
Recommender Systems - Collaborative Filtering
Machine Learning, A.Y. 2022/23, Padova

Fabio Aiolli

December 21th, 2022

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 1 / 23

Collaborative Filtering (CF)

INPUT: user rating matrix

Explicit feedback: rui is
the actual rating, e.g.,
rui ∈ [1, 5] with a 5 stars
rating system;

Implicit feedback:
rui ∈ {0, 1}, where rui = 1
means that user u
interacted with item i ,
while rui = 0 means lack
of information.

ruiu

i

0

missing
rating

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 2 / 23

Collaborative Filtering approaches

Similarity-wise
Item-based: the recommendation is performed on the basis of similarity
between items;
User-based: the recommendation is performed on the basis of similarity
between users.

Algorithm-wise
Memory-based: approaches that use user rating data to compute the
similarity between users or items;
Model-based: in this approach, models are developed using different
algorithms to predict users’ rating of unrated items.

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 3 / 23

Item-based CF: a simple example
sim

ilar

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 4 / 23

User-based CF: a simple example
sim

ila
r

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 5 / 23

A bit of notation

U is the set of users, with |U| = n;

I is the set of items, with |I | = m;

R ≡ {(u, i) | user u ∈ U rated item i ∈ I} is the set of
ratings/interactions;

R ∈ Rn×m is the rating matrix with n users and m items, with rui the
rating given by u to item i . ru is the row vector representing u and ri
is the column vector representing i . Note: ∀(u, i) /∈ R, rui = 0;

Iu ≡ {i | (u, i) ∈ R} is the set of items rated by u;

Ui ≡ {u | (u, i) ∈ R} is the set of users who rated i ;

Iuv ≡ Iu ∩ Iv - set of items rated by both u and v ;

Uij ≡ Ui ∩ Uj - set of users who rated both i and j .

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 6 / 23

Computing similarity

The idea is to compute similarity between users/items starting from
the user rating matrix R;

Ideally, two users (items) are similar if they share “many” ratings.

u

v

1
1 1 1 1

111

1

1

1

1

1

1
sim(,)

1 11

1

1 1

1

1

1

sim(,)>

1

1

1
w

u v u w

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 7 / 23

Implicit feedback: cosine similarity

User-based

suv =
|Iu ∩ Iv |√
|Iu||Iv |

=
rur⊤v
∥ru∥∥rv∥

=

∑
i∈I

rui rvi√∑
i∈I

r2ui ·
∑
i∈I

r2vi

∈ [0, 1].

Item-based

sij =
|Ui ∩ Uj |√
|Ui ||Uj |

=
r⊤i rj
∥ri∥∥rj∥

=

∑
u∈U

rui ruj√∑
u∈U

r2ui ·
∑
u∈U

r2uj

∈ [0, 1].

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 8 / 23

Explicit feedback: Pearson correlation (1/2)

User-based

suv =

∑
i∈Iuv

(rui − µu)(rvi − µv)√ ∑
i∈Iuv

(rui − µu)2 ·
∑
i∈Iuv

(rvi − µv)2
∈ [−1, 1],

where µu and µv are the user-bias

µu =
1

|Iu|
∑
i∈Iu

rui , µv =
1

|Iv |
∑
i∈Iv

rvi .

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 9 / 23

Explicit feedback: Pearson correlation (2/2)

Item-based

sij =

∑
u∈Uij

(rui − µi)(ruj − µj)√ ∑
u∈Uij

(rui − µi)2 ·
∑

u∈Uij

(ruj − µj)2
∈ [−1, 1],

where µi and µj are the item-bias

µi =
1

|Ui |
∑
u∈Ui

rui , µj =
1

|Uj |
∑
u∈Uj

ruj .

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 10 / 23

Explicit feedback: Adjusted cosine similarity

The differences in the rating scales of users are often more pronounced
than the differences in ratings given to items. Therefore, it may be more
appropriate to compare ratings that are centered on their user mean,
instead of their item mean:

sij =

∑
u∈Uij

(rui − µu)(ruj − µu)√ ∑
u∈Uij

(rui − µu)2 ·
∑

u∈Uij

(ruj − µu)2
,

where µu is the user-bias

µu =
1

|Iu|
∑
i∈Iu

rui .

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 11 / 23

Shrinkage

Intuitively, shrinkage aims at re-weighting the similarity penalizing the one
based on “few” common ratings.

User-based

s ′uv =

(
|Iuv |
|Iuv |+ β

)
suv

Item-based

s ′ij =

(
|Uij |
|Uij |+ β

)
sij

where β > 0 (often set around 100) is a hyper-parameter whose value
should be selected using cross-validation.

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 12 / 23

k-Nearest Neighbours

Memory-based method that compute the recommendation as a weighted
combination of the ratings given by the most similar users (items).

User-based: k most similar users to a target user u that rated the
item i , i.e.,

Nk
i (u) ≡ {v ∈ Ui | |{v ′ ∈ Ui | suv ′ > suv}| < k}.

Item-based: k most similar items to a target user i rated by a user u,
i.e.,

Nk
u (i) ≡ {j ∈ Iu | |{j ′ ∈ Iu | sij ′ > sij}| < k}.

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 13 / 23

k-Nearest Neighbours recommendation

Explicit Implicit

User-based r̂ui =

∑
v∈Nk

i (u)

suv · rvi∑
v∈Nk

i (u)

suv
r̂ui =

1
k

∑
v∈Nk

i (u)

suv

Item-based r̂ui =

∑
j∈Nk

u (i)

sij · ruj∑
j∈Nk

u (i)

sij
r̂ui =

1
k

∑
j∈Nk

u (i)

sij

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 14 / 23

Matrix factorization (MF) basics

Map both users and items to a joint latent factor space of
dimensionality k;

User-item interactions are modelled as dot-products in that space;

Each item i is associated with a vector qi , and each user u is
associated with a vector pu

qi measures the extent to which the item possesses those factors;
pu measure the extent of interest the user has in those items’
factors;
The dot-product puq⊤i captures the interaction between user u and
item i .

The major challenge is computing the mapping of each item and user
to factor vectors qi and pu.

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 15 / 23

Intuition behind the dot-product

Each element of the summation puq⊤i =
∑

f puf · qif represents the
relevance of such factor in the prediction;

High values of puf means that the factor f is relevant for the u;

High values of qif means that the factor f is present in i ;

High values of puf · qif means that a positively relevant factor for u is
present in i .

.9 .1 .3 0 .8 1 .5

.1 .9 .3 .2 0 .2 1

u

i

.09 .09 .09 0 0 .2 .5

�1 �2 �3 �4 �5 �6 �7

= .97
contribute of this
factor to the score

x x x x x x x

= = = = = = =

∑

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 16 / 23

Matrix factorization: visual intuition

R ≈ PQ⊤,where R ∈ Rn×m,P ∈ Rn×k ,Q ∈ Rm×k

u

i
R P Q

k

k

u

i

≈

Prediction: r̂ui = puq⊤i

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 17 / 23

Learning P and Q

Learning P and Q can be done via the direct optimization of the
following regularized objective function:

L(P,Q) = min
P,Q

∑
(u,i)∈Tr

(
rui − puq

⊤
i

)
︸ ︷︷ ︸

ϵui

2
+ λ(∥pu∥2 + ∥qi∥2)

λ ≥ 0 is a regularization hyper-parameter;

ϵui is the prediction error of the model on the rating rui .

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 18 / 23

MF through Stochastic Gradient Descent (1/2)

SGD is an incremental procedure for computing gradient
descent/ascent;

For each training rating rui , it makes a prediction using the current
model and compute the prediction error ϵui ;

Compute the partial derivatives and update both pu and qi
accordingly.

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 19 / 23

MF through SGD (2/2)

L(P,Q) = min
P,Q

∑
(u,i)∈Tr

(
rui − puq

⊤
i

)
︸ ︷︷ ︸

ϵui

2
+ λ(∥pu∥2 + ∥qi∥2)

Partial Derivatives for the example (u,i):

∂L
∂pu

= 2ϵui (−qi) + 2λpu,
∂L
∂qi

= 2ϵui (−pu) + 2λqi

Update:

pu ← pu + 2η(ϵuiqi − λpu)

qi ← qi + 2η(ϵuipu − λqi)

where η > 0 is the learning rate.

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 20 / 23

MF through Alternate Least Square (ALS)

We can also take an alternative approach to SGD in which we fix pu
and qi alternatively while optimizing for the other;

In this way, the new optimization problem (lets say by fixing qi)
becomes an “easy” quadratic problem and its solution has a closed
form;

This procedure is repeated for a certain number of iterations;

This approach is very easy to parallelize:
You can parallelize w.r.t. u when fixing qi ;
You can parallelize w.r.t. i when fixing pu;
E.g., this approach is implemented in Spark.

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 21 / 23

MF through ALS (2/2)

L(P,Q) = min
P,Q

∑
(u,i)∈Tr

(
rui − puq

⊤
i

)
︸ ︷︷ ︸

ϵui

2
+ λ(∥pu∥2 + ∥qi∥2)

Let see the derivation by fixing qi :

∂L
∂pu

= −2
∑
i

(rui − puq
⊤
i)qi + 2λpu

We set the derivative equal to zero:

−(ru − puQ
⊤)Q+ λpu = 0

pu(Q
⊤Q+ λI) = ruQ

pu = ruQ(Q⊤Q+ λI)−1

where I ∈ Rk×k is the identity matrix. Similar derivation can be done for
qi .

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 22 / 23

Recap

In this lesson we have seen:

General idea and types of CF algorithms;

Computing similarity;

Memory-based: k-Nearest Neighbours

Model-based: Matrix factorization

Learning with SGD;
Learning with ALS.

Try this at home:

Implement k-NN and test on Movielens dataset;

Try RecSys libraries such as:

LightFM: https://github.com/lyst/lightfm;
RecQ: https://github.com/Coder-Yu/RecQ;
python-recsys: https://github.com/ocelma/python-recsys.

Fabio Aiolli Recommender Systems - Collaborative Filtering December 21th, 2022 23 / 23

https://github.com/lyst/lightfm
https://github.com/Coder-Yu/RecQ
https://github.com/ocelma/python-recsys

