# Ensemble Learning Machine Learning, A.Y. 2022/23, Padova



Fabio Aiolli

#### December 7th, 2022



- General IDEA: get predictions from multiple models (ensemble) and aggregate the predictions;
- Classification: an ensemble of classifiers (base/weak learners) is a set of classifiers whose individual decisions are combined in some way to classify new examples;

## Example of an ensemble method

## Guess the weight of the cow

- Competition held in England in 1906;
- 787 participants;
- Correct answer: 1198 lb ( $\approx$  543 kg);
- Sir. Francis Galton recorded the results and published in Nature.



## Guess the weight of the cow - Results

#### NATURE

[MARCH 7, 1907

| ire for<br>month<br>1 year-<br>Both<br>years.<br>Bulletin | Degrees of<br>the length of<br>Array o'-100" | Estimates<br>in lbs. | * Centiles                             |                   |                                      |
|-----------------------------------------------------------|----------------------------------------------|----------------------|----------------------------------------|-------------------|--------------------------------------|
|                                                           |                                              |                      | Observed<br>deviates from<br>1207 lbs. | Normal<br>p.e =37 | Excess of<br>Observed over<br>Normal |
| ontains<br>station                                        | 5                                            | 1074                 | - 133                                  | - 90              | +43                                  |
| ults of                                                   | 10                                           | 1109                 | - 98                                   | - 70              | + 28                                 |
| ions in                                                   | 15                                           | 1126                 | - 81                                   | - 57              | + 24                                 |
| 51 and                                                    | 20                                           | 1148                 | - 59                                   | - 46              | +13                                  |
| vina                                                      | 1 25                                         | 1162                 | - 45                                   | - 37              | + 8                                  |
| ation is                                                  | 30                                           | 1174                 | - 33                                   | - 29              | + 4                                  |
| and is                                                    | 35                                           | 1181                 | - 26                                   | - 21              | + 5                                  |
| l appli-                                                  | 40                                           | 1188                 | - 19                                   | - 14              | + 5                                  |
| o with                                                    | 45                                           | 1197                 | - 10                                   | - 7               | + 5<br>+ 3                           |
| mpera-                                                    | <i>m</i> 50                                  | 1207                 | 0                                      | 0                 | · ō                                  |
| iximum                                                    | 55                                           | 1214                 | . + 7                                  | + 7               | 0                                    |
| ibsolute                                                  | 60                                           | 1219                 | + 12                                   | +14               | - 2                                  |
| ibsolute                                                  | 65                                           | 1225                 | + 18                                   | . + 21            | - 3<br>- 0                           |
| ıl rain-                                                  | 70                                           | 1230                 | + 23                                   | + 29              | - 0                                  |
| nt was                                                    | 43 75                                        | 1236                 | + 29                                   | + 37              | 8                                    |
| Most                                                      | 80                                           | 1243                 | + 36                                   | + 40              | - 10                                 |
| tember.                                                   | 85                                           | 1254                 | + 47                                   | + 57              | - 10                                 |
| it being                                                  | 90                                           | 1267                 | + 52                                   | +70               | - 18                                 |
| J. D.                                                     | 95                                           | 1293                 | . + 86                                 | +90               | - 4                                  |

Percentiles:

- 25th: 1162 lb;
- 50th: 1207 lb;
- 75th: 1236 lb.
- Mean: 1197 lb ⇒ correct answer: 1198 lb!!
- Ensemble method: average of predictors.

The dressed weight proved to be 1108 lbs.



Question: why (and when) a combination of classifiers is justified?

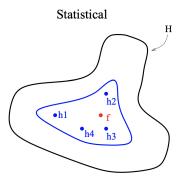
We will try to answer this question in two ways:

- Intuitively: following the Dietterich's "3 reasons why":
  - Statistical;
  - Computational;
  - Representational.
- Theoretically: bias-variance trade-off.

# Statistical



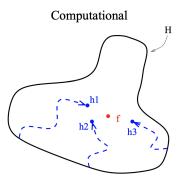
- (Without sufficient data) many hypotheses can have the same level of accuracy on the training data;
- By "averaging" the votes of several "good" classifiers the risk of choosing the wrong classifier is reduced.



## Computational



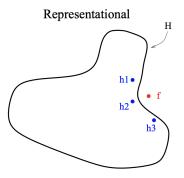
- Even in the presence of enough training examples learning algorithms may stuck in local optima;
- An ensemble constructed by running the local search from many different starting points may provide a better approximation to the true unknown function.



## Representational



- In some applications of machine learning the true function cannot be represented by any of the hypotheses in *H*;
- By forming weighted sums of hypotheses drawn from *H* it may be possible to expand the space of representable functions.





Given  $y = f(x) + \epsilon$  and given a hypothesis g, the squared error can be decomposed as:

$$\mathbb{E}\left[(y-g(x))^2
ight]=$$
 noise $^2+$  bias $^2+$  variance

Noise<sup>2</sup> : 
$$\mathbb{E}[(y - f(x))^2]$$
, that is irreducible;  
Bias<sup>2</sup> :  $(\mathbb{E}[g(x)] - f(x))^2$   
Variance :  $\mathbb{E}[(g(x) - \mathbb{E}[g(x)])^2]$ 

Generally, averaging multiple hypotheses reduces variance, but can also reduce the bias.

١



Parallel : These methods take advantage of the **independence** between the base learners:

- Voting Base learners make predictions then they pick the prediction which has the highest number of votes;
- Bagging Multiple base learners are built from different samples of the training set to make predictions.

Sequential : These methods take advantage of the **dependence** between the base learners since the overall performance can be boosted in an incremental way. This approach is usually called boosting

## Why parallel ensemble should work?



- Suppose that each base (binary) classifier  $h_i$  has an independent generalization error  $\epsilon$ , i.e.,  $P(h_i(\mathbf{x}) \neq f(\mathbf{x})) = \epsilon$ ;
- Let us combine T of such classifier according to

$$H(\mathbf{x}) = sign\left(\sum_{i=1}^{T} h_i(\mathbf{x})\right),$$

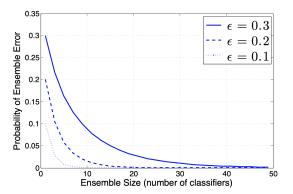
i.e., *H* makes an error when > 50% of its base classifiers make errors;
Therefore, by **Hoeffding inequality** the generalization error of the ensemble is

$$P(H(\mathbf{x}) \neq f(\mathbf{x})) = \sum_{k=0}^{T/2} {T \choose k} (1-\epsilon)^k \epsilon^{T-k} \leq e^{-\frac{T}{2}(2\epsilon-1)^2},$$

clearly shows that the generalization error reduces exponentially to the ensemble size  $\mathcal{T}$ .

Fabio Aiolli

# Why this theory does not work in practice?



 $\Rightarrow$  Errors of voters are **not** independent!!







# How to achieve independence of models?

• **Bootstrapping**: sample with replacement *M* overlapping groups of instances of the same size.



• Feature randomization: each model sees a random subset of features.

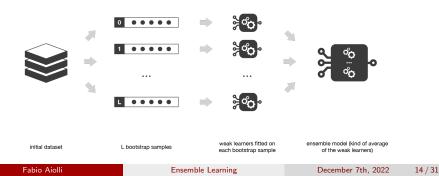
# Bagging



## Bagging

The Bootstrap AGGregating approach:

- Create k bootstrap samples;
- Train a distinct classifier on each sample;
- Classify new instance by majority vote / average.

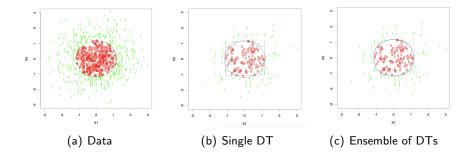




- Ideally, bagging eliminates variance altogether while keeping the bias almost unchanged; Averaging reduces variance: let  $Z_1, \ldots, Z_N$  be i.i.d random variables, then  $Var(\frac{1}{N}\sum_i Z_i) = \frac{1}{N}Var(Z_i)$
- In practice, weak learners are not independent hence bagging tends to reduce variance and increase bias.

# Bagging decision boundary







- Bagging is bad if models are very similar (not independent enough);
- This happens if the learning algorithm is **stable**, i.e., models do not usually change much after changing a few instances;

Bagging is strongly affected by the quality of individual models,

• e.g., Bagged decision stumps (trees with 1 decision node) are bad

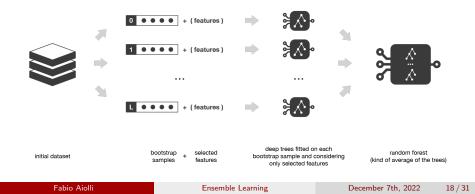


# Random Forests



#### Random forest algorithm

- Use k bootstrap replicates to train k different decision trees (DTs);
- At each node, pick a subset of features at random;
- Aggregate the predictions of each tree to make classification decision.

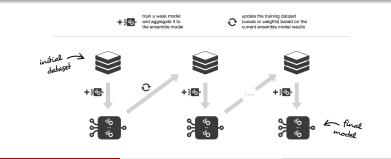






#### Boosting

- Use the training set to train a simple (weak) predictor.
- Re-weight the training examples, putting more weight on examples that were poorly classified in the previous predictor;
- Repeat n times;
- Combine the simple hypotheses into a single accurate predictor.





- Boosting assumes weak learners slightly better than random guessing  $accuracy=0.5+\epsilon$ ;
- It reduces bias by making each classifier focus on previous mistakes;
- AdaBoost (binary classification) is the most representative model;
- How can we take a "weak" classifier slightly better then chance and "boost" it to get low training error?
  - $\Rightarrow$  Sequential training with examples re-weighting.
- Hypothesis: H(x) = sign(Σ<sub>t</sub> α<sub>t</sub>h<sub>t</sub>(x)). Note that we sum predictions (after sign) so, for example, sum of linear classifiers isn't a linear classifier!

# Adaboost (Adaptive Boosting)



- **IDEA**: At each iteration t the training sample is reweighted (D<sub>t</sub>), giving larger weights to points that were classified wrongly and train a new weak classifier;
- Weak learners need to maximize weighted accuracy (i.e., minimize weighted error  $\epsilon_t = P_{i \sim D_t}[h_t(\mathbf{x}_i) \neq y_i] = \sum_i D_t(i)[h_t(\mathbf{x}_i) \neq y_i]);$
- The weight of each classifier is computed accordingly to its weighted error

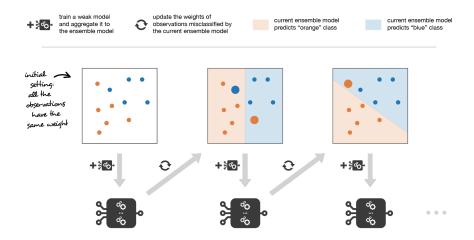
$$\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t};$$

 Instance weights D<sub>t</sub> are updated using an exponential rule ⇒ harder examples weigh exponentially more than "easy" ones.

• Loss function: 
$$E = \sum_{i=1}^{n} e^{-y_i H(\mathbf{x}_i)}$$
 where  $H(\mathbf{x}) = \sum_t \alpha_t h_t(\mathbf{x})$ .

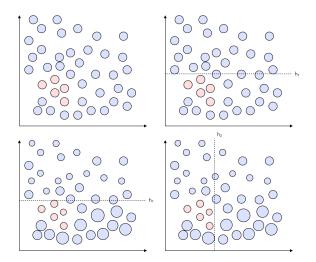
# Adaboost (Adaptive Boosting)





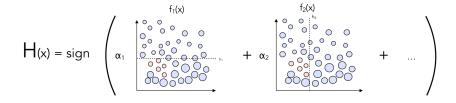
# Adaboost w/ decision stumps - Training





## Adaboost w/ decision stumps - Prediction





## Adaboost loss function



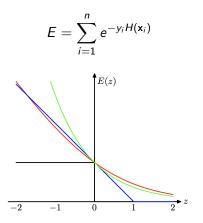


Figure: Plot of the exponential (green) and rescaled cross-entropy (red) error functions along with the hinge error (blue) used in support vector machines, and the misclassification error (black)

Fabio Aiolli

Ensemble Learning



- Bagging may fail if the considered weak learners are mistaken in the same region
  - ⇒ boosting solves the problem by concentrating the efforts on those regions!
- Weak learners have high bias. By combining them, we get more expressive classifiers. Hence, boosting is a bias-reduction technique;
- By focusing the effort on hard examples, boosting is very **sensitive to noise** (e.g., outliers) in the data.

# Does Adaboost overfit?



Many iterations of Adaboost generate more and more complex hypothesis: *is boosting going to overfit?* 

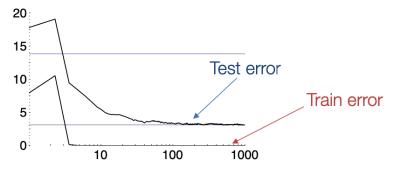


Figure: Typical run of Adaboost: Test error continues to drop even after training error reaches 0. **Conjecture: boosting does not overfit!** 

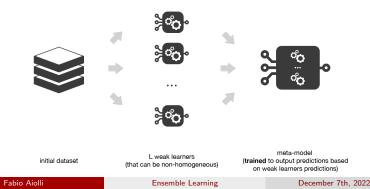
# Stacking



Both bagging and boosting assume we have a single *base learning* algorithm. What if we want to combine an arbitrary set of classifiers??

### Stacking

Technique for combining an arbitrary set of learning models using a meta-model.





• Any supervised model can be used as a meta-model!!

### • Common choices:

- Averaging (regression);
- Majority vote (classification);
- Linear regression (regression);
- Logistic regression (classification).

# When does stacking works?



- Stacking works best when the base model have **complementary strengths and weaknesses**, i.e., different inductive biases;
- Stacking performs very well in practice.





Topics:

- Bagging;
  - Random Forest.
- Boosting;
  - Adaboost.
- Stacking.

Try this at home (sklearn.ensemble):

- BaggingClassifier: for implementing bagging;
- BoostingClassifier: for trying Adaboost (e.g., check whether it does overfit or not);
- StackingClassifier: for implementing stacking.