UNIVERSITA
=) DIPARTIMENTO DECLL STUD
= DI INGEGNERIA
— DELLINFORMAZIONE DI PADOVA

Neural Networks

Machine Learning 2022-23

UML book chapter 20
Slides: F. Chiariotti, P. Zanuttigh, F. Vandin

o e
= DPARTIVENTO Artificial Neural Networks

= DI INGEGNERIA
— DELLINFORMAZIONE

(d Model of computation inspired by the structure of neural networks in the brain

(1 Large number of basic computing devices (neurons) connected to each other

(1 Neural Networks (NN) are represented with directed graphs where the nodes are
the neurons and the edges corresponds to the links between the neurons

A Firstly proposed in 1940-50

(First practical applications in the 80-90s but practical results were lower than
SVM and other techniques

(d From 2010 on deep architectures with impressive performances

= DIPARTIMENTO

= DI INGEGNERIA
— DELLINFORMAZIONE

[expert system]

L

From Simple Algorithms
to Deep Learning

use prior knowl-
edge to con-
struct ¢(x) and

learn (w, ¢(x))

deep
works

net-

Data

less prior knowledge
more data

.
r .
Prior

[No Free Lunch]

= DIPARTIMENTO

Feedforward
— BLPL%IE?SFEI\F;IK\ZIONE Neura I Networ kS

hidden layer 1 hidden layer 2 hidden layver 3

input layer

\\\\

Activation Function

[C}—0n

Feedforward network: the graph representing the network has no cycles (data flows only in one direction)

The network is typically organized into layers: each neuron takes in input only the output of neurons of the
previous layer

Notation (NN): Graph G=(V,E) and function w: E = R

* V:neurons (|V] is the size of the network)

* E:connections between neurons (directed edges)

« w:E - R weight function over the edges (the weights w are the parameters to be learned)

Each neuron:

1. Takes in input the sum of the outputs of the connected neurons from previous layer weighted by the
edge weights (w)

2. Applies to the result a simple scalar function (activation function, o)

@
= oincesnens Notation (1)

— DELLINFORMAZIONE

! hidden layer 1 hidden layer 2 hidden layer 3
input layer

- _ -y N N A R
= 0 =2 /;f = 6\\\
\ \(;‘: 7 X 25 é 3 3 'Q'. & {} \ outp
=S8 8 1 NN
: NNK i’/-:/
SO

layer
»

ut
N NS

- - o . .'c.- (Y X% - o -
o, 2.0 0 N 2 N 5
e s o RN Z Lo
LA PRI Vs 7o
ot X0 R RS A 0*:‘\?"%/’5” f =
A O 5E R i g P

ol g e
_ > - N » = .
L ,’fé ; .g‘.v O SR R
. =, o AL ;

i
0
LS Y

Represent a network as the union of a set of (disjoint) layers: V = Ul_, V;
e Vi, t=0,..,T :t-th layer,
e d' + 1 number of nodes of layer t
 "+1":constant neuron (avoid bias, incorporate as in homogenous coord.)
* V4t inputlayer, Vr: outputlayer, Vi, ...,Vr_4 inner (hidden) layers
* T :depth of the network
* T=2in"classic" NN, T>>2 in deep networks

= DIPARTIMENTO
— DI INGEGNERIA
—— DELLINFORMAZIONE

Notation (2)

Vg ; - I-th neuron in the t-th layer

T

v = (1,vt,1, ...,vt’dt) : all neurons of layer t
Weights w,; " = w(vy,, ve41;) : Weight of arc from
neuron r of layer t to neuron j of layer t+1

T
w}t) = (wéj.), ""Wc(lt(z_l)j) : all weights of arcs in
input to neuron j of layer t (notice: from layer t-1 to t)

w'D: matrix of weights of all arcs incoming to layer t

3] 3] 3]
YWo1 Wo2 Woat
) () (t)
w® =| W1 Wi2 Wiat
© . ® ®
W,t-v, Wit-n, 7 Wie-na0]

= DIPARTIMENTO

D DFATMENTO How a Neuron Works

— DELLINFORMAZIONE

ﬁompute output o, ; (x) of the i-th neuron in the t-th layer when x is fed to the network

Compact notation: use v, ; also to represent the output of the neuron

0 The output of a neuron is a non-linear (activation) function applied to

the linear combination of the inputs coming from the previous layer
* 0:non-linear activation function

* Aty =< Wj(tﬂ),v(t) > output of neuron before the activation function

0t+1,j(x) = U(

r: (VerVita,j)EE

W(vt,rr Vts1,j)Ot,r(x)) =0 (at+1,j (x))

Bias

In vector notation:

Inputs <

_ t+1) (1) <) — (
Vet1,j = 0(< Wi v >) = o(at+1,5)

Activation
Function

- 0

Output

Weights

Image medium.com

=) Activation Functions

— DELLINFORMAZIONE

Q
Various activation functions o(a) can be exploited:

1. Sign function
Threshold function
Sigmoid function
Hyperbolic Tangent
Rectified Linear Unit

A

¢ Activation: Sign and

= DIPARTIMENTO
— DI INGEGNERIA

— DELLINFORMAZIONE T h re S h O I d

Outputs the sign of the input
o(a) = sign(a)
R"™ - [—1; 1]

+ Simple/fast

+ Nice interpretation as the firing rate of a neuron
e -1=notfiring
 1=Airing

Output is not smooth/continuous
saturate and kill gradients, thus NN will barely learn

Unit step (threshold)

[0if 0>x

ER g Threshold function: similar behaviour

= Activation: Sigmoid

— DELLINFORMAZIONE

1.0

0.5

0.0

Takes a real-valued number and
“squashes” it into range betweenOand 1

1
7@ =T

0'(@) = o(@)[1 — o(a)]

Sigmoid

-6 -4 =2 0 2 4 2..‘ Rn_)[o’l]

+ Smooth output

+ Nice interpretation as the of a neuron
* 0=notfiring at all
e 1 =fully firing

- Sigmoid neurons and , thus NN will have issues in learning

1

when the neuron’s activation are 0 or 1 (saturate)
*2) gradient at these regions almost zero
2 almost no signal will flow to its weights

** ifinitial weights are too laree then most neurons would saturate

= DIPARTIMENTO

= ceeneR Activation: Tanh

— DELLINFORMAZIONE

101
Takes a real-valued number and

05 | “squashes” it into range between -1 and 1.

a_e—a eZa_l

00 | _
ed 4+ e~ e2a41

o(a) = tanh(a) =

o'(a) = 1 — [tanh(a)?]

R" - [0,1]

Tanh is a scaled and shifted sigmoid: tanh(x) = 2sigm(2x) — 1

+ Like sigmoid, tanh neurons saturate
- Unlike sigmoid, output is zero-centered

D IFATTHENTO Activation: RelLU

— DELLINFORMAZIONE

6 Y S RRE) Takes a real-valued number and
h’(z)={1 z>0 thresholds it at zero

al 0 ifz=<0 f 0

alfa>

o(a) = max(0,a) = {O ifa <0
2 .« _(lifa>0
: - J(a)_{OifaSO

0 / | R™ - R}

-6 -4 -2 0 2 4 -
Most Deep Networks use ReLU nowadays

+ Trains much faster
» accelerates the convergence of SGD
e due to linear, non-saturating form
+ Less expensive operations
* compared to sigmoid/tanh (exponentials etc.)

* implemented by simply thresholding a matrix at zero
+ More expressive

+ Prevents the gradient vanishing problem

=5 Forward Propagation

— DELLINFORMAZIONE

0 5) s, P52z =3 D

Take an input sample and Inputs %= (X xg4)": NN with 1 output node
computke the output of the Output: prediction y of NN;
networ 1st layer: read input
V(O) — (]. b — Xd)T;A/
Start from the input (layer 0)... for ¢ < 1 to T do=—— From first to last
....compute the output of layer alt) « (wlt)) ! v(tl);:'%@ linear part
1, send to layer 2 and get ol (1_ o (a®) T) ;
output.... '
y +— viT): \ activation function
.... through all the layers up to return y; («1» for bias)

the output layer

= DIPARTIMENTO

Learning
— BlEll\lL(’SIIEI(F;glFEI\FjIK\ZIONE Neural Networks

Neural Network (NN): (V.E,o,w)

» Corresponds to a function hy 5 ,,: RIYo=1l — RIV7!

* The hypothesis class of a network is defined by fixing its
architecture:

Hygo={hyvEsw: Wisamapping fromE to R}
 VE o defines the architecture of the network

* w contains the parameters that are going to be learned
* Training of the NN: finding the optimal set of weights w

® Expressive Power of NN

= DIPARTIMENTO

= UOEEED (boolean functions)

For every d, there exists a graph (V/, E) of depth 2 such that
Hv E sign contains all functions from {—1, 1}d to {—1,1}

NN can implement every boolean function!

Unfortunately the graph (V. E) is very big...

For every d, let s(d) be the minimal integer such that there exists
a graph (V, E) with |V| = s(d) such that Hy g sign contains all
functions from {—1,1}9 to {—1.1}. Then s(d) is an exponential
function of d.

Recall: Boolean functions

Note: similar result for o = sigmoid include any function that can
be implemented in a computer

® Expressive Power of NN

= DIPARTIMENTO

= beLenroRmzOne (demonstration)

Consider sign activation }[V,E,Sign

(INPUT: V] =n+1

1. Usethis 3 layers NN:< HIDDEN:|V;| =2"+1

| OUTPUT: [V = 1

2. Define:uy,,u;, € {£1}" : all input vectors leading to an output of 1
n If x =u; (all bits match)
<n-2if x #u; (eachmismatch — 2 penalty)

3. Notice: {x,u;) = {

1 If x = u;
—1 otherwise
5. Adapt weights w to get g; in the hidden layer

— each hidden layer neuron looks if the input is u;

6. Outputlayer: f(x) = sign(Zﬁ‘zlgi(x) + k — 1) (signis 1 if at least one is true)

4. Defineg; = sign({x,u;) —n+1) = {

Notice: network exponentially large, works but «brute-force» solution probably
leading to overfitting

= DIPARTIMENTO

DI INGEGNERIA

— DELLINFORMAZIONE

Expressive Power of NN
(real valued functions)

Proposition

For every fixed = > 0 and every Lipschitz function

f:[-1,1]9 — [~1,1] it is possible to construct a neural network
such that for every input x € [—1. l]d the output of the neural
network is in [f(x) — =, f(x) + <].

function, requires only 1 hidden layer! \)(Se
O
e ¥
NNs are universal approximators! O‘
e
But again... &O

Proposition

Fix some = € (0, 1). For every d, let s(d) be the minimal integer
such that there exists a graph (V. E) with |V| = s(d) such that
Hyv E ., With 0 = sigmoid, can approximate, with precision &,
every 1-Lipschitz function f : [—1,1]¢ — [~1.1]. Then s(d) is
exponential in d.

g DIPARTIMENTO Implement ConjunCtlon

= DI INGEGNERIA

= DELLNFORMAZONE and Disjunction with NN

& NN can implement boolean AND / OR
0 Consider sign activation and k inputs with values +1

Conjunction (AND)
k
f(x) =sign|1—k+ in
i=1

(positive if all positive, AND)
Disjunction (OR)

k
f(x) =sign| k — 1+in
i=1

(positive if at least one positive, OR)

= DIPARTIMENTO

DI INGEGNERIA

— DELLINFORMAZIONE

Inputin R? , 2-layer NN

k neurons, sign activation

Each neuron: an halfspace
Intersection of halfspaces
Convex polytopes with k-1 faces

Expressive Power of NN
(example)

« Inputin R?, 3-layer NN

* Kk neurons, sign activation

* Each neuron: an halfspace

* Intersection and unions of halfspaces
* Union of polytopes

> DR VC dimension of NN

— DELLINFORMAZIONE

* With sign activation
VC dimension of Hy g sign = O(|E[log|E[) (no demonstration)

* With Sigmoid (o) activation
VC dimension of Hy i, = O(|V|?|E|*) (no demonstration)

—>Large NNs require a lot of data !

If we have enough data, what about the computation time ?

= DPRTMENTO Runtime of NN

— DELLINFORMAZIONE

Applying the ERM rule to a NN (V,E,o,w) is computationally difficult, even for
relatively small NN...

Theorem:

Hypothesis: Let k = 3. For every d, let (V,E) be a layered graph with d input nodes,
k+1 nodes at the (only) hidden layer (where one of them is the constant neuron),
and a single output node.

Thesis: 1t is NP-hard to implement the ERM rule with respect to Hy g i gn
(no demonstration)

Even approximations of ERM rule are infeasible
Also by changing the activation things do not get better

Need a different strategy....
SGD and backpropagation algorithm !

> onameno NN optimization

— DELLINFORMAZIONE

5 Target of ERM: given training data (x4, V1), ..., (X;n, ¥m) find the
weights that minimize the training error:

1 m
Ls(h) = EE £(h, (x4, y1))
=1

0 The problem is challenging !
ldea:
1. Forward propagate the training data and compute the loss

2. Consider the loss as a function of the weights and compute the
gradient of the loss w.r.t. the weights

3. Update the weights with SGD

Good Idea! But we need the gradient of the loss w.r.t. the weights

= DIPARTIMENTO

= DI INGEGNERIA

— DELLINFORMAZIONE

SGD fror NN:

SGD for Neural Networks

parameters:

Number of iterations T

Step size sequence 11,75, ..., N+
Regularization parameter 4 > 0

Input:

Network : layered graph G=(V,E)
differentiable activation functiono: R - R
Algorithm:

chose wlll € RIEI at random

(from a distributions.t. wll s close enough to 0)
fors = 1,2, <o, B
sample (x,y) ~ D

calculate gradient vg = backpropagation(x,y,w, (V,E), o)
update wls+1! = wlsl — a3y (v, @

Algorithm

output:
w is the best performing wls! on a validation set

regularization

o |

adaptive learning

rdie

‘ .
—) DIPARTIMENTO SG D fo I N N .

= DI INGEGNERIA

— meeoe HOW to Compute the Gradient

| layer | iteration |
Update e oL
©ls+¥1] _ _ (®ls] _ s

Rule Wiy — Wy s 2 ©ls]

(baseline / aW)

Version) l,4
learning gradient of the loss
rate w.r.t each single weight

oL o (1 OL(h,(xi,yi)
2 = 2 (B, 2k, (1)) = = 3, L)

We need the gradient w.r.t. each single weight in the network
But we can compute the loss only on the output (i.e., after the last layer)
Recall that each neuron contains also the non-linear activation function

— aL -
oL |9%a
80 = 3a® a5L 8@ : change in error w.r.t. to the weighted average
= before the non-linear transformation
Bt 718

= oincesnens BackPropagation (1)

— DELLINFORMAZIONE

g Decompose the gradient with the chain rule

(t-1) (¢t
Q Recall a; ;= a- W,Ej)vt_ljk

(&)
Lj

2 We need 6®) =

0 Each weight w; |mpacts only on a; ;

aa(t) to compute the gradient

Q o depends on the selected activation function

ow® da, ; dw (t) - 6 v (t)(k=0 Wpy Vi 1k) 6] Vi-1,i
Lj J ij
(t) _ OL avt, j __ OL remains only k=i term
61' — = o' (ay, j)

= oincesnens BackPropagation (2)

— DELLINFORMAZIONE

Understand how the loss changes w.r.t. V¢ j

o L&

Change in layer t affects only neurons in layer t+1 (and
then each following layer up to the loss at the end)

0 Each neuron can affect all the neurons in next layer
Need to sum contributions to all the neurons in layer t+1

a To compute §® we need § t*D) (solution of the next

layer)
d(t+1) d(t+1)
. Z dL 0a;iqy _ Z (t+1)6(t+1)
— — Wi
avt,j k=1 aa’t+1,k avt,j k=1

5.(t)= Gl avt']
J avt’j aat,]

(t+1) t+1 t+1
LACHD) i e

= DIPARTIMENTO

= DI INGEGNERIA BaCkPrOpagatiOn (3)

— DELLINFORMAZIONE

(t+1)
= o'(a;) X4 t+1 (t+1)5(t+1)

5 The solution for each layer need the solution of the following one

a Start from the last layer (6“) can be computed from the loss on
the output)

0 Backpropagate the gradients through all the layers up to the first

DO o) e P 12 = D

® BackPropagation:

= DIPARTIMENTO
— DI INGEGNERIA

— DELLINFORMAZIONE Al gorit hm

Input: data point (x;.y;), NN (with weights W,S-T), for1<t<T)
Output: ') fort =1,.... T

compute a't) and vt for F =l o ;i

c(L aL .

for t = T —1 downto 1 do

|0 o (aey) i wi IS for all j =1, d);
return 61 .. 5(T).

70 o D e @ 13y = DD

hidden layer 1 hidden layer 2 hidden layer 3

input layer

o .
D DIPARTIMENTO NN Tralnlng'

DI INGEGNERIA

DELL'INFORMAZIONE comp lete a |g0 rithm

BackPropagation algorithm with SGD
Input: training data (x1,V1), -, Xp) Yim)

; : ()
Output: NN weights W
) (t) B D
Initialize W YLt
fors < 0,1,2, ... do // until convergence
pick (xx, Yy) at random from training data; // SGD: 1 sample at random
compute v, ; Vj, t; // forward propagation
compute 5]@ Vi, // backward propagation
Wl.(;)[”l] = Wi(;)[s] - nvt_l,ich(t) Vi,j,t; // update weights
if converged then return wl.(jt)[S] L Y e
5@

(compute loss)

® NN Training Details:

= DIPARTIMENTO
— DI INGEGNERIA

— o Pre-processing and Initialization

Pre-processing:

a Typically all inputs are normalized and centred around O
2 Both local or global normalization strategies

Initialization of the weights

2 Allto 0 does not work

2 Random values around O (regime where model is roughly linear)
2 Uniform or normal (Gaussian) distribution can be used
a

Sometimes multiple initializations and trainings, then select best
result (smallest training error)

In deep NN "Glorot" initialization: normal distribution with variance
inversely proportional to the sum of the number of incoming and
outcoming connections of the neuron

U

= DIPARTIMENTO

NN Training details:

= beLwoRmON When to Stop

When to stop?

2 Small training error

2 Small marginal improvement in error at each step
2 Upper bound on number of iterations

Loss function usually has multiple local minima

2 With highly dimensional spaces the risk is smaller than in low
dimensional ones, but no guarantee

2 Run stochastic gradient descent (SGD) from different (random) initial
weights

=) WA Regularization

— DELLINFORMAZIONE

d
d
d
d

Minimize weighted sum of the loss with the sum of all the weights
Avoid too large weights and make optimization more stable
Regularization parameter A

or L2 regularization can be used

(t) L.(h) + — z (t)
m

l]t L.t

