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1 Ad, ad and the Lie bracket

Let G be a Lie group and recall that for all g ∈ G the conjugation mapping Cg ∶G→G, Cg(h) = ghg−1

is a Lie group isomorphism. Combining [2, Propositions 1.13 and 1.18] we conclude that Adg ∶= TeCg

is a Lie algebra isomorphism and we have the following commuting diagram.

G G

g g

Cg

Adg

exp exp

In other words, we have gexp(ξ)g−1 = exp(Adgξ) for all g ∈G, ξ ∈ g.
We are now consider the map Ad ∶ g↦Adg. Given that Adg is an invertible linear map in g for all

g ∈G (because Cg is a diffeomorphism) we conclude that Ad is a mapping from G into GL(g).

Proposition 1.1. The map Ad ∶G→GL(g), g↦Adg, is a Lie group homomorphism.

Proof. Smoothness is inherited from the smoothness of the group operations in G. To show that it is
a group homomorphism we differentiate Cgh =Cg ○Ch at the group identity and use the chain rule to
obtain:

Adgh = TeCgh = Te(Cg ○Ch) = TeCg ○TeCh =Adg ○Adh.

Definition 1.2. Let G be a Lie group and V be a vector space. A Lie group homomorphism Φ ∶G→
GL(V) is called a representation of the Lie group G on the vector space V .

In accordance with the above definition one refers to Ad ∶ G→ g as the adjoint representation of
the Lie group G.

Recall that for a vector space V , the Lie algebra of GL(V) is gl(V) = L(V), the space of linear
endomorphisms of V . We now use [2, Propositions 1.13 and 1.18] and differentiate Ad at the identity
e ∈ G to obtain a Lie algebra homomorphism TeAd ∶ g→ L(V). We denote ad ∶= TeAd, and for ξ ∈ g
write ad(ξ) = adξ ∈ L(V). By its definition, if η ∈ g we have

adξ (η) = TeAd(ξ)(η) = d
dt

∣
t=0

Adexp(ξ t)(η).
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By [2, Proposition 1.18] we have the commuting diagram

G GL(g)

g L(g)

Ad

ad

exp e

where we recall that e ∶ L(V)→GL(V) is the operator exponential defined by e f ∶= idV + f + 1
2 f ○ f +

1
3! f ○ f ○ f + . . . for f ∈ L(V) (which coincides with the Lie group exponential expGL(V)). In other
words, we have the following identity between elements of GL(g):

Adexpξ = eadξ ∀ξ ∈ g.

Proposition 1.3. For ξ ,η ∈ g we have adξ (η) = [[ξ ,η]].
Proof. By definition of the Lie bracket ([2, Section 1.2.D]) we have

[[ξ ,η]] = [Xξ ,Xη](e) = LXξ
Xη(e) = d

dt
∣
t=0

(Φ
Xξ

t )∗Xη(e).

Now, in order to compute the pull-back (Φ
Xξ

t )∗Xη recall that for all g ∈G we have

Φ
Xξ

t (g) = gΦ
Xξ

t (e) = gexp(tξ) = Rexp(tξ)(g).

It then follows that
Φ

Xξ

t = Rexp(tξ), (Φ
Xξ

t )−1 = Rexp(−tξ).

Now recall that if Ψ ∶M→M is a diffeomorphism and Y ∈X(M) then Ψ
∗Y(m)=TΨ(m)Ψ

−1(Ψ(m))
for all m ∈M. Therefore,

(Φ
Xξ

t )∗Xη(e) = (Rexp(tξ))∗Xη(e) = Texp(tξ)Rexp(−tξ)Xη(exp(tξ)).

But, by left invariance of Xη we have Xη(exp(tξ)) = TeLexp(tξ)(η), so we may write

(Φ
Xξ

t )∗Xη(e) = Texp(tξ)Rexp(−tξ) ○TeLexp(tξ)(η)
= Te(Rexp(−tξ) ○Lexp(tξ))(η)
=Adexp(tξ)(η).

Hence, combining the above identities we obtain:

[[ξ ,η]] = d
dt

∣
t=0

(Adexp(tξ)(η)) = adξ (η).

Remark 1.4. The above proposition provides us with an alternative approach to compute the Lie
bracket on the Lie algebra. Moreover, it shows that the Lie bracket can be obtained by performing two
derivatives in the following way. If t↦ g(t) and s↦ h(s) are curves on G which satisfy g(0) = h(0) = e
and g′(0) = ξ , h′(0) = η with ξ ,η ∈ g then we have

d
dt

∣
t=0

d
ds

∣
s=0

g(t)h(s)g(t)−1 = d
dt

∣
t=0

Adg(t)(η) = adξ η = [[ξ ,η]].

As an immediate consequence of this calculation one can give a proof that the Lie algebra of an abelian
Lie group is abelian.
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Example. Let us apply the above remark to compute the Lie algebra bracket on the Lie algebra of
the Lie group GL(n,R). As we know, the Lie algebra is L(n,R) and the exponential map expGL(n,R)

is the usual matrix exponential expGL(n,R) = e ∶ L(n,R)→GL(n,R), ξ ↦ eξ .
Let A ∈GL(n,R) and η ∈ L(n,R). We compute

AdA(η) = d
ds

∣
s=0

AesηA−1 = AηA−1.

Now we set A = eξ t for some ξ ∈ L(n,R) and compute

[[ξ ,η]] = adξ (η) = d
dt

∣
t=0

Adeξ t(η) = d
dt

∣
t=0

eξ t
ηe−ξ t = ξ η −ηξ .

This shows that the Lie bracket of the Lie algebra GL(n,R) coincides with the matrix commutator
in L(n,R). (An alternative proof of this fact, that relies on the definition of the bracket in terms of
commutators of left invariant vector fields is given in [2, Section 1.2.D]).

A similar calculation shows that the Lie bracket of the Lie algebra of GL(n,C) (or, more generally,
of GL(V) with V a vector space) is the matrix (operator) commutator in L(n,C) (L(V)).

Having understood what the Lie bracket of the Lie algebra of GL(g) is, we come back to the
mapping ad ∶ g→ L(g). Considering that ad ∶ g→ L(g) is a Lie algebra homomorphism we obtain the
formula

ad[[ξ ,η]] = adξ ○adη −adη ○adξ ∀ξ ,η ∈ g.
It is a straightforward calculation to check that the above formula acting on an arbitrary element ζ ∈ g,
together with Proposition 1.3, recovers the Jacobi identity.

The Lie algebra homomorphism ad ∶ g→ L(g) is called the adjoint representation of the Lie alge-
bra g. This terminology comes from the following definition:

Definition 1.5. Let g be a Lie algebra and V be a vector space. A Lie algebra homomorphism φ ∶ g→
L(V) is called a representation of the Lie algebra g in the vector space V .

Using [2, Proposition 1.13] we conclude that if Φ ∶ G→ GL(V) is a Lie group representation of
the Lie group G on the vector space V , then φ = TeGΦ ∶ g→ L(V) is a Lie algebra representation of its
Lie algebra g on the same vector space V .

2 On the relation between Lie algebras and Lie groups

This section is meant as a complement of [2, Section 1.3.D] and contains some of the fundamental
results clarifying the relationship between Lie algebras and Lie groups. Apart from Ado’s theorem
whose proof is not usually presented in standard textbooks, most of the results presented are proved
in Lee’s book [3].

If Φ ∶ G→ H is a Lie group isomorphism, then as a consequence of Proposition [2, Proposition
1.13], we conclude that φ = TeGΦ ∶ g→ h is a Lie algebra isomorphism. In particular we conclude that
isomorphic Lie groups have isomorphic Lie algebras.

A natural question is the following: suppose that G and H are Lie groups for which we know that
the Lie algebras g and h are isomorphic. Under which conditions, if any, can we guarantee that G and
H are isomorphic as Lie groups?

The following examples indicate some aspects that should be taken into account when attempting
to give an answer at our question.
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Example 1. Consider the Lie groups O(2) and SO(2). Both of them have the same (abelian) Lie
algebra:

o(2) = so(2) = skew(2) = {(0 −ω

ω 0
) ∶ ω ∈R} .

However, it is clear that O(2) and SO(2) are not isomorphic. Indeed, they have a couple of funda-
mental differences:

(i) At the group level SO(2) is abelian whereas O(2) is non-abelian.

(ii) At the manifold level, SO(2) is connected whereas O(2) is not. (Recall that SO(2) is defined
as the connected component of I in O(2).)

Example 1 in fact shows that a non-abelian, non-connected Lie group may have an abelian Lie
algebra. This is in fact the only obstruction and the following theorem holds that generalises [2,
Proposition 1.9].

Theorem 2.1. If G is a connected Lie group, then G is abelian if and only if its Lie algebra is abelian.

It turns out that connectedness of the Lie groups G and H is not sufficient a sufficient condition to
guarantee that they are isomorphic Lie groups knowing that their Lie algebras g and h are isomorphic
Lie algebras as the following examples show.

Example 2. Consider the connected Lie groups Tn and (Rn,+). Both of them are abelian Lie groups
so their Lie algebra coincides and equals Rn equipped with the zero bracket. It is clear that Tn

and (Rn,+) are non-isomorphic Lie groups. One of them is compact and the other is not! Another
topological difference between them is that (Rn,+) is simply connected whereas Tn is not.

Example 3. Consider the connected Lie groups SO(3) and SU(2). Their Lie algebras are

so(3) = skew(3) = {ξ ∈ L(3,R) ∶ ξ +ξ
T = 0}

su(2) = {ξ ∈ L(2,C) ∶ ξ +ξ
∗ = 0 and Tr(ξ) = 0}.

A basis for so(3) is given by {ê1, ê2, ê3} with

ê1 =
⎛
⎜
⎝

0 0 0
0 0 −1
0 1 0

⎞
⎟
⎠
, ê2 =

⎛
⎜
⎝

0 0 1
0 0 0
−1 0 0

⎞
⎟
⎠
, ê3 =

⎛
⎜
⎝

0 −1 0
1 0 0
0 0 0

⎞
⎟
⎠
.

As may be easily checked, these basis elements satisfy the commutation relations

[ê1, ê2] = ê3, [ê3, ê1] = ê2, [ê2, ê3] = ê1.

On the other hand, a basis for su(2) is given by { f1, f2, f3} with

f1 =
1
2
(0 −i

i 0
) , f2 =

1
2
(0 −1

1 0
) , f3 =

1
2
(−i 0

0 i
) ,

As may be easily checked, these basis elements satisfy the commutation relations

[ f1, f2] = f3, [ f3, f1] = f2, [ f2, f3] = f1.
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Based on the above, it is clear that the Lie algebras so(3) and su(2) are isomorphic. Indeed, the linear
function which takes the basis element êi into fi, i = 1,2,3, is a Lie algebra isomorphism.

However, the Lie groups SO(3) and SU(2) are not isomorphic! At the topological level SO(3) is
simply connected whereas SU(2) is not.

Examples 2 and 3 show that connectedness is not sufficient to guarantee that Lie groups with
isomorphic Lie algebras are isomorphic, and that simple-connectedness may play a role. In fact this
is the only source of problems and the following theorem holds (compare with [2, Proposition 1.9]).

Theorem 2.2. Let G and H be Lie groups and suppose that G is connected and simply connected.
If φ ∶ g → h is a Lie algebra homomorphism, then there exists a unique Lie group homomorphism
Φ ∶G→H such that φ = TeGΦ.

The content of the theorem can be illustrated by recalling that the maps:

Φ ∶ (Rn,+)→Tn, x↦ xmod1

E ∶ S3 ≅ SU(2)→ SO(3) (see [2, Proposition 1.13])

are Lie group homomorphisms which are local diffeomorphisms. As a consequence of [2, Proposition
1.9] their derivatives at the identity T0Φ, TeE , are Lie algebra isomorphisms.

Theorem 2.2 is the starting point to establish:

Corollary 2.3. Let G and H be connected and simply connected Lie groups. Then G and H are
isomorphic as Lie groups if and only if g and h are isomorphic as Lie algebras.

An interesting extension of this result is [2, Proposition 1.23].
Another important, separate question in the theory of Lie groups is the following. We know ([2,

Proposition 1.14]) that if G is Lie group and H is a Lie subgroup of G, then the Lie algebra h of H is
a subalgebra of g. It is natural to ask if every a Lie subalgebra of g is the Lie algebra of a certain Lie
subgroup of G. The answer to this question is provided by the following theorem.1

Theorem 2.4. Let G be a Lie group with Lie algebra g. If h ⊂ g is a Lie subalgebra then there exists a
unique connected Lie subgroup H ⊂ G such that h = Lie(H). Moreover, H = ⟨expG(h)⟩ meaning that
the elements of H are of the form

expG(ξ1)expG(ξ2)⋯expG(ξn)

for certain ξ1, . . . ,ξn ∈ h.

As an illustration of the previous theorem consider G =GL(2,R) whose Lie algebra is g = L(2,R).
It is a simple exercise to show that

h ∶= {ξ ∈ L(2,R) ∶ Tr(ξ) = 0},

is a subalgebra of g. The connected Lie subgroup H of GL(2,R) whose existence is guaranteed by
the theorem is H = SL(2,R) = {A ∈GL(2,R) ∶ det(A) = 1}. Now, we know that the matrix exponential
(which coincides with the Lie group exponential) e ∶ h→ SL(2,R) is not surjective. For instance the
matrix

(−2 0
0 − 1

2
)

1The statement that H = ⟨expG(h)⟩ is missing in Lee [3]. For this aspect see [1].
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has no real logarithm. So it is not true that SL(2,R) coincides with eh. However, all elements of
SL(2,R) can be expressed as products of elements of eh. For instance

(−2 0
0 −1

2
) = (−1 0

0 −1
)(2 0

0 1
2
) = exp(0 −π

π 0
)exp(ln2 0

0 − ln2
) .

An important and deep result in the theory of Lie algebras, which relies only on their algebraic
structure is Ado’s Theorem that we state next.

Theorem 2.5 (Ado’s Theorem). Let (A,[⋅, ⋅]) be a finite dimensional real Lie algebra. Then (A,[⋅, ⋅])
is isomorphic to a subalgebra of L(n,R) for some n ∈N.

Combining Theorems 2.4 and 2.5 we obtain:

Corollary 2.6. Let (A,[⋅, ⋅]) be a finite dimensional real Lie algebra. There exists a connected Lie
subgroup G of GL(n,R) (for some n ∈N) whose Lie algebra g is isomorphic to (A,[⋅, ⋅]).

3 Relative equilibria

For simplicity, the discussion below is restricted to free and proper actions, although many of the
concepts and results are valid without the freeness hypothesis under mild changes. So for the rest of
this section we assume that

Ψ ∶G×M→M,

is a free and proper action of the group G on the manifold M.

3.1 Definition of relative equilibria and their angular velocity

Definition 3.1. Let X ∈X(M) be a G-invariant vector field. A relative equilibrium (RE) is an integral
curve of X contained in a group orbit.

A RE is hence of the form Φ
X
t (m0) for some initial condition m0 ∈ M and satisfies Φ

X
t (m0) ∈Om0

for all t ∈R. With a slight abuse of language, we will often refer to the initial condition m0 ∈ M as the
RE. This simply means that the integral curve of X with initial condition m0 is entirely contained in
the group orbit through m0.

If π ∶M→M/G is the orbit map, then the condition that m0 ∈M is a RE is equivalent to

π(Φ
X
t (m0)) = π(m0), ∀t ∈R. (3.1)

Recall that under our hypothesis that the action is free and proper the quotient space M/G is a
smooth manifold and π ∶ M →M/G is a submersion ([2, Proposition 2.5]). As a consequence (see
[2, Proposition 2.2]) there exists a reduced vector field X̄ ∈ M/G which is π-related to X . Therefore,
π ○Φ

X
t =Φ

X̄
t ○π and (3.1) may be rewritten as

Φ
X̄
t (π(m0)) = π(m0), ∀t ∈R,

which means that π(m0) ∈ M/G is an equilibrium point of the reduced vector field X̄ . Therefore,
relative equilibria correspond to equilibrium points of the reduced dynamics, which explains the ter-
minology.
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Proposition 3.2. Let m0 ∈ M be a RE of the invariant vector field X ∈ X(M). There exists a unique
ξ ∈ g such that

X(m0) = ξM(m0).

Proof. First note that since Φ
X
t (m0) is an integral curve of X then

d
dt

∣
t=0

Φ
X
t (m0) = X(m0).

On the other hand, since m0 is a RE then Φ
X
t (m0) is a curve contained in the group orbitOm0 . The

assumption that the G-action is free and proper implies (see [2, Exercises 2.2.2(iii)]) that Om0 is an
embedded submanifold of M and therefore

d
dt

∣
t=0

Φ
X
t (m0) ∈ Tm0Om0 .

But on the other hand, by [2, Exercises 2.1.5(i)] we have

Tm0Om0 = {ηM(m0) ∶ η ∈ g}.

This proves the existence of the element ξ ∈ g in the statement of the proposition. To show uniqueness,
suppose that ξ1,ξ2 ∈ g satisfy d

dt ∣t=0 Φ
X
t (m0) = (ξi)M(m0), i = 1,2, then

0 = (ξ1)M(m0)−(ξ2)M(m0) = (ξ1−ξ2)M(m0).

Since the G-action is free, [2, Proposition 2.8] implies that ξ1 = ξ2.

We will refer to the Lie algebra element ξ ∈ g in the above proposition as the angular velocity of
the RE m0 ∈M.

Remark 3.3. Note that m0 is an equilibrium point of the invariant vector field X ∈X(M) if and only
if m0 is a RE with angular velocity ξ = 0.

Proposition 3.4. Suppose that m0 ∈M is a RE of X ∈X(M) with angular velocity ξ ∈ g. Then, for any
g ∈G, Ψg(m0) ∈M is a RE of X ∈X(M) with angular velocity Adgξ ∈ g.

Proof. The assumption that m0 is a RE implies that Φ
X
t (m0) ∈Om0 for all t ∈R. On the other hand, by

G-invariance of X , we have

Φ
X
t (Ψg(m0)) =Ψg(Φ

X
t (m0)), ∀t ∈R,

which implies that Φ
X
t (Ψg(m0)) ∈Om0 =OΨg(m0) for all t ∈R. Therefore, Ψg(m0) is a RE.

To prove that the angular velocity of Ψg(m0) equals Adgξ we use the orbit map Ψ
m ∶ G→M,

g↦Ψg(m), for m ∈M and g ∈G and the following three identities

ηM(m) = TeΨ
m

η , ∀m ∈M, η ∈ g, (3.2)

Ψg ○Ψ
m0 =Ψ

m0 ○Lg, ∀g ∈G, (3.3)

Ψ
m0 =Ψ

Ψg(m0) ○Rg−1 , ∀g ∈G, (3.4)

where in the last one we have abbreviated g ⋅m ∶=Ψg(m). The first identity follows from the definition
of the infinitesimal generator ηM ∈X(M), and the other two are simple consequences of the definition
of the orbit map and the action properties of Ψ.
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Now, by G-invariance of X we have

X(Ψg(m0)) = Tm0Ψg(X(m0)).

Using X(m0) = ξM(m0) = TeΨ
m0(ξ) we get

X(Ψg(m0)) = Tm0Ψg ○TeΨ
m0(ξ)

= Te(Ψg ○Ψ
m0)(ξ) (chain rule)

= Te(Ψ
m0 ○Lg)(ξ) (by (3.3))

= Te(Ψ
Ψg(m0) ○Rg−1 ○Lg)(ξ) (by (3.4))

= TeΨ
Ψg(m0) ○Te(Lg ○Rg−1)(ξ) (chain rule)

= TeΨ
Ψg(m0)(Adgξ) (definition of Adg)

= (Adgξ)M(Ψg(m0)) (by (3.2)).

Remark 3.5. Forgetting about the statement about the angular velocity, the above proposition shows
that if m0 ∈ M is a RE, then Ψg(m0) is also a RE for all g ∈ G. This means that the whole orbit Om0

consists of RE. In fact, some authors (e.g. Fassò [2]) define RE as group orbits which project to
equilibrium points of the reduced dynamics.

Our goal in the following section will be to understand the dynamics of RE (under the additional
assumption that the group G is compact). The following proposition is fundamental for this task and
it is also useful in applications to determine existence of RE.

Proposition 3.6. Let Ψ ∶ G×M → M be a free and proper Lie group action and X ∈ X(M) be an
invariant vector field. Let m0 ∈M and ξ ∈ g. The following are equivalent.

(i) m0 is a relative equilibrium with angular velocity ξ ,

(ii) X(m0) = ξM(m0),

(iii) Φ
X
t (m0) =Ψexp(ξ t)(m0) for all t ∈R.

Proof. (i) Ô⇒ (ii) is just the definition of angular velocity (which recall is well-defined in virtue of
Proposition 3.2).

(ii) Ô⇒ (iii). By invariance of X and our hypothesis we have

X(Ψexp(ξ t)(m0)) = Tm0Ψexp(ξ t)X(m0)
= Tm0Ψexp(ξ t)ξM(m0).

Now recall that Ψexp(ξ t) equals the flow Φ
ξM
t of the infinitesimal generator ξM. As first consequence

of this, since ξM = (Φ
ξM
t )∗ξM = (Ψexp(ξ t))∗ξM, we conclude that

Tm0Ψexp(ξ t)ξM(m0) = ξM(Ψexp(ξ t)(m0)).

As a second consequence, by definition of the flow, we have

d
dt

Ψexp(ξ t)(m0) = ξM(Ψexp(ξ t)(m0)).
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Combining the last identities yields

d
dt

Ψexp(ξ t)(m0) = X(Ψexp(ξ t)(m0)),

which by the uniqueness of solutions to ODEs implies that Φ
X
t (m0) = Ψexp(ξ t)(m0) for all t as re-

quired.
(iii) Ô⇒ (i). Suppose that Φ

X
t (m0) = Ψexp(ξ t)(m0) for all t. Then it is obviuos that Φ

X
t (m0) is

contained in the group orbit through m0 and is therefore a RE. Its angular velocity is clearly ξ since
X(m0) = d

dt ∣t=0 Φ
X
t (m0) = d

dt ∣t=0 Ψexp(ξ t)(m0) = ξM(m0).

The above proposition implies that for a RE m0 ∈M with angular velocity ξ ∈ g it holds

Φ
X
t (m0) =Ψ

m0(exp(ξ t)),

where, as usual, Ψ
m0 ∶ G → M denotes the orbit map g ↦ Ψg(m0). This suggests that in order to

understand the dynamics of RE it is convenient to understand the properties of the one-parameter
subgroup {exp(tξ)}t∈R, or, equivalently, the dynamics of the left invariant vector field Xξ ∈ X(G)
which is what we will consider in the next section under the assumption that G is compact.

Examples

(i) Let M =R2 and consider the vector field X(x,y) = ( f (x),g(x)) where f ,g ∶R→R are smooth.
One can show that X is invariant under the free and proper action of G = (R,+) on R2 defined
by

Ψ ∶R×R2→R2, Ψ(λ ,(x,y)) =Ψλ (x,y) = (x,y+λ).

The infinitesimal generator of an element ξ ∈R = Lie(R) is the constant vector field ξR2(x,y) =
(0,ξ). The orbits are the vertical lines on the plane, so the orbit space R2/R is identified with
R and the orbit projection map is π ∶R2→R is π(x,y) = x.

The reduced vector field is X̄(x) = f (x) and it can be checked to be π-related to X . The
equilibrium points of X̄ corresponds to the zeros of f so we conclude that the RE of X are
points (x0,y) ∈ R2 with the property that f (x0) = 0. The angular velocity of (x0,y) ∈ R2 is
ξ = g(x0) ∈R = Lie(R). In accordance with Proposition 3.6 we have

Φ
X
t (x0,y) = (x0,y+g(x0)t) =Ψg(x0)t(x0,y) =ΨexpR(g(x0)t)(x0,y).

(ii) Let M = R2 ∖{(0,0)} and consider the vector field Y(x,y) = (−y,x). One can show that Y is
invariant under the free2 and proper action of G = SO(2) on R2 defined by

Ψ ∶ SO(2)×R2→R2, Ψ(Rα ,(x,y)) =ΨRα
(x,y) = Rα(x,y)T , Rα = (cosα −sinα

sinα cosα
)

The infinitesimal generator of an element ξ ∈ so(2) = Lie(SO(2)) is the vector field ξR2(x,y) =
ξ(x,y)T . In other words

if ξ = (0 −ω

ω 0
) , then ξR2 = (−ωy,ωx).

2note that the action is free because we have removed the origin from R2.
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The orbits are the circles centred at the origin, so the orbit space M/SO(2) is identified with
R+ = (0,∞) and the orbit projection map is π ∶R2→R+ is π(x,y) = r =

√
x2+y2.

The reduced vector field is Ȳ(r) = 0 and it can be checked (do it!) to be π-related to Y . The
reduced vector field Ȳ consists entirely of equilibrium points so we conclude that all (x0,y0) ∈R2

are RE with angular velocity ξ = (0 −1
1 0

). In accordance with Proposition 3.6 we have

Φ
Y
t (x0,y0) = Rt(x0,y0)T =ΨRt(x0,y0) =Ψexp(ξ t)(x0,y0).

(iii) Consider the same phase space manifold M =R2 ∖{(0,0)} and group action by G = SO(2) as
above, but consider now the vector field

Z = (−λy+x(1−x2−y2),λx+y(1−x2−y2))

It can be shown (do it!) that Z is invariant and the reduced vector field is Z̄(r) = r(1−r2) and is
π-related to Z. The equilibrium points of Z̄ occur at r = 1 so we conclude that all points in the
unit circle are RE, for instance (x0,y0) = (1,0). We have Z(1,0) = (0,λ) which equals ξ

2
R(1,0)

for

ξ = (0 −λ

λ 0
) .

In accordance with Proposition 3.6 we have

Φ
Z
t (1,0) = (cosλ t,sinλ t) = Rλ t(1,0)T =ΨRλ t(1,0) =Ψexp(ξ t)(1,0).

3.2 The dynamics of relative equilibria of compact Lie groups

From now on assume that the group G is compact and (as before) suppose that Ψ ∶ G×M →M is a
free and proper action3, and suppose that X ∈X(M) is a G-invariant vector field. Our objective is to
describe the dynamics of the RE of X .

3.2.1 Preliminary facts

Definition 3.7. A compact, connected, abelian subgroup of a compact Lie group G is called a torus
subgroup of G.

The terminology is justified by the fact that any compact, connected, abelian group T is isomor-
phic as a Lie group to Tk, where k = dimT (see [2, Proposition 2.6]). In particular, note that torus
subgroups of a Lie group G are always embedded submanifolds diffeomorphic to Tk (torus subgroups
are embedded submanifolds of G since they are closed in G (see [2, Proposition 1.9])).

For 0 ≠ ξ ∈ g define
Tξ ∶= {exp(tξ) ∶ t ∈R} ⊂G,

where, as usual, A denotes the topological closure of the set A.

3the properness is automatic since G is compact
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Proposition 3.8. For any 0 ≠ ξ ∈ g, Tξ is a torus subgroup of G of dimension k ≥ 1. (Therefore, Tξ is
isomorphic as a Lie group to Tk.)

Proof. By definition, Tξ is a closed subset of the compact manifold G and therefore Tξ is compact.
Moreover, Tξ is connected since it is obtained as the topological closure of the (path) connected set
{exp(tξ)}t∈R.

Let us now check that Tξ is an abelian subgroup of Tξ . Suppose that h ∈Tξ . Then h= limn→∞ exp(tnξ)
for a certain real sequence {tn}n∈N. By continuity of the inversion map i ∶G→G, g↦ g−1, we have

h−1 = i(h) = i( lim
n→∞

exp(tnξ)) = lim
n→∞

i(exp(tnξ)) = lim
n→∞

exp(−tnξ),

which shows that h−1 ∈ Tξ . Now suppose that k = limn→∞ exp(snξ) ∈ Tξ for the real sequence {sn}n∈N.
By continuity of the product in G we have

hk = ( lim
n→∞

exp(tnξ))( lim
n→∞

exp(snξ)) = lim
n→∞

exp(tnξ)exp(snξ) = lim
n→∞

exp((tn+ sn)ξ)

= lim
n→∞

exp(snξ)exp(tnξ) = ( lim
n→∞

exp(snξ))( lim
n→∞

exp(tnξ)) = kh.

The above calculation shows that hk ∈ Tξ and that hk = kh which completes the proof that Tξ is an
abelian subgroup of G and, hence, since it is closed it is an embedded Lie subgroup of G (see [2,
Proposition 1.9]). Note that the dimension of Tξ is ≥ 1 since Tξ contains the one-parameter subgroup
{exp(tξ)}t∈R.

That Tξ is isomorphic to Tk follows from [2, Proposition 2.6].

In the theory of compact Lie groups, a very important role is played by the so-called maximal
tori which are torus subgroups of G that are not properly contained in any other torus subgroup (i.e. a
torus subgroup T is a maximal torus if for any torus subgroup T ′ such that T ⊂ T ′ one has T ′ = T ). It
is a fact that all maximal tori of a compact group G have the same dimension which is called the rank
of G. In particular we conclude that if 0 ≠ ξ ∈ g, then 1 ≤ dimTξ ≤ rank(G).

Examples

(i) If ξ = (ω1,ω2) ∈R2 = Lie(T2), then expT2(ξ t) = (ω1t,ω2t) mod 1. If ω1/ω2 ∉Q then Tξ =T2.
On the other hand, if ω1/ω2 ∈Q then Tξ is a 1-dimensional torus subgroup of T2.

(ii) Consider the Lie group T3, and the following vectors in R3 = Lie(T3):

ξ1 = (1,1,1), ξ2 = (1,
√

2),0), ξ3 = (1,
√

2,π).

Then Tξ1
= {(α,α,α) mod 1 ∶ α ∈R} which is a 1-dimensional torus subgroup of T3. On the

other hand Tξ2
= {(α1,α2,0) mod 1 ∶ α1,α2 ∈ R} which is a 2-dimensional torus subgroup of

T3. Finally, Tξ3
=T3.

(iii) If ξ ∈R3 ≃ so(3) then {eξ̂ t}t∈R is a one dimensional torus subgroup of SO(3) (the rotations of
axis ξ ∈R3). (In fact rank(SO(3)) = 1).

(iv) Consider U(2) = {A ∈GL(2,C) ∶ AA∗ = I}. Recall that u(2) = {ξ ∈ L(2,C) ∶ ξ +ξ
∗ = 0}. Let

ξ = (iω1 0
0 iω2

) , ω1,ω2 ∈R.
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Then

exp(ξ t) = eξ t = (eiω1t 0
0 eiω2t)

If ω1/ω2 ∉Q then

Tξ = {(eiθ1 0
0 eiθ2

) ∶ θ1,θ2 ∈ [0,2π)}

which is a 2-dimensional torus subgroup of U(2). (In fact rank(U(2)) = 2).

(v) Consider SO(4) = {A ∈GL(4,R) ∶ AAT = I}. Recall that so(4) = {ξ ∈ L(4,R) ∶ ξ +ξ
T = 0}. Let

ξ =
⎛
⎜⎜⎜
⎝

0 −ω1 0 0
−ω1 0 0 0

0 0 0 −ω2
0 0 ω2 0

⎞
⎟⎟⎟
⎠
, ω1,ω2 ∈R.

Then

exp(ξ t) = eξ t =
⎛
⎜⎜⎜
⎝

cosω1t −sinω1t 0 0
sinω1t cosω1t 0 0

0 0 cosω2t −sinω2t
0 0 sinω2t cosω2t

⎞
⎟⎟⎟
⎠

If ω1/ω2 ∉Q then

Tξ = {(A1 0
0 A2

) ∶ A1,A2 ∈ SO(2)}

which is a 2-dimensional torus subgroup of SO(4). (In fact rank(SO(4)) = 2).

In what follows we denote elements in Tk as ⟨α⟩ ∶= α mod 1, for α ∈Rk.

Lemma 3.9. Let ξ ∈ g.

(i) Tξ is invariant under the flow of the left invariant vector field Xξ ∈X(G),

(ii) the restriction of the flow of Xξ to Tξ is conjugate to a linear flow

(t,⟨α⟩)↦ ⟨α +ωt⟩

on Tk, k = dimTξ , with a frequency vector ω ∈Rk.

Proof. (i) Let h ∈ Tξ . By left invariance of Xξ we have Φ
Xξ

t (h) = hΦ
Xξ

t (e) = hexp(tξ) ∈ Tξ since both
h and exp(tξ) ∈ Tξ and Tξ is a subgroup.

(ii) We will use that expTξ
= expG∣Tξ

which is true since Tξ is a Lie subgroup of G (see [2,
Corollary 1.18]). We will also use that ξ ∈ Lie(Tξ ) which is clear since the one-parameter subgroup
{exp(tξ)}t∈R ⊂ Tξ .

Since Tξ is a torus subgroup of G of dimension k ≥ 1, there exists a Lie group isomorphism
Θ ∶Tk→Tξ . Let θ =T⟨0⟩Θ ∶Rk =Lie(Tk)→Lie(Tξ )⊂ g be the corresponding Lie algebra isomorphism

December 15, 2022



13

[2, Proposition 1.13]. By [2, Proposition 1.18] we have the commuting diagram

Tk Tξ

Rk = Lie(Tk) Lie(Tξ ) ⊂ g

Θ

θ

expTk expT
ξ
= expG∣T

ξ

Considering that θ is a linear isomorphism, there exists a unique ω ∈Rk =Lie(Tk) such that θ(ω) = ξ .
Using that expTk(tω) = ⟨tω⟩ and in view of the above diagram we have

Θ(⟨tω⟩) = expG(tξ).

Let ⟨α⟩ ∈ Tk and multiply the above equality on the left by Θ(⟨α⟩). Using that Θ is a Lie group
homomorphism and the definition of the group operation on Tk gives Θ(⟨α⟩)Θ(⟨tω⟩) = Θ(⟨α⟩+
⟨tω⟩) =Θ(⟨α + tω⟩) so we may write

Θ(⟨α + tω⟩) =Θ(⟨α⟩)expG(tξ).

But note that, by left invariance of Xξ , we have

Φ
Xξ

t (Θ(⟨α⟩)) =Θ(⟨α⟩)Φ
Xξ

t (eG) =Θ(⟨α⟩)expG(tξ).

Therefore, combining the above identities we get

Θ(⟨α + tω⟩) =Φ
Xξ

t ○Θ(⟨α⟩),

which can be expressed as the commuting diagram

Tk Tξ

Tk Tξ

Θ

Φ
XTk

ω
t

Φ
X

ξ

t ∣
T
ξ

Θ

(3.5)

where Φ
XTk

ω

t (⟨α⟩) = ⟨α + tω⟩. This shows that the restriction of the flow of Xξ to Tξ is conjugate to
the linear flow on the torus Tk with frequency ω ∈Rk.

We finish this section by considering gTξ = {gh ∶ h ∈ Tξ}. Given that gTξ = Lg(Tξ ) and that Lg ∶
G → G is a diffeomorphism and Tξ is a submanifold, it follows4 that gTξ is a submanifold of G
diffeomorphic to Tξ , and hence also to Tk where k = dimTξ . (Note however that gTξ need not contain
the identity element eG for a general g ∈G and hence it need not be a Lie subgroup.)

3.2.2 Dynamics of relative equilibria

Throughout this section, we continue to assume that Ψ ∶G×M→M is a free and proper action of the
compact Lie group G and we let X ∈X(M) be an invariant vector field.

Let m0 ∈M be a RE of X with angular velocity 0 ≠ ξ ∈ g and suppose that dimTξ = k ≥ 1. For g ∈G
we define

Σg ∶=Ψ
m0(gTξ ) = {Ψh(m0) ∶ h ∈ gTξ}.

It is clear that Σg ⊂Om0 and that Om0 =⋃g∈G Σg.

4the restriction of a diffeomorphism to a submanifold is always a diffeomorphism onto its image.
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Proposition 3.10. Let Ψ ∶ G×M →M be a free and proper action of the compact Lie group G and
let X ∈ X(M) be an invariant vector field. Suppose that m0 ∈ M is a RE of X with angular velocity
0 ≠ ξ ∈ g. For any g ∈G we have:

(i) Σg is an embedded submanifold of Om0 diffeomorphic to Tk and invariant under the flow of X,
where k = dimTξ satisfies 1 ≤ k ≤ rank(G);

(ii) the restriction of the flow of X to Σg is conjugate to a linear flow

(t,⟨α⟩)↦ ⟨α +ωt⟩

on Tk, with a frequency vector ω ∈Rk that depends only on ξ (not on g ∈G).

Proof. Recall that the orbit map Ψ
m0 ∶ G→ Om0 is a diffeomorphism and that gTξ is an embedded

submanifold of G. It follows that the restriction Ψ
m0 ∣gTξ

∶ gTξ → Σg is a diffeomorphism. But gTξ

is compact and diffeomorphic to Tk so Ψ
m0 ∣gTξ

∶ gTξ → Σg is actually an embedding5 and Σg is an

embedded submanifold diffeomorphic to Tk.
To prove the remaining statements consider first the case in which g = e, the group identity. Let

m ∈ Σe = Ψ
m0(Tξ ). Then m = Ψ

m0(h) = Ψh(m0) for a unique h ∈ Tξ . Let t ∈R. Using invariance of X
we have

Φ
X
t (m) =Φ

X
t (Ψh(m0)) =Ψh(Φ

X
t (m0)).

By item (iii) of Proposition 3.6 we have Φ
X
t (m0) =Ψexp(tξ)(m0) and therefore,

Φ
X
t (m) =Ψh(Ψexp(tξ)(m0)) =Ψhexp(tξ)(m0) =Ψ

m0(hexp(tξ)).

Since exp(tξ),h ∈ Tξ and Tξ is a subgroup we conclude that hexp(tξ) ∈ Tξ and hence Φ
X
t (m) ∈

Ψ
m0(Tξ ) = Σe, which shows that Σe is invariant under the flow of X as required. Moreover, using

that the flow of the left invariant vector field Xξ ∈X(G) satisfies Φ
Xξ

t (h) = hexp(tξ), the above iden-
tities imply:

Φ
X
t ○Ψ

m0(h) =Ψ
m0 ○Φ

Xξ

t (h), ∀h ∈ Tξ , ∀t ∈R,
so for all t ∈R we have the commuting diagram

Tξ Σe

Tξ Σe

Ψ
m0 ∣T

ξ

Φ
X

ξ

t ∣
T
ξ

Φ
X
t ∣Σe

Ψ
m0 ∣T

ξ

(3.6)

In other words, the diffeomorphism Φ
Xξ

t ∣
Tξ

∶ Tξ → Σe conjugates the restriction of the flow of Xξ to Tξ

to the restriction of the flow of X to Σe.
Now note that for g ∈G we have Ψg(Σe) = Σg. Indeed,

Ψg(Σe) =Ψg(Ψ
m0(Tξ )) =Ψg(ΨTξ

(m0)) =ΨgTξ
(m0) =Ψ

m0(gTξ ) = Σg.

5since Ψ
m0 ∣gTξ

is a diffeomorphism onto its image, it is an immersion. And any compact immersed submanifold is
embedded.
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Denote by ψg ∶= Ψg∣Σe
∶ Σe → Σg. Considering that Ψg ∶ M → M is a diffeomorphism and Σe is an

embedded submanifold it follows that ψg ∶ Σe→ Σg is a diffeomorphism. Now, using left invariance of
X , for m ∈ Σe we have

ψg ○Φ
X
t (m) =ψg(Φ

X
t (m)) =Ψg(Φ

X
t (m)) =Φ

X
t (Ψg(m)) =Φ

X
t (ψg(m)) =Φ

X
t ○ψg(m).

Hence, the diffeomorphism ψg ∶ Σe→ Σg conjugates the restriction of the flow of X to Σe to the restric-
tion of the flow of X to Σg and we can augment the commuting diagram (3.6) to

Tξ Σe Σg

Tξ Σe Σg

Ψ
m0 ∣T

ξ

Φ
X

ξ

t ∣
T
ξ

Φ
X
t ∣Σe

ψg

Φ
X
t ∣Σg

Ψ
m0 ∣T

ξ

ψg

The proof is completed by noting that the horizontal maps in the diagram are diffeomorphisms and
using Lemma 3.9 that guarantees that the flow of Xξ restricted to Tξ is conjugate to a linear flow on
the torus Tk with frequency vector ω ∈Rk (i.e. complementing the above diagram with (3.5)).

The above proposition gives the following detailed description of the dynamics of the RE. The
orbit Om0 is comprised of the embedded submanifolds Σg, g ∈ G, each of which is diffeomorphic to a
k-dimensional torus and is invariant under the flow of X . The dimension k of the these submanifolds
is k = dimTξ and satisfies 1 ≤ k ≤ rank(Tξ ). Moreover, the restriction of the flow of X to any of these
invariant submanifolds is conjugate to a linear flow on the torus Tk with a frequency vector ω ∈ Rk

which is constant for all of them.
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