CALL OF INTEGRALS
FUNDAMENTAL PRIMITIVES
Trigonometric functions

1) $\cos x \rightarrow \sin x+c$
2) $\sin x \rightarrow-\cos x+c$
3) $\frac{1}{\cos ^{2} x}=1+\operatorname{tg}^{2} x \rightarrow \operatorname{tg} x+c$

Iperbolic functions
4) $\sinh x \rightarrow \cosh x+C$
5) $\cosh x \rightarrow \sinh x+C$

Inverse trigonometric functions
6) $\frac{1}{\sqrt{1-x^{2}}} \rightarrow \arcsin x+c$
7) $\frac{1}{1+x^{2}} \rightarrow \operatorname{arctg} x+c$

Polynomial and exponential functions
8) $x^{\alpha} \longrightarrow \frac{x^{\alpha+1}}{\alpha+1}+c, \alpha \neq-1 \vee \log x+c, \alpha=-1$
9) $e^{x} \rightarrow e^{x}+c$
10) $b^{x}=e^{x \log b} \rightarrow \frac{b^{x}}{\log b}+c$

VERY IMPORTANT REMINDERS

Trigonometric
$\cos ^{2} x+\sin ^{2} x=1$
$\sin 2 x=2 \sin x \cos x$
$\cos 2 x=\cos ^{2} x-\sin ^{2} x$
$=1-2 \sin ^{2} x$
$=2 \cos ^{2} x-1$

Iperbolic

$$
\begin{aligned}
& \cosh ^{2} x-\sinh ^{2} x=1 \\
& \begin{aligned}
\sinh 2 x & =2 \sinh x \cosh x \\
\cosh 2 x & =\cosh ^{2}+\sinh ^{2} x \\
& =1+2 \sinh ^{2} x \\
& =2 \cosh ^{2} x-1
\end{aligned}
\end{aligned}
$$

GENERAL METHODS

1) CHAIN RULE $\int g^{\prime}(f(x)) f^{\prime}(x) d x=g(f(x))+C$
2) INT. BY PARTS $\int f^{\prime}(x) g(x) d x=f(x) g(x)-\int f(x) g^{\prime}(x) d x$
3) SUBSTITUTION $\int f(x) \frac{d x}{1} \overline{\overline{1}} \int f(g(t)) g^{\prime}(t) d t$
4) SUBSTITUTLON $\int f(x) \frac{d x}{T}=\int_{\square} f(g(t)) g^{\prime}(t) d t$

STRATEGIES FOR PARTICULAR INTEGRALS
Integrals with tangent / cotangent

1) $\int \operatorname{tg} x d x=\int \underbrace{\frac{\sin x}{\cos x}} d x=-\log (\cos x)+c$

$$
\underbrace{\text { os }}_{4} \int^{f^{\prime}(x)} \frac{f^{\prime}(x)}{d x} d x=\log f(x)+c\left[\begin{array}{l}
\text { this is a general and } \\
\text { very useful strategy }
\end{array}\right]
$$

2) $\int \frac{1}{\sin ^{2} x} d x=\int\left(\frac{\cos x}{\sin x}\right)^{2} \frac{1}{\cos ^{2} x} d x=\int \underbrace{\operatorname{tg}^{-2} x}_{f(x)^{-2}} \cdot \underbrace{\frac{1}{\cos ^{2} x}}_{f^{\prime}(x)} d x=-\operatorname{tg}^{-1} x+c=-\frac{\cos x}{\sin x}+c$
we can also remember
the fundamental integral

$$
\frac{1}{\sin ^{2} x}=1+\operatorname{ctg}^{2} x \longrightarrow-\operatorname{ctg} x+c \quad \operatorname{ctg} x=\frac{1}{\operatorname{tg} x}=\frac{\cos x}{\sin x}
$$

Integrals of trigonometric powers
3) $\int \cos ^{2} x d x=\int \frac{1}{2}(1+\cos 2 x) d x=\frac{x}{2}+\frac{\sin 2 x}{4}+c=\frac{1}{2}(x+\sin x \cos x)+c$
even \Rightarrow use double angle formula
to obtain Caver order terms
4) $\int \cos ^{3} x d x=\int \cos x\left(1-\sin ^{2} x\right) d x=\int \cos x d x-\int \sin ^{2} x \cos x d x=\sin x-\frac{\sin ^{3} x}{3}+c$ $\begin{aligned} \text { odd } \Rightarrow & \Rightarrow \text { use identity } \cos ^{2} x+\sin ^{2} x=1 \\ & \text { to split the product }\end{aligned}$
to split the product
Exercises: $\int \sin ^{2} x d x, \int \sin ^{5} x d x$
Integrals by parts (palynomial - $\log \mid \exp (\sin) \ldots$)
5) $\int \log x d x=\int \begin{aligned} & 1 \cdot \log x d x \\ & f^{\prime} g\end{aligned}\left[\begin{array}{lll}f & g \\ d x & g \log ^{\prime} x \\ 1 & \frac{1}{x}\end{array}\right]=x \log x-\int d x=x(\log x-1)+c$
6) $\left.\int x e^{x} d x=\int \begin{array}{c}x \cdot e^{x} d x \\ g\end{array}\right]\left[\begin{array}{ll}f & g \\ e^{x} \rightarrow x \\ e^{x}>1\end{array}\right]=x e^{x}-\int e^{x} d x=e^{x}(x-1)+c$
7) $\int x \sin x d x=\int \begin{array}{cc}x \cdot \sin x d x \\ g & f^{\prime}\end{array} \longrightarrow\left[\begin{array}{ccc}f & g \\ -\cos x & x \\ \sin x & 1\end{array}\right]=-x \cos x-\int-\cos x d x=-x \cos x+\sin x+c$

Exercises: $\int x \log x d x, \int x^{2} e^{x} d x, \quad \int x^{2} \cos x d x$
"cyclic" integrals
"Cyclic" integrals

$$
\text { 8) } \begin{aligned}
& \int e^{x} \sin x d x=\left[\begin{array}{ll}
f & g \\
e^{x} & g \\
e^{x} & \sin x \\
0 & \cos x
\end{array}\right]=e^{x} \sin x-\int e^{x} \cos x d x\left[\begin{array}{ll}
f & g \\
e^{x} \rightarrow \\
e^{x} x & \cos x
\end{array}\right] \\
&\left.=e^{x} \sin x-\left[e^{x} \cos x-\int e^{x}(-\sin x) d x\right]=e^{x}(\sin x-\cos x)-\int e^{x} \sin x d x\right) \\
& \Rightarrow 2 \int e^{x} \sin x d x=e^{x}(\sin x-\cos x) \Rightarrow \int e^{x} \sin x d x=\frac{1}{2} e^{x}(\sin x-\cos x)+c
\end{aligned}
$$

Exercises: $\int e^{2 x} \cos x d x, \int \cos 3 x \cos x d x$
Integrals with substitutions
g)

$$
\begin{aligned}
\int \arcsin x d x & =\int_{1} y \cos y d y \\
x & =\sin y \text { g } f^{\prime}\left[\begin{array}{cc}
f & g \\
\sin y & y \\
\cos y & 1
\end{array}\right]=y \sin y-\int \sin y d y=y \sin y+\cos y+C \\
d x & =\cos y d y \\
& =y \sin y+\sqrt{1-\sin ^{2} y}+c=x \arcsin x+\sqrt{1-x^{2}}+C
\end{aligned}
$$

Remember to substitute back at the end!
Exercises: $\int \sqrt{e^{x}-1} d x, \int \frac{1}{x+\sqrt{x}} d x, \int \sin \log x d x$
Integrals with iperbolic functions
10) $\int \cosh ^{2} x d x=\int \frac{1}{2}(1+\cosh 2 x) d x=\frac{1}{2}(x+\sinh x \cosh x)+C$
11) $\int \sinh ^{2} x d x=\int \frac{1}{2}(-1+\cosh 2 x) d x=\frac{1}{2}(-x+\sinh x \cosh x)+c$

NOTE: $\operatorname{arcsinh} x=y \quad x=\sinh y=\frac{e^{y}-e^{-y}}{2} \quad e^{y}-2 x-e^{-y}=0$
we will use it $\quad e^{-y}\left(e^{2 y}-2 x e^{y^{2}}-1\right)=0 \quad \Delta \stackrel{e^{y}=t}{\Rightarrow} \quad t^{2}-2 x t-1=0$
$\quad \begin{aligned} & \text { with } t=e^{y}\end{aligned}$ in a moment!

$$
t_{12}=x \pm \sqrt{x^{2}+1} \quad \Delta \Rightarrow e^{y}=x \pm \sqrt{x^{2}+1}
$$

1) $y=\ln \left(x+\sqrt{x^{2}+1}\right)$
2) $x-\sqrt{x^{2}+1}<0$ no solutions

Exercise: simplify arccosh $x=y \quad\left[y=\ln \left(x+\sqrt{x^{2}-1}\right)\right]$

Integrals with $\sqrt{ \pm x^{2} \pm \alpha^{2}}$
12) $\int \sqrt{1-x^{2}} d x=\int \sqrt{1-\sin ^{2}} y \cos y d y=\int \cos ^{2} y d y=\frac{1}{2}(y+\sin y \cos y)+c$

$$
\begin{array}{ll}
x & =\sin y \\
d x & =\cos y d y
\end{array} \quad=\frac{1}{2}\left(\arcsin x+x \sqrt{1-x^{2}}\right)+c
$$

Using the sin we can rewrite $\sqrt{1-\sin ^{2}}=\cos$ and obtain $\int \cos ^{2}$ that we already solve! At the end, we substitute back $x=s$.
\checkmark sing the sin we can cewoure $v y-\sin =\cos$
\rightarrow verify for exerase and obtain $\int \cos ^{2}$ that we already solve! At the end, we substitute back $x=s$.
13)

$$
\begin{aligned}
\int \sqrt{1+x^{2}} d x & =\int \sqrt{1+\sinh } 2 \cosh y d y=\int \cosh ^{2} y d y \\
x=\sinh y & \left.=\frac{1}{2} y+\sinh y \cosh y\right)+c \\
& =\frac{1}{2}\left(\operatorname{arcsinh} x+x \sqrt{1+x^{2}}\right)+c \\
& =\frac{1}{2}\left(\ln \left(x+\sqrt{1+x^{2}}\right)+x \sqrt{1+x^{2}}\right)+c
\end{aligned}
$$

This time we use sinh to rewrite $\sqrt{1-\sinh ^{2}}=\cosh$ Lo verify for exercise and we use the simplification of arcsinh x shown before.
14)

$$
\begin{aligned}
\int \sqrt{x^{2}-1} d x=\int \sqrt{\cos ^{2} h y-1} \sinh y d y=\int \sinh ^{2} y d y & =\frac{1}{2}(-y+\sinh y \cosh y)+c \\
& =\frac{1}{2}\left(-\operatorname{arccosh}^{2} x+x \sqrt{x^{2}-1}\right)+c \\
d x=\sinh y d y & \\
& =\frac{1}{2}\left(-\ln \left(x+\sqrt{x^{2}-1}\right)+x \sqrt{x^{2}-1}\right)+c \\
\text { Same as above but with } \sqrt{\cosh ^{2}-1}=\sinh & \text { verify far exercise }
\end{aligned}
$$

Exercises: $\int \frac{1}{\sqrt{1-x^{2}}} d x, \int \frac{1}{\sqrt{1+x^{2}}} d x, \quad \int \frac{1}{\sqrt{x^{2}-1}} d x$
Integrals of fractions
15) $\int \frac{n(x)}{d(x)} d x$ with $\operatorname{deg}(h(x))<\operatorname{deg}(d(x))=\int \frac{A}{\partial x+b}+\frac{A^{\prime}}{(\partial x+b)^{2}}+\ldots+\frac{B x+c}{\partial x^{2}+b x+c}+\frac{B^{\prime} x+C^{\prime}}{\left(\partial x^{2}+b x+c\right)^{2}}+\ldots$

$$
\left\lfloor\left\{\begin{array}{l}
\int \frac{1}{a x+b} d x=\frac{1}{a} \log (a x+b)+c \\
\int \frac{1}{(a x+b)^{n}} d x=\frac{1}{a(1-n)}(a x+b)^{1-r} \\
\int \frac{x}{x^{2}+b} d x=\frac{1}{2} \log \left(x^{2}+b\right)+c \\
\int \frac{1}{x^{2}-b^{2}} d x=\int \frac{1}{(x-b)(x+b)} d x \\
\int \frac{1}{x^{2}+b^{2}} d x=\frac{1}{b} \operatorname{arctg} \frac{x}{b}+c
\end{array}\right.\right.
$$

NOTE: to decompose the fraction you start from the result and find the values of A, B, \ldots with a system of equations

$$
\begin{aligned}
& \text { e.g. } \frac{1}{x(1+x)^{2}}=\frac{A}{x}+\frac{B}{1+x}+\frac{C}{(1+x)^{2}}=\frac{A(1+x)^{2}+B x(1+x)+C(x)}{x(1+x)(1+x)^{2}} \\
& =D \begin{array}{l}
0 \cdot x^{2}+0 \cdot x+1=A x^{2}+A+B x^{2}+B x+C x \\
x^{2}\left\{\begin{array} { l }
{ 0 = A + B } \\
{ 0 = B + C } \\
{ 1 = A }
\end{array} \rightarrow \left\{\begin{array}{l}
A=1 \\
B=-1 \\
C=1
\end{array} \rightarrow \frac{1}{x}-\frac{1}{1+x}+\frac{1}{(1+x)^{2}}\right.\right.
\end{array}
\end{aligned}
$$

NOTE: when you have $\frac{1}{a x^{2}+b x+c}$ with $\Delta<0$ you can always "complete the square" : $c=c^{\prime}+\gamma$ s.t. $a x^{2}+b x+c^{\prime}$ is a square $(\alpha x+\beta)^{2}$
It means that we can always write

$$
a x^{2}+b x+c=(\alpha x+\beta)^{2}+\gamma \quad \text { with } \gamma \geqslant 0
$$

thus we are in the cases $\frac{1}{f^{2}(x) \pm b^{2}}$
e.g. $x^{2}+5 x+10 \quad \Delta=25-40<0$

$$
L\left\{\begin{array}{l}
x^{2} \rightarrow x^{2} \\
5 x \rightarrow 2 \cdot\left(\frac{5}{2}\right)(x)=D\left(x+\frac{5}{2}\right)^{2}+\left(\frac{\sqrt{35}}{2}\right)^{2} \\
10 \rightarrow\left(\frac{5}{2}\right)^{2}+\frac{35}{4}
\end{array}\right.
$$

NOTE: when $\operatorname{deg}(n(x)) \geqslant \operatorname{deg}(d(x))$ we divide $n(x)$ by $d(x)$ obtaining a polynomial and the reminder
egg. $\left.\frac{x^{2}}{x+1} \Rightarrow \frac{x^{2}+0 x+0}{\frac{x^{2}+x}{/ 2-x}} \right\rvert\, \frac{x+1}{x-1} \Rightarrow x-1+\frac{1}{x+1}$

Exercises: $\int \frac{1}{x(1+x)^{2}} d x, \int \frac{1}{x^{2}+5 x+10} d x, \int \frac{x^{2}}{x+1} d x$
EXERCISES
5) $\int \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x$
13) $\int \frac{1}{\sin ^{2} x \cos ^{2} x} d x$
6) $\int \frac{1}{x \sqrt{2 x-1}} d x$
14) $\int x^{2} \log ^{2} x d x$
7) $\int \sqrt{2^{2}-x^{2}} d x$
15) $\int \frac{1}{x \log ^{3} x} d x$
8) $\int \frac{1}{x \sqrt{1-\log ^{2} x}} d x$
16) $\int \frac{\sin 2 x}{1+\sin ^{2} x} d x$
9) $\int e^{x} \log \left(e^{x}+1\right) d x$
17) $\int \frac{x^{3}+x^{2}-x}{x^{2}+x-6} d x$
10) $\int \frac{\sqrt{x^{3}}}{1+x} d x$
18) $\int \frac{1}{\sin x} d x$
11) $\int \frac{3 x+1}{x^{2}-5 x+6} d x$
19) $\int \frac{1}{\sqrt{1+2 x-x^{2}}} d x$
12) $\int \frac{5 x+9}{x^{2}+2 x+5} d x$
20) $\int \cos ^{2} 2 x \sin x d x$

