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Ensemble methods

General IDEA: get predictions from multiple models (ensemble) and
aggregate the predictions;

Classification: an ensemble of classifiers (base/weak learners) is a
set of classifiers whose individual decisions are combined in some way
to classify new examples;
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Example of an ensemble method

Guess the weight of the cow

Competition held in England in 1906;

787 participants;

Correct answer: 1198 lb (≈ 543 kg);

Sir. Francis Galton recorded the results and published in Nature.
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Guess the weight of the cow - Results

Percentiles:

25th: 1162 lb;
50th: 1207 lb;
75th: 1236 lb.

Mean: 1197 lb ⇒ correct answer:
1198 lb!!

Ensemble method: average of
predictors.
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Justification

Question: why (and when) a combination of classifiers is justified?

We will try to answer this question in two ways:

Intuitively : following the Dietterich’s “3 reasons why”:

Statistical;
Computational;
Representational.

Theoretically : bias-variance trade-off.
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Statistical

(Without sufficient data) many hypotheses can have the same level of
accuracy on the training data;

By “averaging” the votes of several ”good” classifiers the risk of
choosing the wrong classifier is reduced.
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Computational

Even in the presence of enough training examples learning algorithms
may stuck in local optima;
An ensemble constructed by running the local search from many
different starting points may provide a better approximation to the
true unknown function.
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Representational

In some applications of machine learning the true function cannot be
represented by any of the hypotheses in H;

By forming weighted sums of hypotheses drawn from H it may be
possible to expand the space of representable functions.
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Variance-bias decomposition

Given y = f (x) + ϵ and given a hypothesis g , the squared error can be
decomposed as:

E
[
(y − g(x))2

]
= noise2 + bias2 + variance

Noise2 : E
[
(y − f (x))2

]
, that is irreducible;

Bias2 : (E[g(x)]− f (x))2

Variance : E
[
(g(x)− E[g(x)])2

]
Generally, averaging multiple hypotheses reduces variance, but can also
reduce the bias.
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Types of ensemble

Parallel : These methods take advantage of the independence
between the base learners:

Voting Base learners make predictions then they pick
the prediction which has the highest number of
votes;

Bagging Multiple base learners are built from different
samples of the training set to make predictions.

Sequential : These methods take advantage of the dependence
between the base learners since the overall performance can
be boosted in an incremental way. This approach is usually
called boosting
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Why parallel ensemble should work?

Suppose that each base (binary) classifier hi has an independent
generalization error ϵ, i.e., P(hi (x) ̸= f (x)) = ϵ;

Let us combine T of such classifier according to

H(x) = sign

(
T∑
i=1

hi (x)

)
,

i.e., H makes an error when > 50% of its base classifiers make errors;

Therefore, by Hoeffding inequality the generalization error of the
ensemble is

P(H(x) ̸= f (x)) =

T/2∑
k=0

(
T

k

)
(1− ϵ)kϵT−k ≤ e−

T
2
(2ϵ−1)2 ,

clearly shows that the generalization error reduces exponentially to
the ensemble size T .
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Why this theory does not work in practice?

⇒ Errors of voters are not independent!!
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Bootstrapping

How to achieve independence of models?

Bootstrapping: sample with replacement M overlapping groups of
instances of the same size.

Feature randomization: each model sees a random subset of
features.
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Bagging

Bagging

The Bootstrap AGGregating approach:

Create k bootstrap samples;

Train a distinct classifier on each sample;

Classify new instance by majority vote / average.
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Bagging reduces variance

Ideally, bagging eliminates variance altogether while keeping the bias
almost unchanged; Averaging reduces variance: let Z1, . . . ,ZN be i.i.d
random variables, then Var( 1

N

∑
i Zi ) =

1
NVar(Zi )

In practice, weak learners are not independent hence bagging
tends to reduce variance and increase bias.
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Bagging decision boundary

(a) Data (b) Single DT (c) Ensemble of DTs
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When bagging fails?

Bagging is bad if models are very similar (not independent enough);

This happens if the learning algorithm is stable, i.e., models do not
usually change much after changing a few instances;

Bagging is strongly affected by
the quality of individual models,
e.g., Bagged decision stumps
(trees with 1 decision node) are
bad
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Random Forests

Random forest algorithm

Use k bootstrap replicates to train k different decision trees (DTs);

At each node, pick a subset of features at random;

Aggregate the predictions of each tree to make classification decision.
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Boosting

Boosting

Use the training set to train a simple (weak) predictor.

Re-weight the training examples, putting more weight on examples
that were poorly classified in the previous predictor;

Repeat n times;

Combine the simple hypotheses into a single accurate predictor.
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Boosting overview

Boosting assumes weak learners slightly better than random guessing
accuracy=0.5 + ϵ;

It reduces bias by making each classifier focus on previous mistakes;

AdaBoost (binary classification) is the most representative model;

How can we take a “weak” classifier slightly better then chance and
“boost” it to get low training error?

⇒ Sequential training with examples re-weighting.

Hypothesis: H(x) = sign(
∑

t αtht(x)). Note that we sum predictions
(after sign) so, for example, sum of linear classifiers isn’t a linear
classifier!
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Adaboost (Adaptive Boosting)

IDEA: At each iteration t the training sample is reweighted (Dt),
giving larger weights to points that were classified wrongly and train a
new weak classifier;

Weak learners need to maximize weighted accuracy (i.e., minimize
weighted error ϵt = Pi∼Dt [ht(xi ) ̸= yi ] =

∑
i Dt(i)[ht(xi ) ̸= yi ]);

The weight of each classifier is computed accordingly to its weighted
error

αt =
1

2
log

1− ϵt
ϵt

;

Instance weights Dt are updated using an exponential rule ⇒ harder
examples weigh exponentially more than “easy” ones.

Loss function: E =
n∑

i=1
e−yiH(xi ) where H(x) =

∑
t αtht(x).
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Adaboost (Adaptive Boosting)
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Adaboost w/ decision stumps - Training
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Adaboost w/ decision stumps - Prediction
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Adaboost loss function

E =
n∑

i=1

e−yiH(xi )

Figure: Plot of the exponential (green) and rescaled cross-entropy (red) error
functions along with the hinge error (blue) used in support vector machines, and
the misclassification error (black)
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When/why does boosting works?

Bagging may fail if the considered weak learners are mistaken in the
same region

⇒ boosting solves the problem by concentrating the efforts on those
regions!

Weak learners have high bias. By combining them, we get more
expressive classifiers. Hence, boosting is a bias-reduction technique;

By focusing the effort on hard examples, boosting is very sensitive to
noise (e.g., outliers) in the data.
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Does Adaboost overfit?

Many iterations of Adaboost generate more and more complex hypothesis:
is boosting going to overfit?

Figure: Typical run of Adaboost: Test error continues to drop even after training
error reaches 0. Conjecture: boosting does not overfit!
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Stacking

Both bagging and boosting assume we have a single base learning
algorithm. What if we want to combine an arbitrary set of classifiers??

Stacking

Technique for combining an arbitrary set of learning models using a
meta-model.
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What is a meta-model?

Any supervised model can be used as a meta-model!!

Common choices:

Averaging (regression);
Majority vote (classification);
Linear regression (regression);
Logistic regression (classification).
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When does stacking works?

Stacking works best when the base model have complementary
strengths and weaknesses, i.e., different inductive biases;

Stacking performs very well in practice.
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Recap

Topics:

Bagging;

Random Forest.

Boosting;

Adaboost.

Stacking.

Try this at home (sklearn.ensemble):

BaggingClassifier: for implementing bagging;

BoostingClassifier: for trying Adaboost (e.g., check whether it
does overfit or not);

StackingClassifier: for implementing stacking.
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