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The paradox of choice

Is it always good to have many alternatives?

24 flavors of jam

60% of the customers stopped
at the booth;

On average, 2 tastes;

Only the 3% of the customers
purchased.

6 flavors of jam

40% of the customers stopped
at the booth;

On average, 2 tastes;

30% of the customers
purchased.
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Recommender Systems everywhere
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RecSys Boom: The Netflix Prize

Between 2006 and 2009, Netflix sponsored a famous competition offering
1M$ to the team that, on the basis of a dataset with

∼ 480K users

∼ 18K movies (a.k.a. items)

> 100M ratings,

was able to improve by at least 10% the performance of the Netflix
algorithm in predicting the missing ratings.

R.M. Bell, Y. Koren, C. Volinsky (2007).
“The BellKor solution to the Netflix Prize”

-, and J. Bennet (2009). “The Million Dollar Programming Prize”

Trivia: the winning team used an ensemble composed by more than 100
predictors.
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What is a recommender systems?

Wikipedia A recommender system is a subclass of information filtering
system that seeks to predict the preference a user would give
to an item.

Handbook Recommender Systems (RSs) are software tools and
techniques that provide suggestions for items that are most
likely of interest to a particular user.
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General RecSys scenario

Users data

Items data

Interactions

Recommender
Systems Recommendation

Context
(users and items)
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Recommender systems’ taxonomy

RecSys

PersonalizedNon-personalized

Content-based Collaborative Context-aware HybridMost popular Highet rated

Nearest-
Neighbour Latent factor

Matrix
factorization

Factorization
Machines Deep ...

Fabio Aiolli Recommender Systems - Introduction December 19th, 2022 7 / 1



Types of feedback/interaction/rating

Explicit feedback
“Reliable” but hard to collect since they require an effort by the user.

Implicit feedback
Easier to collect, but noisy.
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Rating matrix

Typically, users are
arranged on the rows,
and items on the
columns;

rui is the rating given by
user u to item i , e.g.,

Explicit:
rui ∈ {0, 1, . . . , 5};
Implicit: rui ∈ {0, 1}.

0 means no information.

ruiu

i

0

missing
rating
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Sparsity and rating distribution

Typical rating matrix density < 0.01%, e.g.,

Netflix rating matrix density ≈ 0.002%;
MovieLens rating matrix density ≈ 0.005%.

Both users activity and items popularity usually follow a long tail
distribution.
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Recommendation tasks

Rating prediction (explicit feedback) in which the RS aims at
predicting the missing ratings in the rating matrix;

TOP-N item recommendation (implicit feedback) in which the RS
aims at predicting the N (previously unseen) items the user will like
the most. Given a user, a recommender needs to associate a
relevance score to the items. This scoring will be used to rank items
and accordingly make the recommendation. Specifically, the N
highest scored items are recommended to the users.
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Quality indicators

Relevance: recommend items that users like;

Coverage: ability to recommend most of the items in a catalogue;

Novelty: recommend items unknown to the user;

Diversity: diversify the recommended items;

Serendipity: ability of surprising the user, i.e., the ability to
recommend items that users would have never been able to discover
by themselves.
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Items from the user’s perspective: a visual intuition
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Evaluating a recommender systems

Offline
For years the only used evaluation technique;
Do not require the user “live”;
Based on benchmark datasets (training set + test set);
It cannot be used to evaluate the experience as a whole.

Online
Users are directly involved in the evaluation;
The evaluation can be both qualitative and quantitative;
The overall user-experience plays a role;
However, users are not always consistent.
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Online evaluation

Direct user feedback
Users directly provide a feedback about the
recommendation through questionnaires or
self-reports.

A/B testing
The recommender is tested against a
baseline (usually a previous version of the
system) on two set of users: a control set
that uses the baseline and the variation set
that uses the new system. The
improvements are evaluated in terms of
standard metrics or through users feedback.
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Offline evaluation: how to partition a dataset

Alt. 1 avoids the
cold-start problem,
i.e., no users are
unknown at testing
time;

Alt. 2 randomly
selects test ratings
(can have cold-start
users);

When available, it is
good practice to split
training-test ratings
on the basis of the
timestamp. time

Training ratings

Training ratings

Training
users

Test
users

Test ratings

Training ratings Test ratings

Alternative 2

Alternative 1
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Offline evaluation for rating prediction

Given the predicted ratings r̂ui , for (u, i) in the test set (Te), then the
usual evaluation metrics are:

MAE (Mean Absolute Error) = 1
|Te|

∑
(u,i)∈Te

|rui − r̂ui |

MSE (Mean Squared Error) = 1
|Te|

∑
(u,i)∈Te

(rui − r̂ui )
2

RMSE (Root Mean Squared Error) =
√

1
|Te|

∑
(u,i)∈Te

(rui − r̂ui )2
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Offline evaluation: top-N (1/3)

Recall
# relevant recommended

# relevant items = TP
FN+TP

Precision
# relevant recommended
# recommended items = TP

FP+TP

NOTE: All these metrics can be limited
to the first k retrieved items to give
more emphasis to the top of the list.
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Offline evaluation: top-N (2/3)

AUC = 1
N+N−

∑
i

∑
jJs(i) > s(j)K

N+ = # relevant items and N− = N − N+;
s(i) is the score given by the recommender to the item i ;
Computes the number of miss ordered pairs of items in the ranking;
Considers all the positions in the list as equally relevant;
Often in RecSys AUC is not the best choice.

AP (Average Precision) =
∑

k Precison@k·rel(k)
# relevant items

rel(k) ∈ {0, 1} indicates whether the k-th item is relevant or not;
As for precision and recall it can be truncated (AP@k);
mAP (mean AP) is the mean AP over all users.
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Offline evaluation: top-N (3/3)

DCG@p (Discounted Cumulative Gain) =
p∑

i=1

reli
log2(i+1)

reli is the graded relevance of i , usually ∈ {0, 1};
Most useful at top ranks;
Utility decreases quite fast (proportionally to the rank);
The normalized version (nDCG) is divided by the DCG of the ideal
rank.

MRR (Mean Reciprocal Rank) = 1
|Q|

∑
i∈Q

1
ranki

ranki is the rank of i in the recommended ordered list;
Q is the set of positive test items;
Similarly to nDCG it is useful at top ranks;
It has usually higher values than both mAP and nDCG.
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Offline evaluation: beyond accuracy

Diversity: given a retrieved set R of m items and given a similarity
measure between items sim then

diversity =

∑
i∈R

∑
j∈R,j ̸=i

1− sim(i , j)

m(m − 1)

Novelty = # relevant and unknown items
# recommended relevant , approximately the inverse of the

popularity of the retrieved items

novelty =

∑
i∈TP

log2

(
1

popularity(i)

)
|TP|
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Non-personalized RS: most popular

The most popular item, i.e.,
the one with the highest
number of ratings, is k ;

User u already interacted
with k;

The most popular item after
k is i that will be
recommended to u;

Note: k can be
recommended if the
“re-consumption” is likely in
the application domain.

u

k

3

3

3 5

5

2 2

2

2

1

1

1

4

Popularity 3 1 2 3 4

i
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Non-personalized RS: highest rated

The highest rated item, i.e.,
the one with the highest
average rating, is i that
will be recommended to u;

It is good practice to take
into account also the
number of ratings;

Usually, a normalization
factor is added to the
average in order to give a
bias towards popular items.

u

3

3

3 5

5

2 2

2

2

1

1

1

4

Rating avg.

i

3.3 2 3 1.3 3
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Overview of the standard RS approaches (1/2)

Content Based (CB)

Recommend the most similar items to the ones the user liked in the
past. E.g., same genre (movies), same artist (song), etc...

Collaborative Filtering (CF)

Recommend to a user items liked by similar users, or viceversa, items
that are similar to the ones liked in the past. In particular:
Item-item similarity: two items are similar if they share many users;
User-user similarity: two users are similar if they share may ratings;
Remark: in these approaches only the interactions are used to
computed similarities. No specific users’ and items’ characteristic are
used (see CB).
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Overview of the standard RS approaches (2/2)

Hybrid approaches

CB > CF when there is no much history (cold-start problem);
CF > CB when information about user-item interactions prevail on the
explicit content;
Hybrid approaches tend to take advantage of the strength of the
different methods while mitigating their weaknesses.

Context-aware (CARS)

Assumption: the quality of a recommendation depends on the user
(and item) state;
Recommender uses contextual information to tune the
recommendation. E.g., the mood, the weather, the time, the presence
of kids, etc...
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Recap

In this lesson we have seen:

What is a recommender system;

RSs taxonomy;

Types of feedback;

Rating matrix and its properties;

Recommendation tasks;

Evaluation;

Non-personalized RSs.

Try this at home:

Analysis of the sparsity and distribution of standard RS datasets, e.g.,
MovieLens and Netflix;

Application of non-personalized recommenders.
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