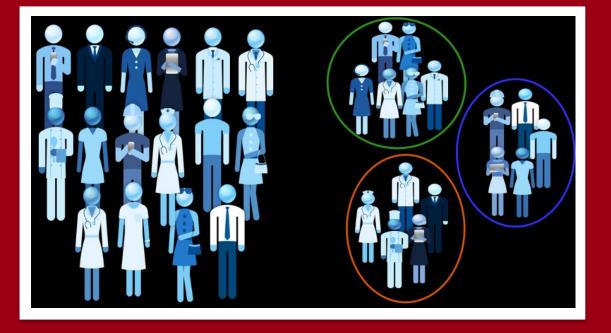


Università degli Studi di Padova

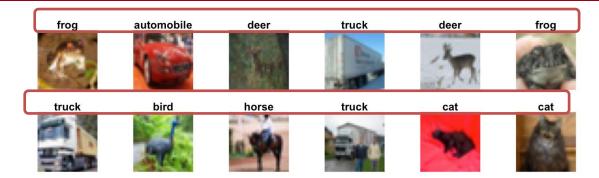


Clustering

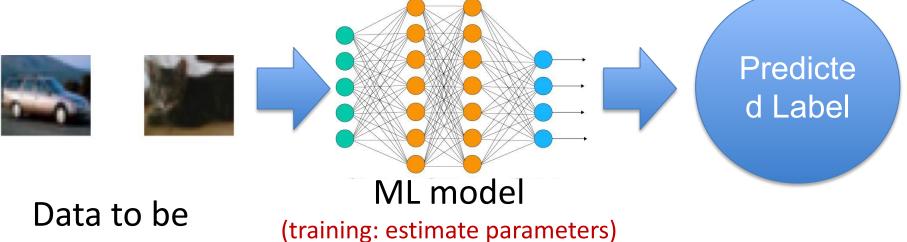
Machine Learning 2022-23 UML book chapter 22

Supervised Learning

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

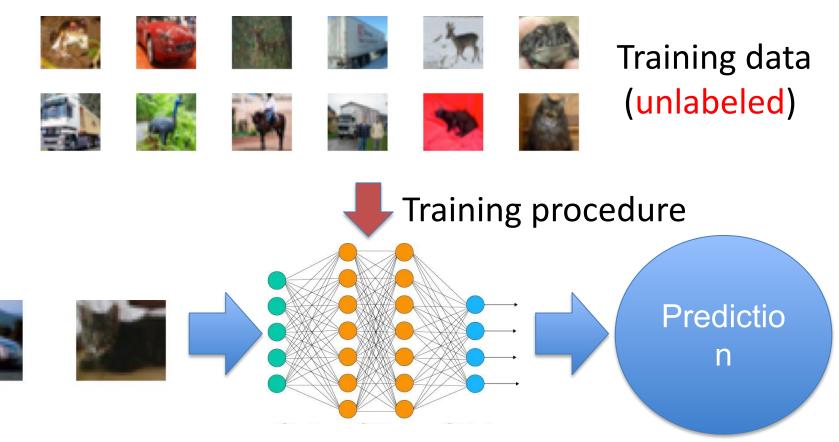


Training data with labels



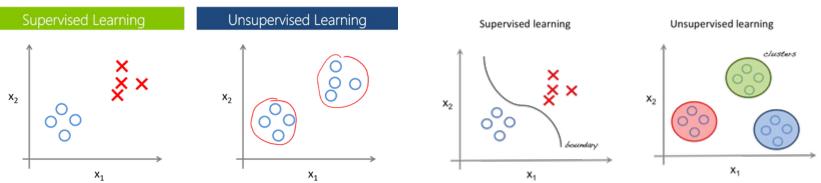
analyzed

Unsupervised Learning



Data to be ML model analyzed (training: estimate parameters)

Unsupervised Learning



- *Supervised learning*: There is a labeled training/validation set that can be used to tune the algorithm parameters
- <u>Unsupervised Learning</u>: Training data is not labeled

Unsupervised Learning:

DIPARTIMENTO

di ingegneria

DELL'INFORMAZIONE

- We are interested in finding some interesting structure in the data, or, equivalently, to organize it in some meaningful way
- Target: find a function that describes the structure of "unlabeled" data (i.e., data that has not been classified or categorized)
- Several approaches are based on the idea that the data is the realization of an *hidden* probability density function, i.e., unsupervised learning is linked to the density estimation of an hidden PDF producing the data

Unsupervised Learning Techniques

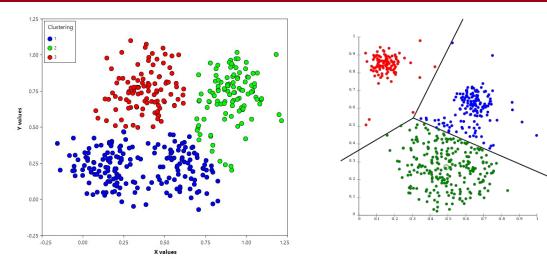
We are going to see only a couple of unsupervised learning techniques and a few very simple and commonly used methods

- 1. Clustering
 - o K-means
 - Linkage-based clustering
- 2. Dimensionality reduction
 - Principal Component Analysis (PCA)

There are many other techniques (not part of this course)

- Mean shift clustering, spectral clustering....
- Compressive sensing

Clustering



Clustering

Idea: Divide a set of objects represented by *N*-dimensional vectors into groups (*clusters*) of similar objects

[] Key target: *identifying meaningful groups among data points*

The definition is not rigorous and may be ambiguous, different definitions have been proposed leading to different algorithms

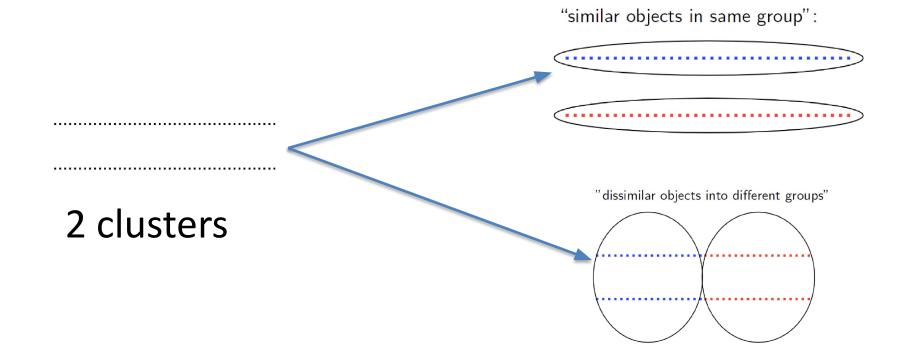
Formal Definition:

Clustering is the task of grouping a set of objects such that *similar objects end up in the same group* and *dissimilar objects are separated into different groups*

Challenges (1)

Similarity is not transitive:

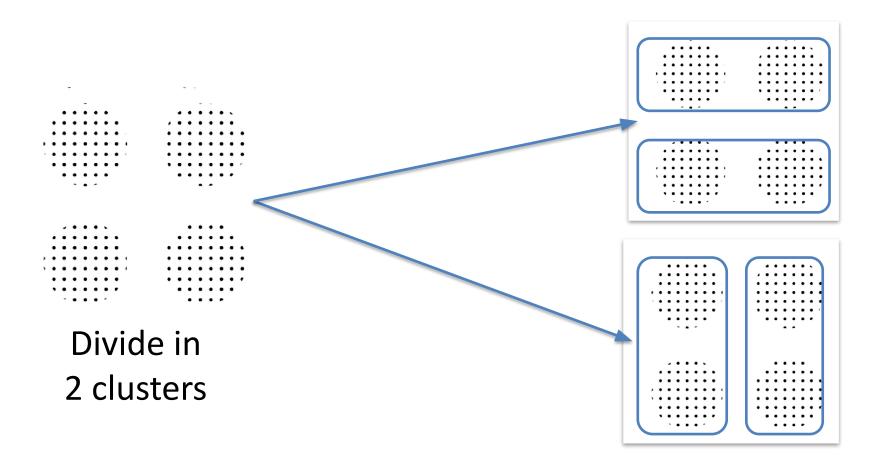
"*similar objects in same group*" and "*dissimilar objects into different groups*" may contradict each other...



Challenges (2)

There is no ground truth:

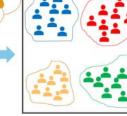
How To Evaluate Performances ?



Clustering: Applications

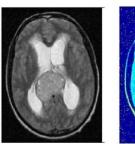
Many Applications:

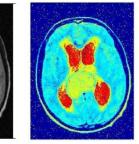
- Business and marketing
 - Market research
 - Grouping of shopping items
- World Wide Web
 - Search engines
 - Social network analysis
- Image segmentation
- Medicine, Medical imaging
- Biology and bioinformatics
- Recommender systems
- Anomaly detection
- Natural language processing

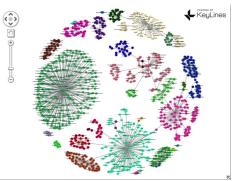


Trying to determine the appropriate audience for the product

Using clustering algorithms on the customer base







Example (1): Customer Segmentation

DIPARTIMENTO

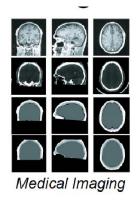
DI INGEGNERIA

DELL'INFORMAZIONE

- Data: features (e.g. product bought, demographic info, etc.) for a large number of customers
- Goal: customers
 segmentation = identify
 subgroups of homogeneous
 customers
- useful for: advertizing, product development, ...

Example (2): **Image Segmentation**

DIPARTIMENTO DI INGEGNERIA **DELL'INFORMAZIONE**



Object Recognition

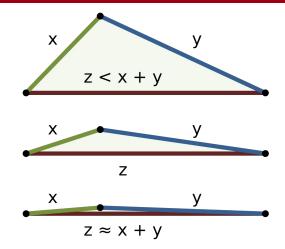
Movies/Special Effects (chroma keying)

Features extraction/detection

3D Reconstruction

- *Samples*: vectors containing features (e.g., color or spatial position of pixels)
- *Goal*: divide the image into regions (*clusters*) with uniform properties ۲
- Useful for medical imaging, image analysis, background segmentation in • movies, object recognition,

Clustering Model



Input:

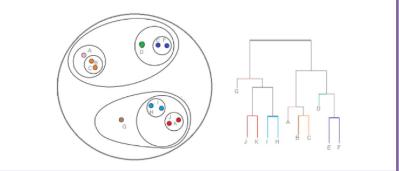
- Set of elements $x \in \mathcal{X}$
- Distance function $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$
 - symmetric, i.e.,: $d(x, y) = d(y, x) \forall x, y$
 - $d(\mathbf{x}, \mathbf{y}) \ge 0 \forall \mathbf{x}, \mathbf{y} \text{ and } d(\mathbf{x}, \mathbf{x}) = 0$
 - Triangle inequality $d(\mathbf{x}, \mathbf{z}) \le d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$

Output:

A partition $C = (C_1, C_2, ..., C_k)$ of set \mathcal{X} into k clusters

- $\bigcup_{i=1}^k C_i = \mathcal{X}$
- $\forall i \neq j : C_i \cap C_j = \emptyset$
- k (# of clusters): sometimes given in input, sometimes computed by the algorithm

Dendrogram: tree, with input points $\mathbf{x} \in \mathcal{X}$ as leaves, that shows the arrangement/relation between clusters.



Sometimes, the output is a dendrogram (from Greek Dendron = tree, gramma = drawing), a tree diagram showing the arrangement of the clusters

Distance(cost)-Based Clustering

Very Common approach in clustering:

- Define a cost function over possible partitions of the objects
- □ Find the partition (\rightarrow clustering) of minimal cost

Assumptions:

- Data points come from a larger space \mathcal{X}' (typically \mathbb{R}^n)
- □ Distance function d(x, x') for $x, x' \in X$
- □ For simplicity: assume $\mathcal{X}' = \mathbb{R}^n$ and $d(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} \mathbf{x}'\|_2$

K-Means

- The simplest clustering algorithm (proposed in 1957, also known as Lloyd algorithm)
- Choose a fixed number of clusters
- Find cluster centers and point-cluster allocations in order to minimize the error made by approximating the points with the cluster centers
- Can't do this by exhaustive search, because there are too many possible allocations
- Iterative algorithm
 - o fix cluster centers; assign each point to the closest cluster
 - fix allocation; compute best cluster centers
- Vectors x can be any set of features for which we can compute a distance (careful about scaling for non-homogenous data)

K-Means: Notation and Target

if using euclidean distance

	Set of vectors to be clustered
	Vector to be clustered
k	Number of clusters (<i>parameter of the algorithm</i>)
	Clusters (each vector x is associated to a cluster)
	Centroids of the clusters

Find cluster centers and allocations in order to minimize the error made by approximating the points with the cluster centers:

 $\boldsymbol{\mu}_{i}(C_{i}) = \underset{\boldsymbol{\mu}}{\operatorname{argmin}} \sum_{\boldsymbol{x} \in C_{i}} d(\boldsymbol{x}, \boldsymbol{\mu})^{2} = \underset{\boldsymbol{\mu}}{\operatorname{argmin}} \sum_{\boldsymbol{x} \in C_{i}} \|\boldsymbol{x} - \boldsymbol{\mu}\|^{2}$ $G_{\mathrm{km}}((\mathcal{X}, d), (C_{1}, \dots, C_{k})) = \sum_{i=1}^{k} \sum_{\boldsymbol{x} \in C_{i}} d(\boldsymbol{x}, \boldsymbol{\mu}_{i})^{2}$

Centroid Computation

Theorem:

Given a cluster C_i , the center μ_i that minimizes $\sum_{x \in C_i} d(x, \mu_i)^2$ is

Demonstration: compute gradient and set to 0

$$\frac{\partial}{\partial \boldsymbol{\mu}_i} \left(\sum_{x \in C_i} \| \boldsymbol{x} - \boldsymbol{\mu}_i \|^2 \right) = \sum_{x \in C_i} 2(\boldsymbol{x} - \boldsymbol{\mu}_i) = \mathbf{0} \rightarrow \sum_{x \in C_i} x = |C_i| \boldsymbol{\mu}_i \rightarrow \boldsymbol{\mu}_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$$

 $\boldsymbol{\mu}_i = \frac{1}{|C_i|} \sum \boldsymbol{x}$

- Naive (brute-force) algorithm to solve K-Means Clustering?
- Try all possible partitions of the *m* points into *k* clusters, evaluate each partition, and find the best one
- □ Is it efficient?
 - Number of possible partitions is exponential in *m*
 - NP-Hard problem

K-Means: Algorithm

Procedure:

- Select k random centroids (or use some more advanced initialization strategy)
- Each point is associated to the closest centroid (according to the distance measure)

$$\forall i: C_i = \{ \boldsymbol{x} \in \mathcal{X} : i = \operatorname{argmin}_i \| \boldsymbol{x} - \boldsymbol{\mu}_j \| \}$$

Compute the new centroids (each centroid is the barycentre of the associated points)

$$\forall i: \boldsymbol{\mu}_i = \frac{\sum_{\boldsymbol{x} \in C_i} \boldsymbol{x}}{|C_i|}$$

4. Repeat step 2 and 3 until the algorithm converges

Theorem: at each iteration the value of the objective function G_{km} does not increase

Demonstration

Theorem: at each iteration the value of the objective function G_{km} does not increase

- 1. Consider K-means objective func. (simplified notation) $G(C_1, ..., C_k) = \min_{\mu_1,...,\mu_k \in \mathbb{R}^n} \sum_{i=1}^k \sum_{x \in C_i} ||x \mu_i||^2$
- 2. Centroids minimize distance w.r.t points in the associated cluster

$$\boldsymbol{\mu}(C_i) \stackrel{\text{\tiny def}}{=} \frac{1}{|C_i|} \sum_{\boldsymbol{x} \in C_i} \boldsymbol{x} = \operatorname*{argmin}_{\boldsymbol{\mu} \in \mathbb{R}^n} \sum_{\boldsymbol{x} \in C_i} \|\boldsymbol{x} - \boldsymbol{\mu}_i\|^2$$

- 3. We can rewrite the objective function as $G(C_1, ..., C_k) = \sum_{i=1}^k \sum_{x \in C_i} ||x \mu(C_i)||^2$
- 4. Define with $C_i^{(t)}$ the *i*-th cluster at time t
- 5. Centroid computation: The new centroids minimize the distance w.r.t the points in the cluster

$$G\left(C_{1}^{(t)}, \dots, C_{k}^{(t)}\right) = \sum_{i=1}^{k} \sum_{x \in C_{i}^{(t)}} \left\| x - \mu_{i}^{(t)} \right\|^{2} \leq \sum_{i=1}^{k} \sum_{x \in C_{i}^{(t)}} \left\| x - \mu_{i}^{(t-1)} \right\|^{2}$$

6. Points allocation: Each point is assigned to the closest centroid

$$\sum_{i=1}^{k} \sum_{x \in C_{i}^{(t)}} \left\| x - \mu_{i}^{(t-1)} \right\|^{2} \leq \sum_{i=1}^{k} \sum_{x \in C_{i}^{(t-1)}} \left\| x - \mu_{i}^{(t-1)} \right\|^{2}$$

7. By placing all together: $G\left(C_{1}^{(t)}, \dots, C_{k}^{(t)}\right) = \sum_{i=1}^{k} \sum_{x \in C_{i}^{(t)}} \left\| x - \mu_{i}^{(t)} \right\|^{2} \le \sum_{i=1}^{k} \sum_{x \in C_{i}^{(t)}} \left\| x - \mu_{i}^{(t-1)} \right\|^{2} \le \sum_{i=1}^{k} \sum_{x \in C_{i}^{(t-1)}} \left\| x - \mu_{i}^{(t-1)} \right\|^{2} = G\left(C_{1}^{(t-1)}, \dots, C_{k}^{(t-1)}\right)$ From 6

Note: monotonic not decreasing, but no guarantees on # iterations to converge and could fall in local min.

K-Means: Stopping Criteria

- The centroids positions and allocations do not change any more
- 2. Error improvement below threshold in 2 consecutive iterations ($\Delta G < T_1$)
- 3. Maximum number of iterations
- 4. Reached a target value for G ($G < T_2$)
- Complexity:
- Assignment of *m* points in \mathbb{R}^n to *k* clusters : time O(kmn)
- Computation of centers: time O(mn)
- □ If convergence after *t* iterations: O(tkmn)
- In practice convergence after a few iterations but can be very long on some critical cases

K-Means: Pros and Cons

Pros

- Fast and simple
 - True in practice, in theory it is a NP-hard problem
- Always converges and typically also very fast

Cons

- It does not guarantee an optimal solution
- The solution depends on the initial centroids
- K must be known a priori
- Forces spherical symmetry of clusters (in the *n*-dimensional space)

Examples

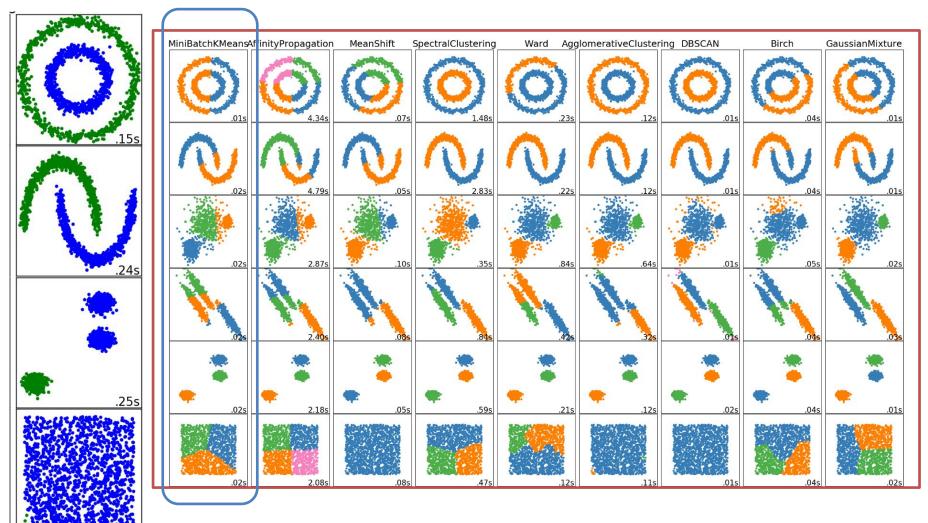


image from: towards data science

Example/Exercise

Draw (approximately) the solution (clusters and centers) found by Lloyd algorithm for the 2 clusters (K = 2) problem, when the data ($x_i \in \mathbb{R}$) are the crosses in the figure below and the algorithm is initialised with center values indicated with the circle (\circ , cluster 1) and triangle (Δ , cluster 2) shown in the figure.

Linkage-based Clustering

General class of algorithms that follow the general scheme below

- Start from the trivial clustering: each data sample/point is a (single-point) cluster
- 2. Until "*termination condition*": repeatedly merge the "*closest*" clusters of the previous clustering

Two "parameters":

- 1. How to define distance *D*(*A*,*B*) between two clusters *A* and *B*
 - Need cluster-to-cluster distance (not point-to-point)
- 2. Termination condition

Linkage-based Clustering

Different distances D(A, B) between two clusters A and B can be used, resulting into different linkage methods:

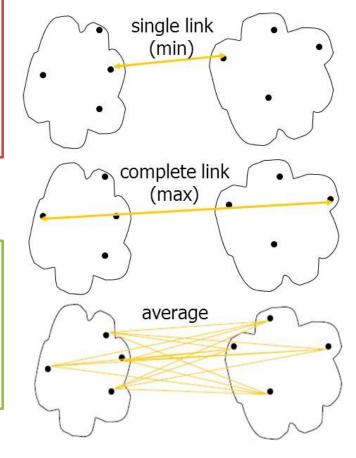
- single linkage: $D(A, B) = \min\{d(\mathbf{x}, \mathbf{x}') : \mathbf{x} \in A, \mathbf{x}' \in B\}$
- average linkage: $D(A, B) = \frac{1}{|A||B|} \sum_{\mathbf{x} \in A, \mathbf{x}' \in B} d(\mathbf{x}, \mathbf{x}')$
- max linkage: $D(A, B) = \max\{d(\mathbf{x}, \mathbf{x'}) : \mathbf{x} \in A, \mathbf{x'} \in B\}$

Common termination condition:

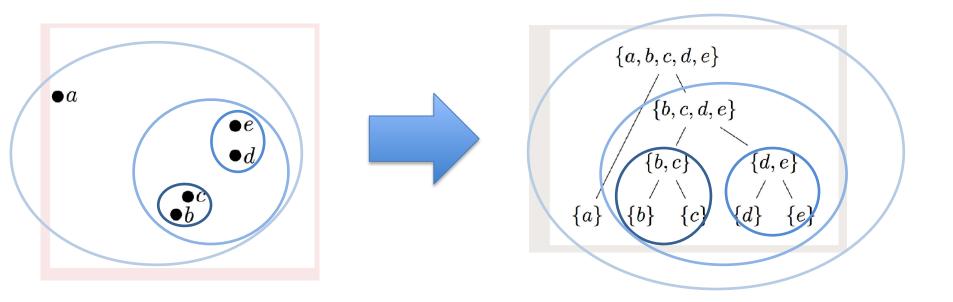
- data points are partitioned into k clusters
- minimum distance between pairs of clusters is > r, where r is a parameter provided in input

See next slide

• all points are in a cluster \Rightarrow output is a dendrogram



Example: Single Linkage



- Single linkage (use minimum distance between points in the cluster)
- **\Box** End when all points are in a single cluster \rightarrow output is a dendogram
 - from the dendogram various clusterings can be extracted

Examples

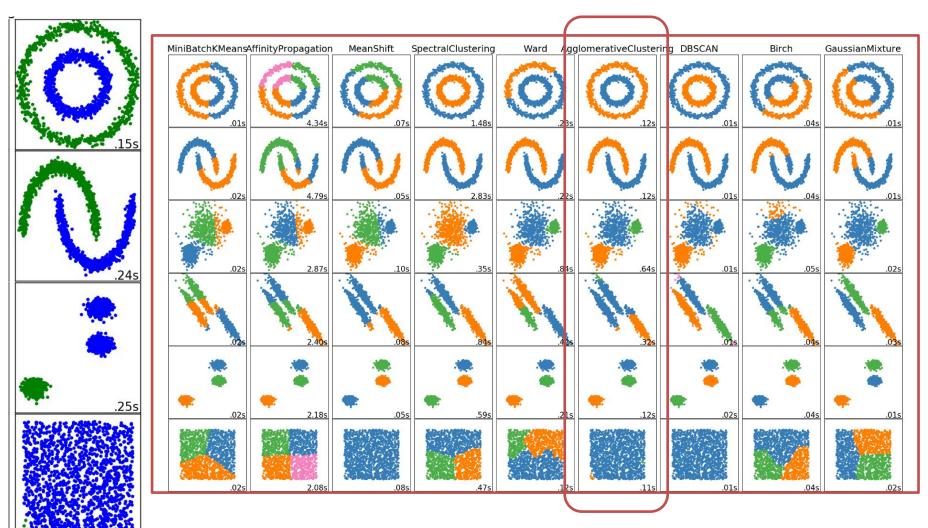


image from: towards data science