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= DIPARTIMENTO Recall:

= CETE Artificial Neural Networks

hidden layer 1 hidden layer 2 hidden layer 3

* Model of computation inspired by the structure of neural networks in the brain

* Large number of basic computing devices (neurons) connected to each other

* Represented with directed graphs where the nodes are the neurons and the
edges corresponds to the links between the neurons

* Proposed in 1940-50

* First practical applications in the 80-90 but practical results were lower than
SVM and other techniques

* From 2010 on deep architectures with impressive performances



o Recall:

= DIPARTIMENTO

= Siemanor Feedforward NN

Feedforward network: the graph has no edges

It is typically organized into layers: each neuron takes in input
the output of all neurons from the previous layer

Notation: NN: G=(V,E)

* V:neurons |V|:size of the network

* E:connection between neurons (directed edges)
* w:E — R weight function over the edges

Each neuron:

1. Takesin input the sum of the outputs of the connected
neurons weighted by the edge weights

2. Appliesto it a simple scalar function (activation function, o)
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— AT NN Training Algorithm

BackPropagation algorithm with SGD
Input: training data (x4, V1), -, (X3, Vim )

Output: NN weights W(])

Initialize w( ) R o o

for s « 0,1,2, ... do // until convergence
pick (x5, V) ) at random from training data; // SGD
compute v, ;,Vj,t // forward propagation

compute 6]@ B g i // backward propagation

Wi(;)[SH] = Wi(jt)[s] — nvt_l’i&(t) i // update weights

if converged then return W( ) s Wiky J5 3

5@
(compute loss)
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Issues of Fully Connected
LN ORIAZONE Feedforward Networks
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Two main issues in the NN model we have seen up to now
1. Each neuron of layer t-1 connected with each neuron of layer t

- huge number of edges/weights (quadratic w.r.t. number of neurons)
2. The domain structure is not taken into account

Input

o The model does not consider that a neuron can be "closer" (= more related) to some neurons
and less to others

o Some domains have a structure

o) E.g., grid of pixels in an image, sequence of samples in an audio signal, letters of a word in a text, ...
o) Need to capture the fact that a pixel in an image is more related to the close pixels than to the far apart
ones or a letter in a text is more related to letters of the same word than to the ones 10 pages ahead !
o) Interesting features are often local, shift-invariant and deformation-invariant

o) By simply placing data in a vector = loose spatial or temporal structure

- Need to update the NN model
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= DI INGEGNERIA

—— DELLINFORMAZIONE Lea rning dain Image (1)

Some patterns are much smaller than the
whole image

Can represent a small region with fewer parameters
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~— DELLINFORMAZIONE Lea rning dain Image (2)

>. + —»f.—'

They can be "compressed”
to the same parameters

* The same pattern can appear in different places
* Similar detectors in different regions share similar parameters
 What about training some “small” detectors and let each detector “move around” ?
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From NNs to Convolutional

= DI INGEGNERIA N I N t k
—— DELLINFORMAZIONE eural Networks
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Convolutional Neural Network (CNN)

1. Local connectivity: receptive field for each neuron

2. Shared (“tied”) weights: spatially invariant response
3. Multiple feature maps

4. Subsampling (pooling)
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= DPRTMENTO Convolutional NNs

—  DELLINFORMAZIONE

1. Local connectivity

S

@
- '@ * Each orange unit is only connected to
@

:>Q neighboring blue units

compare
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= DPRTMENTO Convolutional NNs

—  DELLINFORMAZIONE

2. Shared (“tied”) weights

@ All orange units share the same parameters w

* Each orange unit computes the same function,
Y1 ¢ but with a different input window




D DFATMENTO Convolutional NNs

—  DELLINFORMAZIONE

2 Convolution with 1-D filter: [wq{, w,, w;]

e All orange units share the same parameters w

* Each orange unit computes the same function,
but with a different input window



D DFATMENTO Convolutional NNs
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@ Convolution with 1-D filter: [w{, w,, ws]

W1 O

O W2 e All orange units share the same parameters w

* Each orange unit computes the same function,
but with a different input window
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@ Convolution with 1-D filter: [w{, w,, ws]

o

Q All orange units share the same parameters w

* Each orange unit computes the same function,
but with a different input window

W3
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@ Convolution with 1-D filter: [w{, w,, ws]

O
O O

O Qo ° All orange units share the same parameters w
O

O

w
S o . Each orange unit computes the same function,
but with a different input window
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@ Convolution with 1-D filter: [w{, w,, ws]

O Qo ° All orange units share the same parameters w

® O . Each orange unit computes the same function,
w1 O but with a different input window

@
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= DPRTMENTO Convolutional NNs

—  DELLINFORMAZIONE

3. Multiple feature maps

e All orange units compute the same function
but with a different input windows

* Orange and red units compute
different functions

Feature map 2
(array of red
units)

Feature map 1
(array of orange
units)



CO nVOI ution /ﬁse are the network \

parameters to be learned.
Fa A 11111
?11|1]0(0|0|0]|1 111 |-.1| Filterl
(feature map 1)
?10|1/0]0|1]|0 11111
O/0|1]1/10]|0
1/0/0|0|1]|0 1)1 -1 |
Filter 2
0(1,0|0|1]|0 -1 1] (feature map 2)
olo|[1]0|1]0 Q 1]-1 -/
6 X 6 matrix -

Convolution at boundaries: EaCh fllter detECtS d Sma”
* Stop before — reduced output size pattern (3 X 3)

* Use padding to extend input size
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Convolution 1] 11 Filter1
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stride=1
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6 X 6 matrix



1 (-1]-1
Convolution 4] 1 [-1] Filter1

-11-11 1

If stride=2
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6 X 6 matrix

Stride: allows the filter to move in steps of multiple samples (alternative to pooling to reduce resolution)
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Convolution 111111 Filter1
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stride=1

6 X 6 matrix 3 -2 -2 -1



111 (-1
Convolution 1|1 |-1| Filter2
111 (-1
stride=1

6 X 6 matrix

Two 4 x 4 images
Forming 2 x 4 x 4 matrix



Convolution v.s. Fully Connected

Fully-conne
cted

convolution
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Convolutional model:
fewer parameters!
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Only connect to 9
inputs, not fully
connected
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Filter 1 2
3
: 4 JBE 3
o3 1 0 (-3 i
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: 8
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1 9 !
1 10:
1 :
_ 13:
6 X 6 image
Convolutional model: ,14
Fewer parameters 15:
16: Shared weights

Shared weights:
Even fewer parameters
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Single depth slice
111124

56|78
32010 . 3 B8
112 34

max pool with 2x2 filters
and stride 2 &n 8

y
1 Reduce resolution—next convolutional layer is applied at a larger

scale

1 Originally introduced to reduce the computational burden and the
memory requirements...

1 ...but turned out to be crucial to improve performance in many
applications since it increases the receptive field of the inner layers

1 Adds some deformation invariance too
Max Pooling is the most common example of such layer: it works very

winall i Fic Abiicrl, AanA A~ e Aaffirianthvy imnlamaoantad 1n havrdwarAavra



Max Pooling

1|-1|-1 -1 -1
-1 1 |-1| Filterl -1 -1 | Filter 2
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Why Pooling ?

Subsampling pixels will not change the object

bird
bird

| :. Subsampling

We can subsample the pixels to make image smaller and use
fewer parameters to characterize the image
However this is not the only reason for using pooling...




= Pooling and Receptive Size

—  DELLINFORMAZIONE

Convolution + bias + activation

‘3!-S ,X : ‘Re.c‘.ept#\e'fleld” , | 2X?2 Poolmg nelzhborhood = FIGURE 1241

: SEBCACO0 880 1| o000 Top row: How the
sizes of receptive
fields and pooling
neighborhoods
affect the sizes of
feature maps and
pooled feature

Pooléd

G —BRASENRR0000000000000000  feature map maps.
2B R B RS ERERIIEREteRs (size 12 X 12) Bottom row: An
SRR G S e o Feature map image example.
gt fmage (size 24 X 24) This figure is

(si2c 28, % 28) explained in more
detail in Example
12.17. (Image

courtesy of NIST.)

A small convolution
window after pooling
corresponds to a larger
area in previous layers

‘A3




Flattening and Fully
Connected Layer at

0
the End

1

-1 1 3

0O 3 Flattened .
1 Fully Connected

Feedforward network

0



Baseline CNN model
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—  DIINGEGNERA Convolutional Networks

— DELLINFORMAZIONE

G331, maps 16@10x10

INPUT G1: leature maps $4: 1. maps 16@5x5

30%32 @ 28x28

S2:f. ma
G141

| Full connection Gaussian connections
Canvolutions Subsampling Convolutions  Subsampling Full connecticn

(1 Hierarchical representation: low level features in the first layer, then moving to
higher and higher abstraction levels
(1 Weight sharing: huge reduction of complexity w.r.t. a fully connected network

(d The CNN model "compresses" a fully connected network in various ways:
[0 Reducing the number of connections

[0 Shared weights on the edges
[ Max pooling further reduces the complexity
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—  DELL'INFORMAZIONE Fe at u re IVI a pS
ﬁeature Poolch @ea’[ure Pooled\ Neural

maps feature maps feature net
maps maps
a v :
I
3 & : 1 FIGURE 12.44
| Visual summary
! N 9 of an input image
' propagating
a k- through the CNN
— 3 in Fig. 12.42. Shown
2 W as images are all the
results of
E L S 4 convolution
E . g ( fcall.urc mapis‘ )dand
> 5 pooling (poolec
! feature maps) for
m 5 | both layers of the
' 6 network. (Example
E b 12.17 contains more
| 7 details about this
E [ | figure.)
8
M x|
N o~ °

\_ Layer 2 )
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—  DELL'INFORMAZIONE

Snaprzagama
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Black: 1
white: -1

none: 0
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— SR CNNs in Speech Recognition

The filters move in the
frequency direction

Frequency

Image

Time
Spectrogram
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= CeLnoRuzne CNNs in text classification
senteqce convolutional pooled | sat
matrix feature map representation
S € Raxlsl C € R"Xlsl-m+1 Cpoal € RPN
_—
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Source of image:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.703.6858&rep=rep1&type=pdf
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Avoid Overfitting

inadequate good compromise over-fitting

error
A
test
training
>
underfiting ~ * Parameters overfitting
(high bias) (high variance)

http://wiki.bethanycrane.com/overfitting-of-data

Learned hypothesis may fit the training data
very well, even outliers (noise), but fail to
generalize to new examples (test data)

* Do not use a too complex network if
training data is limited

* \Various techniques can be used to deal
with this problem

https://www.neuraldesigner.com/images/learning/selection_error.svg
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—  DELLINFORMAZIONE D rO p O u t

Dropout
 Randomly drop neurons (along with their connections) during training
* Each unit retained with fixed probability p, independent of other units
* Hyper-parameter p to be chosen (tuned)

At each step the network is trained with only a subset of the neurons
Avoid that the output depends "too much" on a single neuron
Typically applied only to some layers (e.g., fully connected at the end)
More stable / less risk of overfitting

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." Journal of machine learning research (2014)



https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

® Avoid Overfitting:
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—  DELLINFORMAZIONE Re g U | a ri Za t i O n

Jreg w) = J(w) +— Z ‘W(t)

L]t

]reg(w) = J(w) +— z (t)

1]t

Regularization

* Regularization term added to the loss function

* Penalizes big weights and reduces risk of overfitting

* Regularization parameter A determines how relevant
regularization is during gradient computation

* Big A = big penalty for big weights

e L1 or L2 regularization can be used
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—  DELLINFORMAZIONE E a r I y StO p p i n g

Best Validation Performance is 26.6393 at epoch 9

103 -

Train

Validation
Test
Best

102}

101k overfitting

Mean Squared Error (mse)

Early-stopping e

* Use validation error to decide when to stop training

* Stop when monitored loss has not improved after n subsequent
epochs

 Parameter “n” is called patience
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. DELLINFORMAZIONE Data Au gmentat Tolg

\

w € | &
\a-/ ,;,J \. J\/\

MMA\

Enlarge your Dataset

Data Augmentatlon
2 Add a little bit of variance to the data to "virtually" increase number of training
samples (but new samples are correlated, not the same as having more samples)
Q Artificially add noise
a Apply random transformations (depend on data type)
o Crop part of the data

Resize/rescale data
Rotate

Custom transformations depending on data type (e.g., for images: flip horizontally, adjust
hue, contrast and saturation)

O O O
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—  DELLINFORMAZIONE

a2 Huge number of parameters, very challenging optimization

Q A variety of optimization algorithms have been proposed (recall GD
lecture)

1. Basic Gradient Descent (GD)

o  Computes the gradient of the cost function w.r.t. to the parameters for the entire
training dataset

o Need to calculate the gradients for the whole dataset to perform just one update
o  Can be very slow and is intractable for datasets that don't fit in memory

2. Stochastic Gradient Descent (SGD)

o  Performs a parameter update for each training example

o Itisusually much faster but performs frequent updates with a high variance and can
be unstable

o  SGD's fluctuation, on the one hand, enables it to jump to new and potentially better
local minima

o  On the other hand, this ultimately complicates convergence to the exact minimum,
as SGD will keep overshooting



= o nconenn Gradient Descent for NN (2)

—  DELLINFORMAZIONE

U= ==

3. Mini-batch gradient descent:

Compromise between GD and SGD: performs an update for every mini-batch of n training
examples

Reduces the variance of the parameter updates, which can lead to more stable convergence
Can make use of highly optimized matrix computations in state-of-the-art deep learning libraries
Common mini-batch sizes range between a few items and 256, but can vary for different
applications

4. Momentum:

| Helps accelerate SGD in the relevant direction and dampens oscillations
| It does this by adding a fraction of the update vector of the past step to the current update vector
5. Adam (Adaptive Moment Estimation)

d  Commonly used method that computes adaptive learning rates for each parameter
... and many others !!!!

iy
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= Silwimmane 1055 Entropy

g For classification tasks the cross entropy is commonly used in place of
the 0-1 loss
Q For binary classification: L(f(x),y) = —ylog(f(x)) — (1 — y)log(1 — f(x))
0 The optimal f (x) minimizing this loss functionis f(x)=P(y =1 | x)
o We are training the neural net output to estimate conditional probabilities
0 Note that the expression works if f (x) is strictly between 0 and 1

o Anundefined or infinite value would otherwise arise
o To achieve this, the sigmoid is commonly used as activation for the output layer

Log Loss when true label = 1

O The function is convex
- Gradient descent (e.g., SGD) works better al

" . 1 . " .
0.0 0.2 0.4 0.6 0.8 1.0
predicted probability
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Label Encoding One Hot Encoding
Food Name Categorical # | Calories Apple | Chicken | Broccoli | Calories m m-n-m-
. ; - N O T T NY o .. o .| . o .. o
SIS — 3 | - — WA » o .. o .. o .. . o
Broccoli 3 50 0 0 1 50 CA 0 200 800 0 T 0 boG 0

ﬂ One-hot encoding

o Output: vector y with one variable for each class
o y; = lifsampleinclassi, y; = 0 otherwise
o Avoid having some classes "closer" to others as when using class index
o Increases output data dimensionality

O Extension of cross-entropy to multi-class
o Labels one-hot encoded, vector function f to be estimated
o f;(x) = estimated probability that x belong to class i

LU, = = ) yilog(fi)
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2 Many deep learning frameworks
2 Supported by large research entities and companies
2 Optimized for GPU computing

‘¢ Tensorflow (Google)
Keras: higher level framework for easier implementation
[l Tutorial on Keras in January
é Caffe (University of Berkley)
O PyTorch (Facebook)
Ia8 Microsoft Cognitive Toolkit
... and many others




