Course of Analog Electronics – 2022-2023

Prof. Simone Buso

Xmas Homework #1

## Exercise 1

Consider the two-stage amplifier in Fig. 1. The circuit parameters, at T = 25°C, are the following:

 $V_{CC} = 15 \text{ V}, \text{ } \text{R}_{\text{g}} = 10 \text{ } \text{k}\Omega, \text{ } \text{R}_{\text{B}} = 1.8 \text{ } \text{M}\Omega, \text{ } \text{R}_{\text{C}} = 10 \text{ } \text{k}\Omega, \text{ } \text{R}_{\text{E}} = 1.2 \text{ } \text{k}\Omega; \text{ } \text{R}_{\text{D}} = 6.8 \text{ } \text{k}\Omega, \text{ } \text{R}_{\text{S}} = 1 \text{ } \text{k}\Omega, \text{ } \text{R}_{\text{L}} = 100 \text{ } \text{k}\Omega, \text{ } \text{R}_{\text{F}} = 2.2 \text{ } \text{k}\Omega, \text{ } \text{C}_{\text{g}} = 10 \text{ } \text{n}\text{F}, \text{ } \text{C}_{\text{L}} = 1 \text{ } \mu\text{F}, \text{ } \text{C}_{\text{F}} = 1 \text{ } \mu\text{F}.$ 

Q<sub>1</sub>: V<sub>BE</sub> = -0.7 V;  $\beta_F$  = 100;  $\beta_0$  = 100;  $r_0$  = +∞; Q<sub>2</sub>: V<sub>t</sub> = 2 V; I<sub>DSS</sub> =  $k_n \frac{W}{L} V_t^2$  = 0.2 mA ;  $r_0$  = +∞; V<sub>T</sub> = 25 mV.

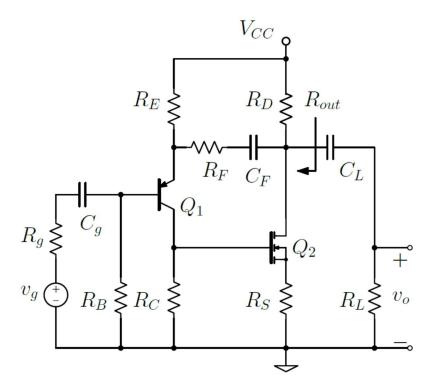



Fig. 1 – Two stage amplifier with feedback.

Considering all capacitors to be equivalent to open circuits, determine:

1. the operating points ( $V_{CE}$ ,  $I_C$ ) of  $Q_1$  and ( $V_{DS}$ ,  $I_D$ ) of  $Q_2$ .

Assuming all capacitors to be equivalent to *short circuits* at the frequencies of interest, determine also:

- 2. the voltage gain  $A_v = v_o / v_g$  of the amplifier;
- 3. the output resistance indicated in the figure;
- 4. the low frequency bandwidth limit of the amplifier.

## Exercise 2

Consider the operational amplifier configuration shown in Fig. 2. The circuit parameters are the following:

 $R_1$  = 18 kΩ;  $R_2$  = 56 kΩ.

$$A(s) = \frac{A_0}{\left(1 + \frac{s}{\omega_{p1}}\right)\left(1 + \frac{s}{\omega_{p2}}\right)} \quad [V/V], \text{ with } A_0 = 10^5 \ [V/V]; \ \omega_{p1} = 10^2 \ \text{rad/s}; \ \omega_{p2} = 5 \cdot 10^5 \ \text{rad/s}.$$

 $\checkmark$ 

Determine:

- 1. an estimation of the circuit *phase* margin with  $R_c = +\infty$ ;
- 2. a block diagram representation of the amplifier;
- 3. the expression of the closed loop gain of the compensated amplifier, assuming |T>>1|;
- 4. the values of R<sub>c</sub> and C<sub>c</sub> that yield a +45° phase margin (hint: place the crossover frequency of loop gain T *exactly a decade lower than*  $\omega_{p2}$ , and place the compensation network zero *at the same frequency*).