

Università degli Studi di Padova

Deep Learning: Advanced Approaches

Machine Learning 2022-23

Deep Learning: Advanced Approaches

- Advanced CNN schemes: Residual networks, skip connections, auto-encoders
- 2. Generative models: Generative Adversarial Networks (GAN)
- 3. Modeling temporal information: Recurrent Neural Networks (RNN) and Long-Short Term Memory (LSTM) (not part of the course)

Advanced CNN Models

- We'll see some relatively recent advanced architectures
- Some new concepts will be briefly introduced:
 - Residual Networks
 - Auto-Encoders
 - Skip Connections
 - Transposed Convolutions

«Historical» Perspective: AlexNet (2012)

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

- AlexNet [3]: First Deep Learning approach outperforming "classic" methods (i.e., outperforming SVM or RF)
- Exploits 11x11, 5x5, 3x3, convolutions, max pooling, dropout, data augmentation, ReLU activations, SGD with momentum
- Split in 2 pipelines since it was trained with 2 GPUs (for 6 days)
 - According to Nvidia the DGX-2 server released in 2018 can train it in 18 mins!!!
- Complex but quite "standard" model

AlexNet: the Network

- **5** convolutional layers, **3** fully connected ones
- Many feature maps for each layer
- **G** 650K neurons, 60M parameters
- **Rectified Linear Units (ReLU) activations, overlapping pooling, dropout trick**
- Training with randomly extracted 224x224 patches for more data

GoogleNet (Inception V1)

Released in 2014, 1st method very close to human level performance

- Implemented a novel element: the inception module
 - This module performs multiple small convolutions with different sizes in parallel
- The networks is a 22 layers deep CNN but reduced the number of parameters from 60M of AlexNet to 4M

The Inception Module

ResNet

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

- Residual Neural Network [4] introduced in 2015 a novel architecture with "skip connections"
- Idea: try to estimate the residual w.r.t the previous estimation instead of the function itself
- Thanks to this technique they were able to train a NN with 152 layers with reasonable complexity
- Was able to beat human-level performance on image classification tasks

Upsampling : Transposed Convolutions

- In some applications the output has the same or even larger size than the input (e.g., semantic segmentation, denoising)
- Convolutional layers connect multiple input activations within a filter window to a single activation
- Transposed convolutions associate a single input activation with multiple outputs
- Use transposed convolutions for upsampling

Encoder-Decoder Architectures

The network is made of 2 parts, an encoder and a decoder

- A "*compressed*" description of the input data is created at the middle layers by the encoder
- The decoder expands it into the final result
- Maxpooling indices can be transferred to decoder to improve the reconstruction
- **FCN** and SegNet are among the first encoder-decoder architectures
 - Fully Convolutional Networks for Semantic Segmentation (2014)
 - A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation (SegNet) (2015)

Dilated Convolutions

- Large convolutions have a wide receptive field but requires a lot of parameters
- Use dilated (*atrous*) convolutions, to increase the field of view without increasing the spatial dimensions
- The convolution works on samples spaced apart with a regular step instead of over each sing sample in the window.

Examples

Generative Adversarial Networks

GANs

- Generative
 - Learn a generative model
- Adversarial
 - Trained in an adversarial setting
- Networks
 - Use Deep Neural Networks

Introuduced by Goodfellow et al in 2014 [2]

Generative Models

Which one is Computer generated?

- Why Generative Models?
- We have only seen discriminative models so far...
 - Given a vector x, predict a label $y \rightarrow$ The model estimates P(y|x)
- Discriminative models can't model P(x), i.e. the probability of seeing a certain data sample
 - Thus, can't sample from P(x), i.e. can't generate new data samples
- Generative models can model P(x)
 - Can generate new data samples

Generative Models: Examples

Photograph

Van Gogh

Cezanne

Ukiyo-e

Generative Adversarial Networks (GAN)

A GAN is composed of two sub-networks:

- 1. Generator (G): generate fake samples, tries to fool the Discriminator
- 2. Discriminator (D): tries to distinguish between real and fake samples
- Train them against each other (in practice we alternate between training Generator and Discriminator)
- **Repeat this and we get better Generator and Discriminator**

Discriminator Training

Target: Minimize discriminator loss

Generator Training

Target: Maximize discriminator loss

Loss Function

 $\min \max V(D,G)$

- It is formulated as a **minimax game**, where:
 - The Discriminator is trying to maximize its reward V(D, G) (or minimize its loss)
 - The Generator is trying to minimize Discriminator's reward (or maximize its loss)

$$V(D,G) = \mathbb{E}_{x \sim p(x)} [\log D(x)] + \mathbb{E}_{z \sim q(z)} [\log(1 - D(G(z)))]$$

true samples fake (generated) samples

- The Nash equilibrium of this particular game is achieved at:
 - $P_{data}(x) = P_{gen}(x) \ \forall x$ $D(x) = \frac{1}{2} \ \forall x$

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Training Algorithm

	Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k , is a hyperparameter. We used $k = 1$, the least expensive option, in our experiments
	for number of training iterations do
Discriminator updates	 for k steps do Sample minibatch of m noise samples {z⁽¹⁾,, z^(m)} from noise prior p_g(z). Sample minibatch of m examples {x⁽¹⁾,,x^(m)} from data generating distribution p_{data}(x). Update the discriminator by ascending its stochastic gradient:
	$ abla_{ heta_d} rac{1}{m} \sum_{i=1}^m \left[\log D\left(oldsymbol{x}^{(i)} ight) + \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)} ight) ight) ight) ight].$
Generator updates	• Sample minibatch of <i>m</i> noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$. • Update the generator by descending its stochastic gradient: $\nabla_{\theta_g} \frac{1}{m} \sum^m \log\left(1 - D\left(G\left(z^{(i)}\right)\right)\right)$.
	end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Examples (1): Generated Images

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Examples (2)

Photograph

Cezanne

Ukiyo-e

Target pose sequence

Monet

(b) Handbag images (input) & Generated shoe images (output)

Examples (3)

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Many Other Approaches....

- This was just a quick overview of some relatively recent results
 - For ICT students more approaches will be presented in computer vision, neural networks and deep learning and many other courses....
- Huge amount of resources is currently spent on Deep Learning research
- Many other schemes exist, and every month there is a new one outperforming previous results

- End of the course material
- RNN/LSTM slides only for personal interest

Exploit Temporal Information

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

- Not all problem data can be fitted into a representation with fixed-length inputs and outputs !
- Problems such as speech recognition or time-series prediction require a system able to store and use context information
- **Example**:
 - Sequence of bits: output YES if the number of 1s is even, else NO
 - e.g., "1000010101" \rightarrow YES (4 ones), "100011" \rightarrow NO (3 ones), ...
 - Hard/Impossible to choose a fixed context window
 - There can always be a new sample longer than anything seen

Recurrent Neural Networks (RNN)

- Recurrent Neural Networks (RNN) take the previous outputs or hidden states as inputs
- The composite input at time t has some historical information about the happenings at times t' < t</p>
- RNNs are useful as their intermediate values (state) can store information about past inputs for a time that is not fixed a priori

Feedforward vs Recurrent Networks

t = 1

Sample Recurrent Network

Sample Feedforward Network

Basic RNN model

$$y_t = F(h_t)$$

$$C_t = Loss(y_t, GT_t)$$

----- indicates shared weights

- Note that the weights are *shared* over time!
- Essentially, copies of the RNN cell are made over time (unrolling/unfolding), with different inputs at different time steps !

Example: Image Captioning (1)

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

- Given an image produce a sentence describing its content
- Input: Image features (e.g., output of a CNN)
- Output: Multiple words (e.g., one sentence)

Example: Image Captioning (2)

DIPARTIMENTO

DI INGEGNERIA

DELL'INFORMAZIONE

Convolutional Neural Network

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Example: Image Captioning (3)

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A herd of elephants walking across a dry grass field.

A close up of a cat laying on a couch.

Show and Tell: A Neural Image Caption Generator, CVPR 15

Input-Output Scenarios

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

BackPropagation Through Time (BPTT)

- One of the methods used to train RNNs
 - The unfolded network (used during forward pass) is treated as one big feed-forward network!
- This unfolded network accepts the whole time series as input
- The weight updates are computed for each copy in the unfolded network (using standard BackPropagation), then summed (or averaged) and finally applied to the RNN weights

Training RNN is challenging

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Teacher Forcing

- If the output is used for the hidden state it is possible to choose if using network's output or ground truth labels
- With GT labels (teacher forcing) the model is easier to train
- But generalization properties can be poor

Model Long Time Temporal Relationship

Baseline RNNs are good for short time temporal relationships

- But they are not able to capture long-time relationships since the gradients vanish or explode
- Also in some applications (e.g., word recognition) a way of "forgetting" the state is needed

Long-Short-Term-Memory (LSTM)

DIPARTIMENTO

DI INGEGNERIA

DELL'INFORMAZIONE

Long-Short-Term-Memory (LSTM), Hochreiter & Schmidhuber (1997) [1]

References

[1]: S Hochreiter, J Schmidhuber, "Long short-term memory", Neural computation 9 (8), 1735-1780, 1997

[2]: Goodfellow, J Pouget-Abadie, M Mirza, B Xu, D Warde-Farley, S Ozair, "*Generative adversarial nets*", Advances in neural information processing systems, 2672-2680, 2014

[3] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "*Imagenet classification with deep convolutional neural network*" Advances in neural information processing systems, 2012

[4]He, K., Zhang, X., Ren, S., & Sun, J. (2016). "*Deep residual learning for image recognition*", In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

[5] Yu, F., & Koltun, V. (2015). "*Multi-scale context aggregation by dilated convolutions*", arXiv preprint arXiv:1511.07122.

The papers can be downloaded from elearning