1) QUESTIONS ABOUT PREVIOUS EXERCISES
2) STUDY OF A FUNCTION

$$
\text { 13) } \quad f(x)=e^{3 x}\left(x^{2}-|x+1|\right)
$$

$D: \mathbb{R}$
$\operatorname{sgn} f(x): e^{3 x}>0 \quad \forall x$

$$
\begin{array}{lll}
x^{2}-|x+1| \geqslant 0 & \text { if } x+1 \geqslant 0 & x^{2}-x-1 \geqslant 0 \tag{A}\\
& \text { if } x+1<0 & x^{2}+x+1 \geqslant 0
\end{array}
$$

(A) $x_{12}=\frac{1 \pm \sqrt{1+4}}{2}=\frac{1 \pm \sqrt{5}}{2}$

$$
\begin{array}{rl}
\frac{1-\sqrt{5}}{2} & >-1 \\
-\sqrt{5}>-3 & 1-\sqrt{5}>-2 \\
{\left[-1, \frac{1-\sqrt{5}}{2}\right] \cup 3} & \sqrt{1-\sqrt{5}},+\infty[
\end{array}
$$

(B) $\left.x_{12}=\frac{-1 \pm \sqrt{1-4}}{2} \times \Delta<0 \quad\right]-\infty,-1[$

$$
\begin{array}{ll}
f(x) \geqslant 0 & \text { in } \left.]-\infty, \frac{1-\sqrt{5}}{2}\right] \cup\left[\frac{1+\sqrt{5}}{2},+\infty[\right. \\
f\left(\frac{1 \pm \sqrt{5}}{2}\right)=0 & L_{\Delta \sim-\frac{1}{2}}
\end{array}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 1 \infty} e^{3 x}\left(x^{2}-|x+1|\right) \sim \lim _{x \rightarrow 1 \infty} e^{3 x} x^{2}=+\infty \\
& \lim _{x \rightarrow-\infty} e^{3 x}\left(x^{2}-|x+1|\right) \sim \lim _{x \rightarrow-\infty} e^{3 x} x^{2}=0^{+} \quad \text { HORIZONTAL ASYMTOTE }
\end{aligned}
$$

continuity: $f(x)$ is continuous in $\mathbb{D}=\mathbb{R}$
derivabilify :

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(e^{3 x}\left(x^{2}-(x+1) \operatorname{sgn}(x+1)\right)\right) \\
& =3 e^{3 x}\left(x^{2}-(x+1) \operatorname{sgn}(x+1)\right)+e^{3 x}(2 x-\operatorname{sgn}(x+1)) \\
& =e^{3 x}\left(3 x^{2}+2 x-\operatorname{san}(x+1)(3 x+4)\right)
\end{aligned}
$$

$f(x)$ is not derivable in $x=-1$
$f_{f}(x)$ is derivable in $\mathbb{R},\{-1\}$

$$
e^{3 x}>0
$$

$$
\begin{equation*}
\left(3 x^{2}+2 x-\operatorname{sgn}(x+1)(3 x+4)\right)>0 \tag{B}
\end{equation*}
$$

if $x+1 \geqslant 0 \quad 3 x^{2}+2 x-(3 x+4)=3 x^{2}-x-4>0$
if $x+1<0 \quad 3 x^{2}+2 x+(3 x+4)=3 x^{2}+5 x+4>0$

$$
\begin{align*}
& =e^{3 x}\left(3 x^{2}+2 x-\operatorname{sgn}(x+1)(3 x+4)\right) \\
& =e^{3 x}\left(3 x^{2}+(2-3 \operatorname{sgn}(x+1)) x-4 \operatorname{sgn}(x+1)\right) \\
& \lim _{x \rightarrow-1^{-}} e^{3 x}\left(3 x^{2}+(2+3) x+4\right) \stackrel{?}{=} \lim _{x \rightarrow-1^{+}} e^{3 x}\left(3 x^{2}+(2-3) x-4\right) \\
& e^{-3}(3+5(-1)+4) \\
& e^{-3}(3+(-1)(-1)-4) \\
& \neq \tag{0}
\end{align*}
$$

(A) $3 x^{2}-x-4>0 \quad x_{12}=\frac{1 \pm \sqrt{1+4 \cdot 4 \cdot 3}}{2(3)}=\frac{1 \pm 7}{6}=-1, \frac{4}{3}$
f is increasing for x in $\left[\frac{4}{3},+\infty[\right.$

$$
\left.\begin{array}{c}
\text { (B) } 3 x^{2}+5 x+4>0 \quad x_{12}=-5 \pm \sqrt{25-4 \cdot 4 \cdot 3} \times \\
\left.f\left(\frac{4}{3}\right)=\frac{-5}{9} e^{4} f \text { is increasing for } x<0 \text { in }\right]-\infty,-1[\\
f^{\prime \prime}(x)=\frac{d}{d x}\left(e^{3 x}\left(3 x^{2}+2 x-\operatorname{sgn}(x+1)(3 x+4)\right)\right) \\
=3 e^{3 x}(\ldots)+e^{3 x}(6 x+2-3 \operatorname{sgn}(x+1)) \\
=e^{3 x}\left(9 x^{2}+12 x-\operatorname{sgn}(x+1)(9 x+15)+2\right) \\
e^{3 x}>0 \quad \text { if } x+1>0 \quad 9 x^{2}+3 x-13>0 \\
(-\cdots)>0 \quad \text { if } x+1<0 \quad 9 x^{2}+21 x+17>0
\end{array} \quad \Delta<\theta\right]
$$

$$
f(x)=\lambda^{2} x e^{\frac{l}{\lambda x}} \quad \lambda \in \mathbb{R}
$$

if $\lambda=0 \quad f(x)$ is not defined

$$
\begin{aligned}
\mathbb{D} \quad & \lambda x \neq 0 \rightarrow x \neq 0 \quad \mathbb{R}=\mathbb{R} \cdot\{0\} \quad \forall \lambda \neq 0 \\
f^{\prime}(x) & =\frac{d}{d x}\left(\lambda^{2} \times e^{\frac{1}{\lambda x}}\right) \\
& =\lambda^{2} e^{\frac{1}{\lambda x}}+\lambda^{2} x e^{\frac{1}{\lambda x}} \cdot\left(\frac{-1}{(\lambda x)^{2}} \cdot \lambda\right) \\
& 1, \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=\lambda^{-} e^{\cdots}+\lambda x e^{\cdots} \cdot\left(\frac{-1}{(\lambda x)^{2}} \cdot \lambda\right) \\
=e^{\frac{1}{\lambda x}}\left(\lambda^{2}+\frac{\lambda^{2} x(-\lambda)}{\lambda^{2} x^{2}}\right)=e^{\frac{1}{\lambda x}}\left(\lambda^{2}-\frac{\lambda}{x}\right)
\end{array} \\
& f^{\prime}(x)>0 \quad e^{\frac{1}{\lambda x}}>0 \quad \forall x \forall \lambda \\
& \begin{array}{lll}
\left.\lambda\left(\lambda-\frac{1}{x}\right)>0 \quad \frac{\lambda(\lambda x-1)}{x}>0 \quad \begin{array}{l}
\mathbb{N} \quad x=1 / \lambda \\
\mathbb{D} x=0
\end{array}<\begin{array}{ll}
\geqslant 0 & \lambda>0 \\
<0 & \lambda<0
\end{array}\right]
\end{array} \\
& \lambda>0 \\
& \lambda<0 \\
& \begin{array}{l}
\lambda+0+1 / \lambda+ \\
\lambda x-1-\ngtr+ \\
x-\neq+ \\
g(x)+0+
\end{array} \\
& -1 / \lambda-0 \longrightarrow D \\
& \begin{array}{llll}
+0 & - & - \\
- & + & A & + \\
+0 & - & A & +
\end{array} \\
& \min f(x) \\
& \lambda>-1>0 \\
& \longrightarrow \max f(x)
\end{aligned}
$$

$$
f(x)>0 \quad \lambda^{2} \times e^{\frac{1}{\lambda x}}>0 \quad \begin{aligned}
& \text { iff } x>0 \quad \forall \lambda
\end{aligned}
$$

$$
f\left(\frac{1}{\lambda}\right)=\lambda^{2} \frac{1}{\lambda} e^{\frac{\lambda}{\lambda}}=\lambda e
$$

LIMITS

$$
2 \underset{\substack{\text { New Section } 1 \text { Page } 4}}{1} \rightarrow \lambda>0 \quad \lim \lambda^{2} x \cdot 1=+\infty
$$

LIMITS

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} \lambda^{2} \times e^{\frac{1}{\lambda x}} \longleftrightarrow \lambda>0 \quad \begin{array}{l}
\lim _{\substack{x \rightarrow+\infty \\
\lim _{x \rightarrow+\infty} \\
\lambda^{2} x \cdot 1}} \lambda^{2} x \cdot 1=+\infty \\
\lim _{x}=+\infty
\end{array} \\
& \lim _{x \rightarrow-\infty} \lambda^{2} x e^{\frac{1}{\lambda x}} \longrightarrow \lambda \neq 0 \quad \lim _{x \rightarrow-\infty} \lambda^{2} x=-\infty \\
& \begin{array}{ll}
\lim _{x \rightarrow 0^{+}} \lambda^{2} x e^{\frac{1}{\lambda x}} \longrightarrow \lambda>0 & \lim _{\substack{\lambda \rightarrow 0^{+}}} \lambda^{2} \times e^{+\infty}=+\infty \\
& \lambda<0 \quad \lim _{x \rightarrow 0^{+}} \lambda^{2} \times e^{-\infty}=0^{+}
\end{array}
\end{aligned}
$$

SYM? $\lim _{x \rightarrow \pm \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \pm \infty} \lambda^{2} e^{\frac{1}{\lambda x}}=\lambda^{2}$

$$
\lim _{x \rightarrow \pm \infty} f(x)-\lambda^{2} x=\lim _{x \rightarrow \pm \infty} \lambda^{2} x\left(e^{\frac{1}{\lambda x}}-1\right) \approx \lim _{x \rightarrow \pm \infty} \lambda^{2} x \cdot \frac{1}{\lambda x}+\sigma(1)
$$

$=\lambda$
LINE: $y=\lambda^{2} x+\lambda$

ADDITIONAL EXERCISES
11) $f(x)= \begin{cases}e^{-\frac{1}{|x|}}(2-3|x|) & x \neq 0 \\ 0 & x=0\end{cases}$
14) $f(x)=e^{3 x}\left|x^{2}-3\right|$
15) $f(x)=\operatorname{arctg}\left(\frac{2 x+1-|x|}{|x+1|}\right)$
17) $f(x)=\log \left(e^{\frac{x}{2}}-\sqrt{\left|2-e^{x}\right|}\right)$
\longrightarrow Note: Desmos.com solution is imprecise due to limited numerical precision
21) $f(x)=2 x+\frac{\sinh |x|}{\sinh x-1}$

You can find additional functions in the typed notes and in the collection of previous exams

