
Convolutional Neural Networks

Machine Learning 2022-23

Recall:
Artificial Neural Networks

• Model of computation inspired by the structure of neural networks in the brain
• Large number of basic computing devices (neurons) connected to each other
• Represented with directed graphs where the nodes are the neurons and the

edges corresponds to the links between the neurons
• Proposed in 1940-50
• First practical applications in the 80-90 but practical results were lower than

SVM and other techniques
• From 2010 on deep architectures with impressive performances

Recall:
Feedforward NN

Recall:
NN Training Algorithm

t-1,i

[s-1][s]

Issues of Fully Connected
 Feedforward Networks

Example:
Learning an Image (1)

Some patterns are much smaller than the
whole image

“beak” detector

Can represent a small region with fewer parameters

“upper-left beak”
detector

“middle beak”
detector

They can be "compressed"
 to the same parameters

Example:
Learning an Image (2)

• The same pattern can appear in different places
• Similar detectors in different regions share similar parameters
• What about training some “small” detectors and let each detector “move around” ?

From NNs to Convolutional
 Neural Networks

Convolutional Neural Network (CNN)
1. Local connectivity: receptive field for each neuron
2. Shared (“tied”) weights: spatially invariant response
3. Multiple feature maps
4. Subsampling (pooling)

Convolutional NNs

1. Local connectivity

• Each orange unit is only connected to
neighboring blue units

compare

Convolutional NNs

2. Shared (“tied”) weights

Convolutional NNs

Convolutional NNs

❑

Convolutional NNs

❑

Convolutional NNs

❑

Convolutional NNs

❑

Convolutional NNs

3. Multiple feature maps

• All orange units compute the same function
but with a different input windows

• Orange and red units compute
different functions

Feature map 1
(array of orange
 units)

Feature map 2
(array of red
 units)

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 matrix

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1
(feature map 1)

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2
(feature map 2)

……

These are the network
parameters to be learned.

Each filter detects a small
pattern (3 x 3)

Convolution at boundaries:
• Stop before → reduced output size
• Use padding to extend input size

? ? ?

?

?

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 matrix

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -1

stride=1

Dot
product

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 matrix

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -3

If stride=2

Stride: allows the filter to move in steps of multiple samples (alternative to pooling to reduce resolution)

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 matrix

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

stride=1

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 matrix

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Repeat this for each filter
stride=1

Two 4 x 4 images
Forming 2 x 4 x 4 matrix

Feature
Map

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

data
convolution

-1 1 -1

-1 1 -1

-1 1 -1

1 -1 -1

-1 1 -1

-1 -1 1
…………

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

Convolution v.s. Fully Connected

Fully-conne
cted

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1
1

2

3

…
8

9
…

13

14

15

…

Only connect to 9
inputs, not fully

connected

4
:

10:

16

1

0

0

0

0

1

0

0

0

0

1

1

3

Convolutional model:
fewer parameters!

7

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

1
:2
:3
:…

7
:8
:9
:…

13:

14
:15:

…

4
:

10:

16:

1

0

0

0

0

1

0

0

0

0

1

1

3

-1

Shared weights

6 x 6 image

Convolutional model:
Fewer parameters

Shared weights:
Even fewer parameters

Pooling Layer

❑ Reduce resolution→next convolutional layer is applied at a larger
scale

❑ Originally introduced to reduce the computational burden and the
memory requirements…

❑ …but turned out to be crucial to improve performance in many
applications since it increases the receptive field of the inner layers

❑ Adds some deformation invariance too

❑ Max Pooling is the most common example of such layer: it works very
well, it is quick, and can be efficiently implemented in hardware

Max Pooling

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

Why Pooling ?

Subsampling pixels will not change the object

Subsampling

bird

bird

We can subsample the pixels to make image smaller and use
fewer parameters to characterize the image
However this is not the only reason for using pooling…

Pooling and Receptive Size

A small convolution
window after pooling

corresponds to a larger
area in previous layers

Flattening and Fully
Connected Layer at

the End

3 0

13

-1 1

30 Flattened

3

0

1

3

-1

1

0

3

Fully Connected
Feedforward network

Baseline CNN model

Fully Connected
Feedforward network

cat dog ……
Convolution

Max Pooling

Convolution

Max Pooling

Flattened

Can repeat
many times

Convolutional Networks

❑ Hierarchical representation: low level features in the first layer, then moving to
higher and higher abstraction levels

❑ Weight sharing: huge reduction of complexity w.r.t. a fully connected network
❑ The CNN model "compresses" a fully connected network in various ways:

Reducing the number of connections
Shared weights on the edges
Max pooling further reduces the complexity

Example: Simple CNN

5x5 convolutions
6 feature maps
2x2 pooling

5x5
convolutions
12 feature
maps
2x2 pooling

(25+1)*6=156 params (6*25+1)*12=1812 params

Layer 1

Layer 2

Example:
 Feature Maps

Layer 1 Layer 2

Example: AlphaGo

Neural
Network (19 x 19 positions)

Next move

Black: 1

white: -1

none: 0

Fully-connected feedforward
network can be used

But CNN performs much better

Example:
CNNs in Speech Recognition

Time

Fr
eq

u
en

cy

Spectrogram

CNN

Image

The filters move in the
frequency direction

Example:
CNNs in text classification

Source of image:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.703.6858&rep=rep1&type=pdf

Avoid Overfitting

http://wiki.bethanycrane.com/overfitting-of-data https://www.neuraldesigner.com/images/learning/selection_error.svg

Learned hypothesis may fit the training data
very well, even outliers (noise), but fail to
generalize to new examples (test data)

• Do not use a too complex network if
training data is limited

• Various techniques can be used to deal
with this problem

Avoid Overfitting:
Dropout

Dropout
• Randomly drop neurons (along with their connections) during training
• Each unit retained with fixed probability p, independent of other units
• Hyper-parameter p to be chosen (tuned)
• At each step the network is trained with only a subset of the neurons
• Avoid that the output depends "too much" on a single neuron
• Typically applied only to some layers (e.g., fully connected at the end)
• More stable / less risk of overfitting

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." Journal of machine learning research (2014)

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Avoid Overfitting:
Regularization

Avoid Overfitting:
Early Stopping

Early-stopping
• Use validation error to decide when to stop training
• Stop when monitored loss has not improved after n subsequent

epochs
• Parameter “n” is called patience

overfitting

Avoid Overfitting:
Data Augmentation

Data Augmentation
❑ Add a little bit of variance to the data to "virtually" increase number of training

samples (but new samples are correlated, not the same as having more samples)
❑ Artificially add noise
❑ Apply random transformations (depend on data type)

o Crop part of the data
o Resize/rescale data
o Rotate
o Custom transformations depending on data type (e.g., for images: flip horizontally, adjust

hue, contrast and saturation)

Gradient Descent for NN (1)

❑ Huge number of parameters, very challenging optimization
❑ A variety of optimization algorithms have been proposed (recall GD

lecture)
1. Basic Gradient Descent (GD)

o Computes the gradient of the cost function w.r.t. to the parameters for the entire
training dataset

o Need to calculate the gradients for the whole dataset to perform just one update
o Can be very slow and is intractable for datasets that don't fit in memory

2. Stochastic Gradient Descent (SGD)
o Performs a parameter update for each training example
o It is usually much faster but performs frequent updates with a high variance and can

be unstable
o SGD's fluctuation, on the one hand, enables it to jump to new and potentially better

local minima
o On the other hand, this ultimately complicates convergence to the exact minimum,

as SGD will keep overshooting

Gradient Descent for NN (2)

3. Mini-batch gradient descent:
❑ Compromise between GD and SGD: performs an update for every mini-batch of n training

examples
❑ Reduces the variance of the parameter updates, which can lead to more stable convergence
❑ Can make use of highly optimized matrix computations in state-of-the-art deep learning libraries
❑ Common mini-batch sizes range between a few items and 256, but can vary for different

applications

4. Momentum:
❑ Helps accelerate SGD in the relevant direction and dampens oscillations
❑ It does this by adding a fraction of the update vector of the past step to the current update vector

5. Adam (Adaptive Moment Estimation)
❑ Commonly used method that computes adaptive learning rates for each parameter

 … and many others !!!!

Loss Function:
Cross Entropy

❑

Extension to Multi-Class

❑

Tensorflow (Google)
Keras: higher level framework for easier implementation

Tutorial on Keras in January
Caffe (University of Berkley)
PyTorch (Facebook)
Microsoft Cognitive Toolkit

 … and many others

In Practice:
Many DL Tools…..

❑ Many deep learning frameworks

❑ Supported by large research entities and companies

❑ Optimized for GPU computing

