
Neural Networks
Machine Learning 2022-23

 UML book chapter 20
Slides: F. Chiariotti, P. Zanuttigh, F. Vandin



Artificial Neural Networks

❑ Model of computation inspired by the structure of neural networks in the brain
❑ Large number of basic computing devices (neurons) connected to each other
❑ Neural Networks (NN) are represented with directed graphs where the nodes are 

the neurons and the edges corresponds to the links between the neurons
❑ Firstly proposed in 1940-50 
❑ First practical applications in the 80-90s but practical results were lower than 

SVM and other techniques
❑ From 2010 on deep architectures with impressive performances



From Simple Algorithms 
to Deep Learning
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Feedforward 
Neural Networks

 



Notation (1)

 

 

 



Notation (2)
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How a Neuron Works

❑  
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Activation Functions

❑  



Activation: Sign and
Threshold

+ Simple/fast
+ Nice interpretation as the firing rate of a neuron

• -1 = not firing  
• 1 = firing

- Output is not smooth/continuous
- saturate and kill gradients, thus NN will barely learn

 

Threshold function: similar behaviour



Activation: Sigmoid

+ Smooth output
+ Nice interpretation as the firing rate of a neuron

• 0 = not firing at all 
• 1 = fully firing

- Sigmoid neurons saturate and kill gradients, thus NN will have issues in learning
when the neuron’s activation are 0 or 1 (saturate)

🙁 gradient at these regions almost zero 

🙁 almost no signal will flow to its weights 

🙁 if initial weights are too large then most neurons would saturate

 



Activation: Tanh

 

 



Activation: ReLU

Takes a real-valued number and 
thresholds it at zero

Most Deep Networks use ReLU nowadays 
+ Trains much faster

• accelerates the convergence of SGD
• due to linear, non-saturating form

+ Less expensive operations
• compared to sigmoid/tanh (exponentials etc.)
• implemented by simply thresholding a matrix at zero

+ More expressive 
+ Prevents the gradient vanishing problem

 



Forward Propagation

Take an input sample and 
compute the output of the 
network

Start from the input (layer 0)… 
….compute the output of layer 
1, send to layer 2 and get 
output….

…. through all the layers up to 
the output layer

 

linear part

activation function
(«1» for bias)

From first to last 
layer

1st layer: read input



Learning 
Neural Networks

 



Expressive Power of NN
(boolean functions)

Recall: Boolean functions 
include any function that can 

be implemented in a computer



Expressive Power of NN
(demonstration)

 



Expressive Power of NN
(real valued functions)

Not part of the course



Implement Conjunction
and Disjunction with NN

❑  



Expressive Power of NN
(example)

  



VC dimension of NN

 



Runtime of NN

 

Not part of the course



NN optimization

❑  



 

SGD fror NN:
Algorithm

adaptive learning 
rate

regularization



SGD for NN:
How to Compute the Gradient

learning 
rate

gradient of the loss
w.r.t each single weight 

Update
Rule
(baseline 
version)

• We need the gradient w.r.t. each single weight in the network
• But we can compute the loss only on the output (i.e., after the last layer)
• Recall that each neuron contains also the non-linear activation function   
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BackPropagation (1)
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remains only k=i term



BackPropagation (2)
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BackPropagation (3)
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BackPropagation:
Algorithm

 



NN Training: 
complete algorithm
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NN Training Details:
Pre-processing and Initialization

Pre-processing: 

❑ Typically all inputs are normalized and centred around 0

❑ Both local or global normalization strategies

Initialization of the weights

❑ All to 0 does not work

❑ Random values around 0 (regime where model is roughly linear)

❑ Uniform or normal (Gaussian) distribution can be used

❑ Sometimes multiple initializations and trainings, then select best 
result (smallest training error)

❑ In deep NN "Glorot" initialization: normal distribution with variance 
inversely proportional to the sum of the number of incoming and 
outcoming connections of the neuron



NN Training details:
When to Stop

When to stop?

❑ Small training error

❑ Small marginal improvement in error at each step

❑ Upper bound on number of iterations

 Loss function usually has multiple local minima

❑ With highly dimensional spaces the risk is smaller than in low 
dimensional ones, but no guarantee

❑ Run stochastic gradient descent (SGD) from different (random) initial 
weights



Regularization

❑ Minimize weighted sum of the loss with the sum of all the weights

❑ Avoid too large weights and make optimization more stable

❑ Regularization parameter λ
❑ L1 or L2 regularization can be used

  


