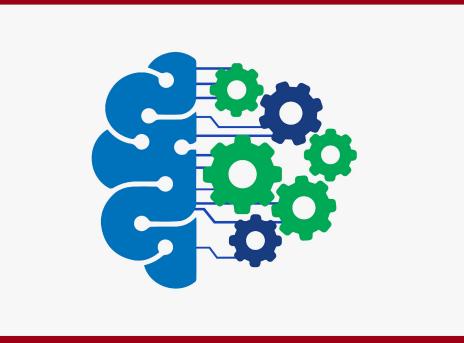


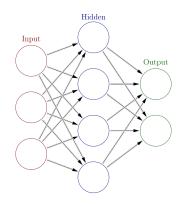
Università degli Studi di Padova

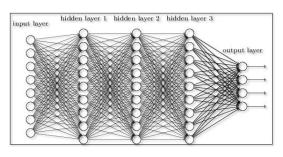


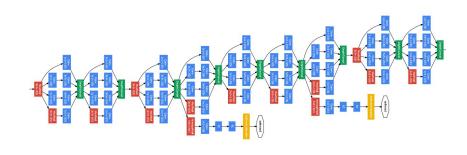
Neural Networks

Machine Learning 2022-23 UML book chapter 20 Slides: F. Chiariotti, P. Zanuttigh, F. Vandin

Artificial Neural Networks

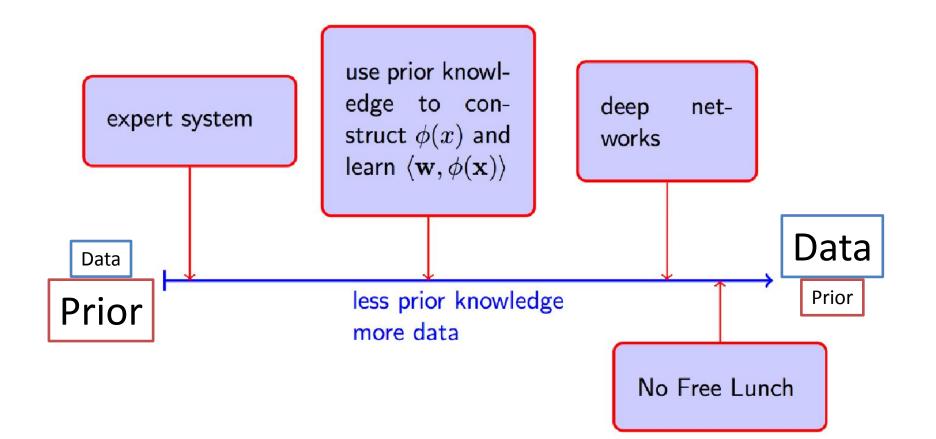






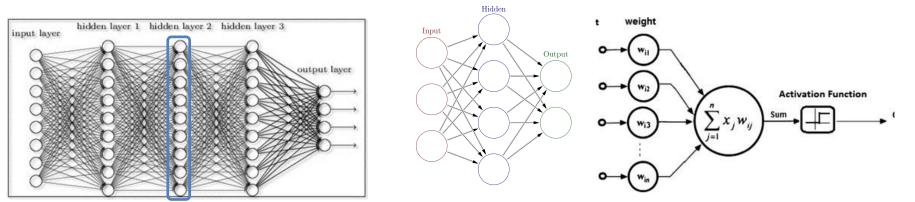
- Model of computation inspired by the structure of neural networks in the brain
- Large number of basic computing devices (neurons) connected to each other
- Neural Networks (NN) are represented with directed graphs where the nodes are the neurons and the edges corresponds to the links between the neurons
- □ Firstly proposed in 1940-50
- First practical applications in the 80-90s but practical results were lower than SVM and other techniques
- From 2010 on deep architectures with impressive performances

From Simple Algorithms to Deep Learning



DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Feedforward Neural Networks



Feedforward network: the graph representing the network has no cycles (data flows only in one direction)

The network is typically organized into layers: each neuron takes in input only the output of neurons of the previous layer

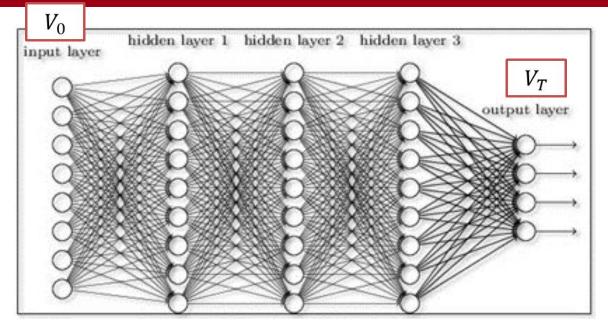
Notation (NN): Graph G=(V,E) and function $w: E \to \mathbb{R}$

- V: neurons (|V| is the size of the network)
- E: connections between neurons (directed edges)
- $w: E \to \mathbb{R}$ weight function over the edges (the weights w are the parameters to be learned)

Each neuron:

- 1. Takes in input the sum of the outputs of the connected neurons from previous layer weighted by the edge weights (w)
- 2. Applies to the result a simple scalar function (activation function, σ)

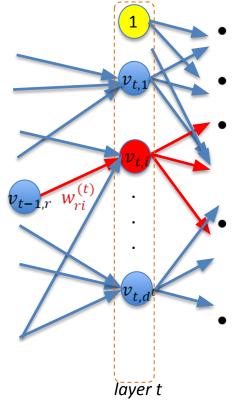
Notation (1)



Represent a network as the union of a set of (disjoint) layers: $V = \bigcup_{t=0}^{T} V_t$

- V_t , t = 0, ..., T: t-th layer,
- $d^t + 1$ number of nodes of layer t
 - "+1" : constant neuron (avoid bias, incorporate as in homogenous coord.)
- V_0 : input layer, V_T : output layer, V_1 , ..., V_{T-1} inner (hidden) layers
- T : depth of the network
 - T=2 in "*classic*" NN, T>>2 in deep networks

Notation (2)



DIPARTIMENTO

DI INGEGNERIA

DELL'INFORMAZIONE

$$v_{t,i}: i\text{-th neuron in the } t\text{-th layer}$$

$$v^{(t)} = (1, v_{t,1}, \dots, v_{t,d^t})^T : \text{all neurons of layer t}$$
Weights $w_{rj}^{(t+1)} = w(v_{t,r}, v_{t+1,j}) : \text{weight of arc from}$
neuron r of layer t to neuron j of layer t+1
$$w_j^{(t)} = (w_{0j}^{(t)}, \dots, w_{d^{(t-1)}j}^{(t)})^T : \text{all weights of arcs in}$$
input to neuron j of layer t (notice: from layer t-1 to t)
$$w^{(t)}: \text{ matrix of weights of all arcs incoming to layer t}$$

$$w^{(t)} = \begin{bmatrix} w_{01}^{(t)} & w_{02}^{(t)} & \cdots & w_{0d^t}^{(t)} \\ w_{11}^{(t)} & w_{12}^{(t)} & \cdots & w_{1d^t}^{(t)} \\ \vdots & \vdots & \ddots & \vdots \\ w_{d^{(t-1)}1}^{(t)} & w_{d^{(t-1)}2}^{(t)} & \cdots & w_{d^{(t-1)}d^{(t)}}^{(t)} \end{bmatrix}$$

How a Neuron Works

Compute output $o_{t,i}(x)$ of the *i-th* neuron in the *t-th* layer when x is fed to the network

- Compact notation: use $v_{t,i}$ also to represent the output of the neuron
- The output of a neuron is a non-linear (activation) function applied to the linear combination of the inputs coming from the previous layer
 - σ : non-linear activation function
 - $a_{t+1,j} = \langle w_j^{(t+1)}, v^{(t)} \rangle$ output of neuron before the activation function $o_{t+1,j}(x) = \sigma\left(\sum_{r: (v_{t,r}, v_{t+1,j}) \in E} w(v_{t,r}, v_{t+1,j}) o_{t,r}(x)\right) = \sigma\left(a_{t+1,j}(x)\right)$ In vector notation: $v_{t+1,j} = \sigma\left(\langle w_j^{(t+1)}, v^{(t)} \rangle\right) = \sigma(a_{t+1,j})$ $u_{t+1,j} = \sigma\left(\langle w_j^{(t+1)}, v^{(t)} \rangle\right) = \sigma(a_{t+1,j})$ $w_{t+1,j} = \sigma\left(\langle w_j^{(t+1)}, v^{(t)} \rangle\right) = \sigma(a_{t+1,j})$ $u_{t+1,j} = \sigma\left(\langle w_j^{(t+1)}, v^{(t)} \rangle\right) = \sigma(a_{t+1,j})$ $w_{t+1,j} = \sigma\left(\langle w_j^{(t+1)}, v^{(t)} \rangle\right) = \sigma(a_{t+1,j})$

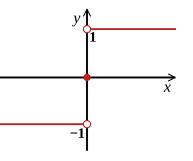
Image medium.com

Activation Functions

Various activation functions $\sigma(a)$ can be exploited:

- 1. Sign function
- 2. Threshold function
- 3. Sigmoid function
- 4. Hyperbolic Tangent
- 5. Rectified Linear Unit

Activation: Sign and Threshold



Outputs the sign of the input $\sigma(a) = sign(a)$ $\mathbb{R}^n \rightarrow [-1; 1]$

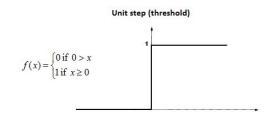
+ Simple/fast

DIPARTIMENTO

di ingegneria

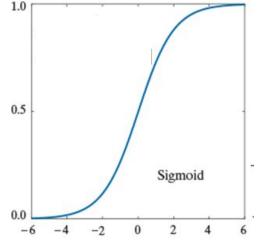
DELL'INFORMAZIONE

- + Nice interpretation as the firing rate of a neuron
 - -1 = not firing
 - 1 = firing
- Output is not smooth/continuous
- saturate and kill gradients, thus NN will barely learn



Threshold function: similar behaviour

Activation: Sigmoid



Takes a real-valued number and "squashes" it into range between 0 and 1 $\sigma(a) = \frac{1}{1 + e^{-a}}$ $\sigma'(a) = \sigma(a)[1 - \sigma(a)]$ $\mathbb{R}^n \to [0,1]$

+ Smooth output

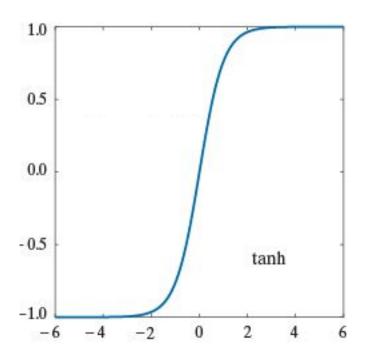
DIPARTIMENTO

di ingegneria

DELL'INFORMAZIONE

- + Nice interpretation as the firing rate of a neuron
 - 0 = not firing at all
 - 1 = fully firing
- Sigmoid neurons saturate and kill gradients, thus NN will have issues in learning
 - □ when the neuron's activation are 0 or 1 (saturate)
 - 🙁 gradient at these regions almost zero
 - 🙁 almost no signal will flow to its weights
 - 🙁 if initial weights are too large then most neurons would saturate

Activation: Tanh



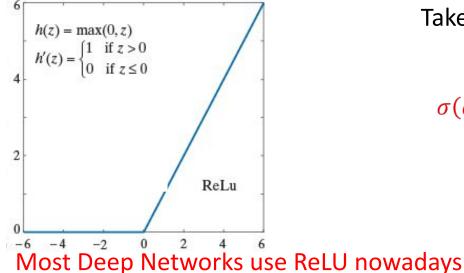
Takes a real-valued number and "squashes" it into range between -1 and 1.

$$\sigma(a) = \tanh(a) = \frac{e^a - e^{-a}}{e^a + e^{-a}} = \frac{e^{2a} - 1}{e^{2a} + 1}$$
$$\sigma'(a) = 1 - [tanh(a)^2]$$
$$\mathbb{R}^n \to [0, 1]$$

Tanh is a scaled and shifted sigmoid: tanh(x) = 2sigm(2x) - 1

- + Like sigmoid, tanh neurons saturate
- Unlike sigmoid, output is zero-centered

Activation: ReLU



Most Deep Networks use ReLI
 + Trains much faster

- accelerates the convergence of SGD
- due to linear, non-saturating form
- + Less expensive operations
 - compared to sigmoid/tanh (exponentials etc.)
 - implemented by simply thresholding a matrix at zero
- + More expressive
- + Prevents the gradient vanishing problem

Takes a real-valued number and thresholds it at zero $\sigma(a) = \max(0, a) = \begin{cases} a & if \ a > 0 \\ 0 & if \ a \le 0 \end{cases}$ $\sigma'(a) = \begin{cases} 1 & if \ a > 0 \\ 0 & if \ a \le 0 \end{cases}$ $\mathbb{R}^n \to \mathbb{R}^n_+$

Forward Propagation

$$\boldsymbol{v}^{(0)} \rightarrow \boldsymbol{v}^{(1)} \rightarrow \boldsymbol{v}^{(2)} \rightarrow \cdots \rightarrow \boldsymbol{v}^{(T)}$$

Take an input sample and compute the output of the network

Start from the input (layer 0)...compute the output of layer 1, send to layer 2 and get output....

.... through all the layers up to the output layer

Input: $\mathbf{x} = (x_1, \dots, x_d)^T$; NN with 1 output node Output: prediction y of NN; $\mathbf{y}^{(0)} \leftarrow (1, x_1, \dots, x_d)^T$; for $t \leftarrow 1$ to T do $a^{(t)} \leftarrow (w^{(t)})^T \mathbf{v}^{(t-1)}$; $a^{(t)} \leftarrow (1, \sigma (a^{(t)})^T)^T$; $y \leftarrow \mathbf{v}^{(T)}$; $\mathbf{y} \leftarrow \mathbf{v}^{(T)}$; return y; NN with 1 output node 1 st layer: read input From first to last linear part $(\ll 1)^T$ for bias)

Learning Neural Networks

Neural Network (NN): (V, E, σ, w)

- Corresponds to a function $h_{V,E,\sigma,w}: \mathbb{R}^{|V_0-1|} \to \mathbb{R}^{|V_T|}$
- The hypothesis class of a network is defined by fixing its architecture:

 $\mathcal{H}_{V,E,\sigma} = \{h_{V,E,\sigma,w} : w \text{ is a mapping from } E \text{ to } \mathbb{R}\}$

- V, E, σ defines the architecture of the network
- w contains the parameters that are going to be learned
- Training of the NN: finding the optimal set of weights w

Expressive Power of NN (boolean functions)

Proposition

For every *d*, there exists a graph (V, E) of depth 2 such that $\mathcal{H}_{V,E,sign}$ contains all functions from $\{-1,1\}^d$ to $\{-1,1\}$

NN can implement every boolean function!

Unfortunately the graph (V, E) is very big...

Proposition

For every *d*, let s(d) be the minimal integer such that there exists a graph (V, E) with |V| = s(d) such that $\mathcal{H}_{V,E,\text{sign}}$ contains all functions from $\{-1,1\}^d$ to $\{-1,1\}$. Then s(d) is an exponential function of *d*.

Note: similar result for $\sigma =$ sigmoid

Recall: Boolean functions include any function that can be implemented in a computer

Expressive Power of NN (demonstration)

Consider sign activation $\mathcal{H}_{V,E,sign}$

1. Use this 3 layers NN:
$$\begin{cases} INPUT: |V_0| = n + 1 \\ HIDDEN: |V_1| = 2^n + 1 \\ OUTPUT: |V_2| = 1 \end{cases}$$

2. Define: $u_1, \dots, u_k \in \{\pm 1\}^n$: all input vectors leading to an output of 1

3. Notice: $\langle x, u_i \rangle = \begin{cases} n & \text{if } x = u_i \\ \leq n - 2 \text{ if } x \neq u_i \end{cases}$ (all bits match) (all bits match)

4. Define
$$g_i = sign(\langle \mathbf{x}, \mathbf{u}_i \rangle - n + 1) = \begin{cases} 1 & if \mathbf{x} = \mathbf{u}_i \\ -1 & otherwise \end{cases}$$

5. Adapt weights w to get g_i in the hidden layer

 \rightarrow each hidden layer neuron looks if the input is u_i

6. Output layer: $f(\mathbf{x}) = sign(\sum_{i=1}^{k} g_i(\mathbf{x}) + k - 1)$ (sign is 1 if at least one is true)

Notice: network exponentially large, works but «brute-force» solution probably leading to overfitting

Expressive Power of NN (real valued functions)

Proposition

For every fixed $\varepsilon > 0$ and every Lipschitz function $f: [-1,1]^d \rightarrow [-1,1]$ it is possible to construct a neural network such that for every input $\mathbf{x} \in [-1, 1]^d$ the output of the neural network is in $[f(\mathbf{x}) - \varepsilon, f(\mathbf{x}) + \varepsilon]$.

Not part of the course Note: first result proved by Cybenko (1989) for sigmoid activation function, requires only 1 hidden layer!

NNs are **universal approximators**!

But again ...

Proposition

Fix some $\varepsilon \in (0, 1)$. For every d, let s(d) be the minimal integer such that there exists a graph (V, E) with |V| = s(d) such that $\mathcal{H}_{V,E,\sigma}$, with σ = sigmoid, can approximate, with precision ε , every 1-Lipschitz function $f: [-1,1]^d \rightarrow [-1,1]$. Then s(d) is exponential in d.

Implement Conjunction and Disjunction with NN

NN can implement boolean AND / OR
 Consider sign activation and k inputs with values ±1

Conjunction (AND)

$$f(\mathbf{x}) = sign\left(1 - k + \sum_{i=1}^{k} \mathbf{x}_i\right)$$

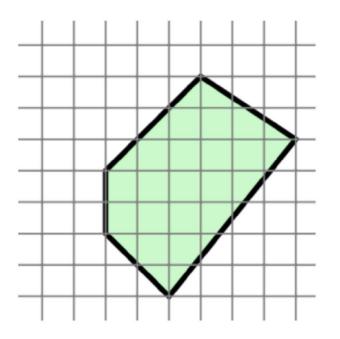
(positive if all positive, AND)

Disjunction (OR)

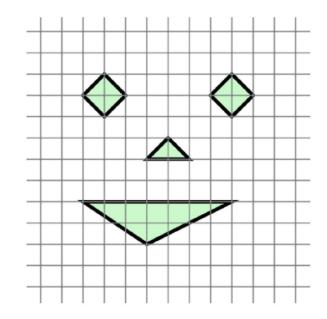
$$f(\mathbf{x}) = sign\left(k - 1 + \sum_{i=1}^{k} \mathbf{x}_i\right)$$

(positive if at least one positive, OR)

Expressive Power of NN (example)



- Input in \mathbb{R}^2 , 2-layer NN
- k neurons, sign activation
- Each neuron: an halfspace
- Intersection of halfspaces
- Convex polytopes with k-1 faces



- Input in \mathbb{R}^2 , 3-layer NN
- *k* neurons, sign activation
- Each neuron: an halfspace
- Intersection and unions of halfspaces
- Union of polytopes

VC dimension of NN

With *sign* activation

VC dimension of $\mathcal{H}_{V,E,sign} = O(|E|\log|E|)$ (no demonstration)

• With Sigmoid (σ) activation VC dimension of $\mathcal{H}_{V,E,\sigma} = O(|V|^2 |E|^2)$ (no demonstration)

 \rightarrow Large NNs require a lot of data !

If we have enough data, what about the computation time ?

Runtime of NN

Applying the ERM rule to a NN (V, E, σ, w) is computationally difficult, even for Not part of the course relatively small NN...

Theorem:

Hypothesis: Let $k \geq 3$. For every d, let (V,E) be a layered graph with d input nodes, k+1 nodes at the (only) hidden layer (where one of them is the constant neuron), and a single output node.

Thesis: It is NP-hard to implement the ERM rule with respect to $\mathcal{H}_{V,E,sign}$ (no demonstration)

Even approximations of ERM rule are infeasible Also by changing the activation things do not get better

Need a different strategy....

SGD and backpropagation algorithm !

NN optimization

Target of ERM: given training data $(x_1, y_1), ..., (x_m, y_m)$ find the weights that minimize the training error: $L_s(h) = \frac{1}{m} \sum_{i=1}^m \ell(h, (x_i, y_i))$

The problem is challenging !

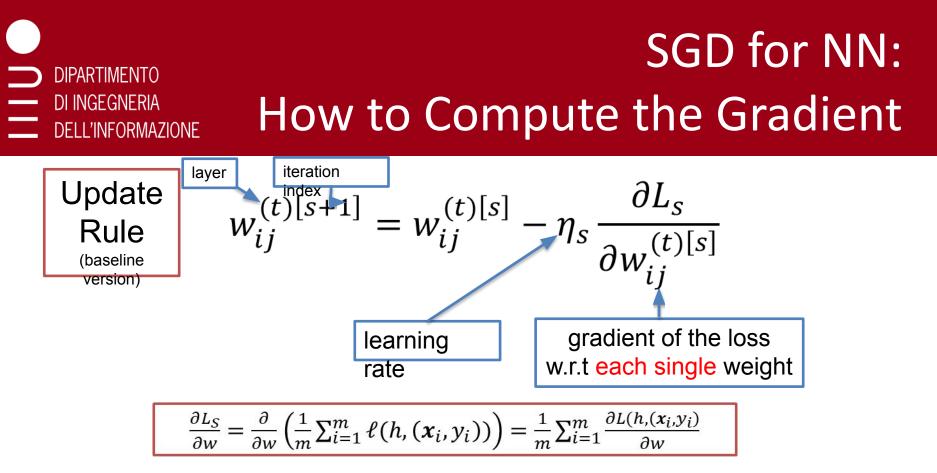
Idea:

- 1. Forward propagate the training data and compute the loss
- Consider the loss as a function of the weights and compute the gradient of the loss w.r.t. the weights
- 3. Update the weights with SGD

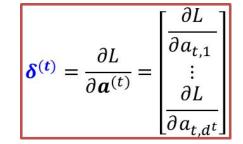
Good Idea! But we need the gradient of the loss w.r.t. the weights

SGD fror NN: Algorithm

SGD for Neural Networks]
parameters:	
Number of iterations $ au$	
Step size sequence $\eta_1, \eta_2, \dots, \eta_{\tau}$	
Regularization parameter $\lambda > 0$	
Input:	
Network : layered graph <i>G=(V,E)</i>	
differentiable activation function $\sigma: \mathbb{R} \to \mathbb{R}$	
Algorithm:	
chose $w^{[1]} \in \mathbb{R}^{ E }$ at random	
(from a distribution s.t. $w^{[1]}$ is close enough to 0)	
for $s = 1, 2,, \tau$	
sample $(x, y) \sim \mathcal{D}$	
calculate gradient $\boldsymbol{v}_s = backpropagation(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{w}, (V, E), \sigma)$	
update $w^{[s+1]} = w^{[s]} - \eta_s (v_s + \lambda w^{[s]})$	
output:	regularization
\overline{w} is the best performing $w^{[s]}$ on a validation set	adaptive learning
W is the best performing war on a valuation set	rate

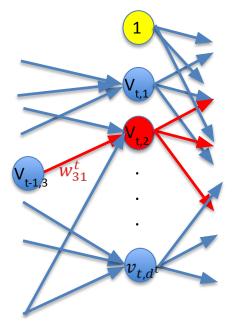


- We need the gradient w.r.t. each single weight in the network
- But we can compute the loss only on the output (i.e., after the last layer)
- Recall that each neuron contains also the non-linear activation function



 $\delta^{(t)}$: change in error w.r.t. to the weighted average before the non-linear transformation

BackPropagation (1)



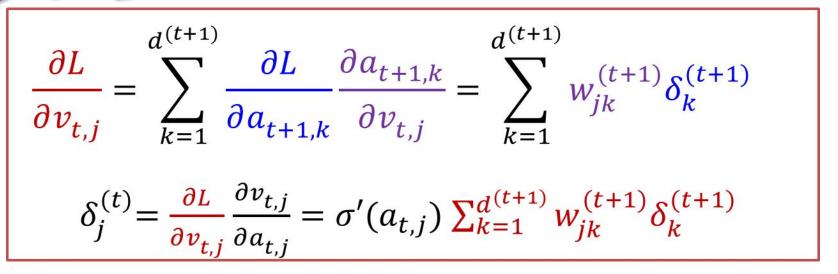
Decompose the gradient with the chain rule
 Recall a_{t,j} = Σ^{d(t-1)}_{k=0} w^(t)_{kj} v_{t-1,k}
 Each weight w^(t)_{ij} impacts only on a_{t,j}
 We need δ^(t) = ∂L/∂a^(t) to compute the gradient
 σ' depends on the selected activation function

$$\frac{\partial L}{\partial w_{ij}^{(t)}} = \frac{\partial L}{\partial a_{t,j}} \frac{\partial a_{t,j}}{\partial w_{ij}^{(t)}} = \delta_j^{(t)} \frac{\partial}{\partial w_{ij}^{(t)}} \left(\sum_{k=0}^{d^{(t-1)}} w_{kj}^{(t)} v_{t-1,k} \right) = \delta_j^{(t)} v_{t-1,i}$$

$$\delta_j^{(t)} = \frac{\partial L}{\partial v_{t,j}} \frac{\partial v_{t,j}}{\partial a_{t,j}} = \frac{\partial L}{\partial v_{t,j}} \sigma'(a_{t,j})$$
remains only k=i term

BackPropagation (2)

- Understand how the loss changes w.r.t. $v_{t,j}$
- Change in layer t affects only neurons in layer t+1 (and then each following layer up to the loss at the end)
- Each neuron can affect all the neurons in next layer
 - Need to sum contributions to all the neurons in layer t+1
- To compute $\delta^{(t)}$ we need $\delta^{(t+1)}$ (solution of the next layer)



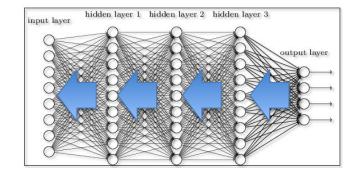
BackPropagation (3)

$$\delta_{j}^{(t)} = \sigma'(a_{t,j}) \sum_{k=1}^{d^{(t+1)}} w_{jk}^{(t+1)} \delta_{k}^{(t+1)}$$

The solution for each layer need the solution of the following one

- Start from the last layer ($\delta^{(L)}$ can be computed from the loss on the output)
- Backpropagate the gradients through all the layers up to the first

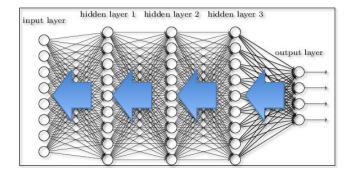
$$\boldsymbol{v}^{(0)} \leftarrow \boldsymbol{v}^{(1)} \leftarrow \boldsymbol{v}^{(2)} \leftarrow \cdots \leftarrow \boldsymbol{v}^{(T)}$$



BackPropagation: Algorithm

Input: data point (\mathbf{x}_i, y_i) , NN (with weights $w_{ij}^{(t)}$, for $1 \le t \le T$) Output: $\delta^{(t)}$ for t = 1, ..., Tcompute $a^{(t)}$ and $v^{(t)}$ for t = 1, ..., T; $\delta^{(L)} \leftarrow \frac{\partial L}{\partial a^{(L)}}$; for t = T - 1 downto 1 do $\int \delta_j^{(\ell)} \leftarrow \sigma'(a_{t,j}) \cdot \sum_{k=1}^{d^{(\ell+1)}} w_{jk}^{(t+1)} \delta_k^{(t+1)}$ for all $j = 1, ..., d^{(t)}$; return $\delta^{(1)}, ..., \delta^{(T)}$;

$$\boldsymbol{v}^{(0)} \leftarrow \boldsymbol{v}^{(1)} \leftarrow \boldsymbol{v}^{(2)} \leftarrow \cdots \leftarrow \boldsymbol{v}^{(T)}$$



NN Training: complete algorithm

BackPropagation algorithm with SGD *Input:* training data $(x_1, y_1), \dots, (x_m, y_m)$ *Output:* NN weights $w_{ii}^{(t)}$

// until convergence pick (x_k, y_k) at random from training data; // SGD: 1 sample at random // forward propagation // backward propagation $w_{ii}^{(t)[s+1]} = w_{ii}^{(t)[s]} - \eta v_{t-1,i} \delta_i^{(t)} \quad \forall i, j, t; \quad // \text{ update weights}$

if converged then return $w_{ij}^{(t)[s]} \forall i, j, t;$

compute $v_{t,j} \quad \forall j, t;$

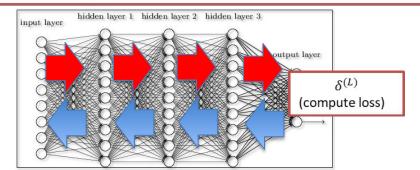
compute $\delta_i^{(t)} \quad \forall j, t;$

DIPARTIMENTO **DI INGEGNERIA**

DELL'INFORMAZIONE

Initialize $w_{ii}^{(t)} \quad \forall i, j, t;$

for $s \leftarrow 0, 1, 2, \dots$ do



DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE Pre-processing and Initialization

Pre-processing:

- Typically all inputs are normalized and centred around 0
- Both local or global normalization strategies

Initialization of the weights

- All to 0 does not work
- Random values around 0 (regime where model is roughly linear)
- Uniform or normal (Gaussian) distribution can be used
- Sometimes multiple initializations and trainings, then select best result (smallest training error)
- In deep NN "Glorot" initialization: normal distribution with variance inversely proportional to the sum of the number of incoming and outcoming connections of the neuron

NN Training details: When to Stop

When to stop?

- Small training error
- Small marginal improvement in error at each step
- Upper bound on number of iterations

Loss function usually has multiple local minima

- With highly dimensional spaces the risk is smaller than in low dimensional ones, but no guarantee
- Run stochastic gradient descent (SGD) from different (random) initial weights

Regularization

- Minimize weighted sum of the loss with the sum of all the weights
- Avoid too large weights and make optimization more stable
- **\Box** Regularization parameter λ

 $L_s(h) + \frac{\lambda}{m}$

L1 or L2 regularization can be used

 $\left(w_{ij}^{(t)}\right)$ $L_s(h) + \frac{\pi}{m}$