad 0=\dot{V} \cdot \frac{\partial O P}{\partial u^{\beta}} \tag{0.3}
\end{equation*}
$$

Multiplying by n each member:

$$
\dot{V} \cdot n+V \cdot \dot{n}=\frac{d}{d \lambda}(V \cdot n)=0
$$

we restore again the main expected features:

$$
V \cdot n \equiv 0 \quad \text { since } \quad V(0) \cdot n(0)=0
$$

Now we restart, by arriving to give an intrinsic formulation of the parallel transport, just using geometric objects related to Σ, forgetting \mathbb{R}^{3}, involving purely the Riemannian metric on Σ, even though it is inherited from the Euclidean metric by pull-back:

$$
\begin{gather*}
g_{\alpha \beta}:=\frac{\partial O P}{\partial u^{\alpha}} \cdot \frac{\partial O P}{\partial u^{\beta}}, \tag{0.4}\\
V=v^{\alpha} \frac{\partial O P}{\partial u^{\alpha}}, \quad V \cdot \frac{\partial O P}{\partial u^{\beta}}=v^{\alpha} \frac{\partial O P}{\partial u^{\alpha}} \cdot \frac{\partial O P}{\partial u^{\beta}}=v^{\alpha} g_{\alpha \beta}=v_{\beta}
\end{gather*}
$$

On the basis of (0.3), i.e.:

$$
\dot{V}=-(V \cdot \dot{n}) n
$$

avoiding any links to the environment \mathbb{R}^{3} of Σ, following Levi Civita ${ }^{1}$:

$$
\begin{equation*}
V(\lambda): \quad 0=\dot{V} \cdot \frac{\partial O P}{\partial u^{\beta}}, \quad \beta=1,2 . \tag{0.5}
\end{equation*}
$$

[^0]$$
V(\lambda): \quad 0=\dot{V} \cdot \frac{\partial O P}{\partial u^{\beta}}, \quad \beta=1,2 .
$$

Rewriting the latter one 'by parts',

$$
0=\frac{d}{d \lambda}\left(V \cdot \frac{\partial O P}{\partial u^{\beta}}\right)-V \cdot \frac{d}{d \lambda} \frac{\partial O P}{\partial u^{\beta}}
$$

recalling the representation $V=v^{\alpha} \frac{\partial O P}{\partial u^{\alpha}}$ and $v_{\beta}=V \cdot \frac{\partial O P}{\partial u^{\beta}}$,

$$
0=\frac{d v_{\beta}}{d \lambda}-v^{\alpha} \underbrace{\frac{\partial O P}{\partial u^{\alpha}} \cdot \frac{\partial^{2} O P}{\partial u^{\gamma} \partial u^{\beta}}}_{? ?} \frac{d \ell^{\gamma}}{d \lambda}
$$

This last term $\frac{\partial O P}{\partial u^{\alpha}} \cdot \frac{\partial^{2} O P}{\partial u^{\gamma} \partial u^{\beta}}$ is fully intrinsic, it forgets the embedding of Σ in \mathbb{R}^{3} !
Indeed, from (0.4) $g_{\alpha \beta}=\frac{\partial O P}{\partial u^{\alpha}} \cdot \frac{\partial O P}{\partial u^{\beta}}$, and writing : $g_{\alpha \beta, \gamma}=\frac{\partial g_{\alpha \beta}}{\partial u^{\gamma}}$,

$$
\begin{aligned}
g_{\alpha \beta, \gamma} & =\frac{\partial^{2} O P}{\partial u^{\gamma} \partial u^{\alpha}} \cdot \frac{\partial O P}{\partial u^{\beta}}+\frac{\partial O P}{\partial u^{\alpha}} \cdot \frac{\partial^{2} O P}{\partial u^{\gamma} \partial u^{\beta}} \\
g_{\beta \gamma, \alpha} & =\frac{\partial^{2} O P}{\partial u^{\alpha} \partial u^{\beta}} \cdot \frac{\partial O P}{\partial u^{\gamma}}+\frac{\partial O P}{\partial u^{\beta}} \cdot \frac{\partial^{2} O P}{\partial u^{\alpha} \partial u^{\gamma}} \\
g_{\gamma \alpha, \beta} & =\frac{\partial^{2} O P}{\partial u^{\beta} \partial u^{\gamma}} \cdot \frac{\partial O P}{\partial u^{\alpha}}+\frac{\partial O P}{\partial u^{\gamma}} \cdot \frac{\partial^{2} O P}{\partial u^{\beta} \partial u^{\alpha}}
\end{aligned}
$$

finally,

$$
\underbrace{\frac{\partial O P}{\partial u^{\alpha}} \cdot \frac{\partial^{2} O P}{\partial u^{\gamma} \partial u^{\beta}}}_{!!}=\frac{1}{2}\left(g_{\alpha \beta, \gamma}+g_{\gamma \alpha, \beta}-g_{\beta \gamma, \alpha}\right)=:[\gamma \beta, \alpha]
$$

$$
\frac{\partial O P}{\partial u^{\alpha}} \cdot \frac{\partial^{2} O P}{\partial u^{\gamma} \partial u^{\beta}}=\frac{1}{2}\left(g_{\alpha \beta, \gamma}+g_{\gamma \alpha, \beta}-g_{\beta \gamma, \alpha}\right)=:[\gamma \beta, \alpha]
$$

The three-index objects $[\gamma \beta, \alpha]$ are precisely the
symbols of Christoffel of first kind!

We have seen, at the end, the condition $0=\dot{V} \cdot \frac{\partial O P}{\partial u^{\beta}}$ becomes

$$
\begin{equation*}
0=\frac{d v_{\beta}}{d \lambda}-v^{\alpha}[\gamma \beta, \alpha] \frac{d \ell^{\gamma}}{d \lambda} \quad \text { or }: \quad \frac{D v_{\beta}}{D \lambda}=0 \tag{0.6}
\end{equation*}
$$

which is exactly the vanishing condition for the

$$
\text { Covariant Derivative }{ }^{2}
$$

of the searched vector v along the assigned curve ℓ.
${ }^{2} \mathrm{~A}$ notion in advance introduced by Gregorio Ricci Curbastro e Tullio Levi-Civita at the end of the XIX century.

Self-parallel curves

Our last problem now is a little different:
we would like to characterize the curves $\lambda \mapsto \ell^{\alpha}(\lambda)$ on Σ such that their tangent vectors are parallel transported second the above recipe.

$$
\begin{equation*}
\underbrace{0=\frac{d v_{\beta}}{d \lambda}-v^{\alpha}[\gamma \beta, \alpha] \frac{d \ell^{\gamma}}{d \lambda}}_{*}, \quad \text { where : } v^{\beta}=\frac{d \ell^{\beta}}{d \lambda} \tag{0.7}
\end{equation*}
$$

by introducing the symbols of Christoffel of second kind:

$$
\begin{align*}
& \Gamma_{\gamma \beta}^{\sigma}:=\frac{1}{2} g^{\sigma \alpha}\left(g_{\alpha \beta, \gamma}+g_{\gamma \alpha, \beta}-g_{\beta \gamma, \alpha}\right)=g^{\sigma \alpha}[\gamma \beta, \alpha] \\
& \underbrace{\frac{d^{2} \ell^{\sigma}}{d \lambda^{2}}+\Gamma_{\beta \gamma}^{\sigma}(\ell) \frac{d \ell^{\beta}}{d \lambda} \frac{d \ell^{\gamma}}{d \lambda}=0}_{* *} \quad \text { (geodesic equation) } \tag{0.8}
\end{align*}
$$

It is a nice exercise to discover the above equation are the Euler-Lagrange equation related to a Variational Problem: Look for the stationary curves of the energy functional between two fixed points x_{0} and x_{1} on a smooth manifold and without active forces:

$$
\begin{gather*}
\mathcal{E}: \mathcal{V}_{0, T}^{x_{0}, x_{1}} \longrightarrow \mathbb{R} \tag{0.9}\\
x(\cdot) \longmapsto \int_{0}^{T} \underbrace{\frac{1}{2} g_{\alpha \beta}(x(\lambda)) \frac{d x^{\alpha}}{d \lambda}(\lambda) \frac{d x^{\beta}}{d \lambda}(\lambda)}_{L(x, \dot{x})=\frac{1}{2} g_{\alpha \beta}(x) \dot{x}^{\alpha} \dot{x}^{\beta}=\text { Kinetic Energy, for }}
\end{gather*}
$$

A popular fact:
if a curve $x(t)$ stationarizes the energy functional, then it stationarizes the length functional:

$$
\begin{gather*}
\mathcal{L}: \mathcal{V}_{0, T}^{x_{0}, x_{1}} \longrightarrow \mathbb{R} \tag{0.10}\\
x(\cdot) \longmapsto \int_{0}^{T} \underbrace{\sqrt{g_{\alpha \beta}(x(\lambda)) \frac{d x^{\alpha}}{d \lambda}(\lambda) \frac{d x^{\beta}}{d \lambda}(\lambda)}}_{\text {Euclidean Norm of the 'Velocity' }} d \lambda
\end{gather*}
$$

Compute $\frac{d}{d \lambda} \frac{\partial L}{\partial \dot{x}^{\alpha}}-\frac{\partial L}{\partial x^{\alpha}}=0$, for $L=\frac{1}{2} g_{\alpha \beta}(x) \dot{x}^{\alpha} \dot{x}^{\beta}$,

$$
\begin{gathered}
\frac{d}{d \lambda}\left(g_{\alpha \beta}(x) \frac{d x^{\beta}}{d \lambda}\right)-\frac{1}{2} \frac{\partial g_{\beta \gamma}}{\partial x^{\alpha}}(x) \frac{d x^{\beta}}{d \lambda} \frac{d x^{\gamma}}{d \lambda}=0, \\
\underbrace{\frac{\partial g_{\alpha \beta}}{\partial x^{\gamma}} \frac{d x^{\beta}}{d \lambda} \frac{d x^{\gamma}}{d \lambda}}_{*}+g_{\alpha \beta} \frac{d^{2} x^{\beta}}{d \lambda^{2}}-\frac{1}{2} \frac{\partial g_{\beta \gamma}}{\partial x^{\alpha}} \frac{d x^{\beta}}{d \lambda} \frac{d x^{\gamma}}{d \lambda}=0,
\end{gathered}
$$

$g_{\alpha \beta} \frac{d^{2} x^{\beta}}{d \lambda^{2}}+\underbrace{\frac{1}{2} \frac{\partial g_{\alpha \beta}}{\partial x^{\gamma}} \frac{d x^{\beta}}{d \lambda} \frac{d x^{\gamma}}{d \lambda}+\frac{1}{2} \frac{\partial g_{\gamma \alpha}}{\partial x^{\beta}} \frac{d x^{\beta}}{d \lambda} \frac{d x^{\gamma}}{d \lambda}}_{\star}-\frac{1}{2} \frac{\partial g_{\beta \gamma}}{\partial x^{\alpha}} \frac{d x^{\beta}}{d \lambda} \frac{d x^{\gamma}}{d \lambda}=0$,

$$
\frac{d^{2} x^{\sigma}}{d \lambda^{2}}+\frac{1}{2} g^{\sigma \alpha}\left(\frac{\partial g_{\alpha \beta}}{\partial x^{\gamma}}+\frac{\partial g_{\gamma \alpha}}{\partial x^{\beta}}-\frac{\partial g_{\beta \gamma}}{\partial x^{\alpha}}\right) \frac{d x^{\beta}}{d \lambda} \frac{d x^{\gamma}}{d \lambda}=0
$$

(rem: $\left.g^{\alpha \beta}:=\left(g^{-1}\right)^{\alpha \beta}, \quad g^{\sigma \alpha} g_{\alpha \beta}=\delta_{\beta}^{\sigma}\right)$

$$
\frac{d^{2} x^{\sigma}}{d \lambda^{2}}+\Gamma_{\beta \gamma}^{\sigma}(x) \frac{d x^{\beta}}{d \lambda} \frac{d x^{\gamma}}{d \lambda}=0 \quad \text { (geodesic equation!) }
$$

[^0]: ${ }^{1}$ Tullio Levi-Civita: Nozione di parallelismo in una varietà qualunque, Rend. Circ. Mat. Palermo 42 (1917), 173-205.

