
Neural Networks
Machine Learning 2022-23

 UML book chapter 20
Slides: F. Chiariotti, P. Zanuttigh, F. Vandin

Artificial Neural Networks

❑ Model of computation inspired by the structure of neural networks in the brain
❑ Large number of basic computing devices (neurons) connected to each other
❑ Neural Networks (NN) are represented with directed graphs where the nodes are

the neurons and the edges corresponds to the links between the neurons
❑ Firstly proposed in 1940-50
❑ First practical applications in the 80-90s but practical results were lower than

SVM and other techniques
❑ From 2010 on deep architectures with impressive performances

From Simple Algorithms
to Deep Learning

Data

Prior Prior

Data

Feedforward
Neural Networks

Notation (1)

Notation (2)

.

.

.

1

layer t

How a Neuron Works

❑

Image medium.com

1

Activation Functions

❑

Activation: Sign and
Threshold

+ Simple/fast
+ Nice interpretation as the firing rate of a neuron

• -1 = not firing
• 1 = firing

- Output is not smooth/continuous
- saturate and kill gradients, thus NN will barely learn

Threshold function: similar behaviour

Activation: Sigmoid

+ Smooth output
+ Nice interpretation as the firing rate of a neuron

• 0 = not firing at all
• 1 = fully firing

- Sigmoid neurons saturate and kill gradients, thus NN will have issues in learning
when the neuron’s activation are 0 or 1 (saturate)

🙁 gradient at these regions almost zero

🙁 almost no signal will flow to its weights

🙁 if initial weights are too large then most neurons would saturate

Activation: Tanh

Activation: ReLU

Takes a real-valued number and
thresholds it at zero

Most Deep Networks use ReLU nowadays
+ Trains much faster

• accelerates the convergence of SGD
• due to linear, non-saturating form

+ Less expensive operations
• compared to sigmoid/tanh (exponentials etc.)
• implemented by simply thresholding a matrix at zero

+ More expressive
+ Prevents the gradient vanishing problem

Forward Propagation

Take an input sample and
compute the output of the
network

Start from the input (layer 0)…
….compute the output of layer
1, send to layer 2 and get
output….

…. through all the layers up to
the output layer

linear part

activation function
(«1» for bias)

From first to last
layer

1st layer: read input

Learning
Neural Networks

Expressive Power of NN
(boolean functions)

Recall: Boolean functions
include any function that can

be implemented in a computer

Expressive Power of NN
(demonstration)

Expressive Power of NN
(real valued functions)

Not part of the course

Implement Conjunction
and Disjunction with NN

❑

Expressive Power of NN
(example)

VC dimension of NN

Runtime of NN

Not part of the course

NN optimization

❑

SGD fror NN:
Algorithm

adaptive learning
rate

regularization

SGD for NN:
How to Compute the Gradient

learning
rate

gradient of the loss
w.r.t each single weight

Update
Rule
(baseline
version)

• We need the gradient w.r.t. each single weight in the network
• But we can compute the loss only on the output (i.e., after the last layer)
• Recall that each neuron contains also the non-linear activation function

layer iteration
index

BackPropagation (1)

❑

.

.

.

V
t,1

1

V
t,2

 V
t-1,3

remains only k=i term

BackPropagation (2)

❑

.

.

.

V
t,1

1

V
t,2

BackPropagation (3)

❑

BackPropagation:
Algorithm

NN Training:
complete algorithm

t-1,i

[s-1][s]

NN Training Details:
Pre-processing and Initialization

Pre-processing:

❑ Typically all inputs are normalized and centred around 0

❑ Both local or global normalization strategies

Initialization of the weights

❑ All to 0 does not work

❑ Random values around 0 (regime where model is roughly linear)

❑ Uniform or normal (Gaussian) distribution can be used

❑ Sometimes multiple initializations and trainings, then select best
result (smallest training error)

❑ In deep NN "Glorot" initialization: normal distribution with variance
inversely proportional to the sum of the number of incoming and
outcoming connections of the neuron

NN Training details:
When to Stop

When to stop?

❑ Small training error

❑ Small marginal improvement in error at each step

❑ Upper bound on number of iterations

 Loss function usually has multiple local minima

❑ With highly dimensional spaces the risk is smaller than in low
dimensional ones, but no guarantee

❑ Run stochastic gradient descent (SGD) from different (random) initial
weights

Regularization

❑ Minimize weighted sum of the loss with the sum of all the weights

❑ Avoid too large weights and make optimization more stable

❑ Regularization parameter λ
❑ L1 or L2 regularization can be used

