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Bayesian Methods

Bayesian methods provide computational techniques of learning (Naive
Bayes, Bayesian Networks, etc.) but they are also useful for the
interpretation/analysis of non-probabilistic algorithms:

The observed training examples increase or decrease the probability
that a hypothesis is correct
Combination of prior knowledge on hypotheses with observed data
Probabilistic predictions
Classification by combining multiple hypotheses, weighted by their
probability
They define the ideal case of optimal prediction (even if
computationally intractable)
Practical difficulty: they require initial knowledge of many
probabilities. If they are not initially available, they must be estimated
by making appropriate assumptions about the distributions.
Difficult in practice: computationally expensive, they require many
examples for the correct estimation of the parameters.
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Bayes Theorem

P(h|D) =
P(D|h)P(h)

P(D)
=

P(D|h)P(h)∑
h′ P(D|h′)P(h′)

P(h): a priori probability of the hypothesis h

P(D): a priori probability of training data

P(h|D): probability of h given D

P(D|h): probability of D given h
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Choice of the hypothesis

P(h|D) =
P(D|h)P(h)

P(D)

In general, we want to select the most probable hypothesis given the
learning data, known as maximum a posteriori hypothesis hMAP :

hMAP = argmax
h∈H

P(h|D)

= argmax
h∈H

P(D|h)P(h)
P(D)

= argmax
h∈H

P(D|h)P(h)

If we assume uniform probabilities on the hypotheses, i.e., P(hi ) = P(hj),
then we can choose the so-called maximum likelihood hypothesis hML:

hML = argmax
h∈H

P(D|h)
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An example

Medical diagnosis: probability that a given patient has a particular form of
cancer

P(cancer) = .008 P(¬cancer) = .992

P(⊕|cancer) = .98 P(⊖|cancer) = .02

P(⊕|¬cancer) = .03 P(⊖|¬cancer) = .97

Suppose we observe a new patient for whom laboratory tests have given a
positive result ⊕. What is the probability that the patient actually has
cancer?

P(cancer |⊕) ∝ P(⊕|cancer)P(cancer) = .0078

P(¬cancer |⊕) ∝ P(⊕|¬cancer)P(¬cancer) = .0298

Fabio Aiolli Bayesian Learning November 30th, 2022 5 / 18



”Brute force” learning of the hypothesis MAP

For each hypothesis h ∈ H, compute the posterior probability

P(h|D) =
P(D|h)P(h)

P(D)

Return the hypothesis hMAP with the highest a posterior probability

hMAP = argmax
h∈H

P(h|D)
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Evolution of the a posterior probability

Consistent Learner:
For simplicity we assume a uniform probability on the hypotheses,
P(hi ) = P(hj), and deterministic noise-free training data (P(D|h) = 1 if h
is consistent with D e P(D|h) = 0 otherwise).
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Learning of a real-valued function

Consider any real-valued target
function f , learning examples ⟨xi , di ⟩,
where di has some noise,

di = f (xi ) + ei

ei is a random variable (noise)
extracted independently for each
xi according to a Gaussian
distribution with mean 0.

Then the hypothesis hML (maximum likelihood) is the one that minimizes:

hML = argmin
h∈H

m∑
i=0

(di − h(xi ))
2
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p(di |h) =
1√
2πσ2

e−
1

2σ2 (

ei︷ ︸︸ ︷
di − h(xi ))2
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Learning of a real-valued function

hML = argmax
h∈H

p(D|h)

= argmax
h∈H

m∏
i=1

p(di |h)

= argmax
h∈H

m∏
i=1

1√
2πσ2

e−
1

2σ2 (di−h(xi ))
2

which is best done by maximizing the natural logarithm.
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Learning of a real-valued function
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Learning of a real-valued function

hML = argmax
h∈H

m∏
i=1

1√
2πσ2

e−
1

2σ2 (di−h(xi ))
2

= argmax
h∈H

ln

(
m∏
i=1

1√
2πσ2

e−
1

2σ2 (di−h(xi ))
2

)

= argmax
h∈H

m∑
i=1

ln

(
1√
2πσ2

)
− 1

2σ2
(di − h(xi ))

2

= argmax
h∈H

m∑
i=1

− 1

2σ2
(di − h(xi ))

2

= argmin
h∈H

m∑
i=1

1

2σ2
(di − h(xi ))

2 = argmin
h∈H

m∑
i=1

(di − h(xi ))
2
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Learning a hypothesis that predicts a probability

Consider the scenario of a probabilistic function f : X → {0, 1}.
X might represent medical patients in terms of their symptoms and
f (x) might be 1 if the patient survives the desease and 0 if not;

X might represent loan applicants in terms of their credit history and
f (x) might be 1 if the applicant succesfully repays the next loan and
0 if not

We want to learn a neural network (or any other real-valued approximator)
f ′ : X → [0, 1] which predicts the probability that f (x) = 1 given x .

What criterion should we optimize to find an ML hypothesis for f ′? To do
this, we first need to define what P(D|h) is,

where D = {⟨x1, d1⟩, . . . , ⟨xn, dn⟩} and di ∈ {0, 1}.
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Learning a hypothesis that predicts a probability

P(D|h) =
m∏
i=1

P(xi , di |h) =
m∏
i=1

P(di |h, xi )P(xi )

P(di |h, xi ) =
{

h(xi ) if di = 1
1− h(xi ) if di = 0

= h(xi )
di (1− h(xi ))

1−di

P(D|h) =
m∏
i=1

h(xi )
di (1− h(xi ))

1−diP(xi )

hML = argmax
h∈H

m∏
i=1

h(xi )
di (1− h(xi ))

1−di

= argmax
h∈H

m∑
i=1

di ln(h(xi )) + (1− di ) ln(1− h(xi ))︸ ︷︷ ︸
−cross entropy
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Most likely classification for new instances

So far we have been looking for the most likely hypothesis given the data
D (that is hMAP)

Given a new instance x, which is the most likely classification?

HMAP(x) classification is not necessarily the most likely classification.

Let us consider for example the following situation:

three possible hypotheses:

P(h1|D) = 0.4, P(h2|D) = 0.3, P(h3|D) = 0.3

given a new instance x,

h1(x) = ⊕, h2(x) = ⊖, h3(x) = ⊖

which is the most likely classification for x?
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Bayes optimal classification

Given a class vj ∈ V , we get:

P(vj |D) =
∑
hi∈H

P(vj |hi )P(hi |D)

from which it follows that the optimal (Bayes) classification of a certain
instance is the class vj ∈ V which maximizes this probability, that is:

arg max
vj∈V

∑
hi∈H

P(vj |hi )P(hi |D)

Fabio Aiolli Bayesian Learning November 30th, 2022 16 / 18



Example of optimal Bayes classification

vBayes = arg max
vj∈V

∑
hi∈H

P(vj |hi )P(hi |D)

Example:
P(h1|D) = 0.4, P(⊖|h1) = 0, P(⊕|h1) = 1

P(h2|D) = 0.3, P(⊖|h2) = 1, P(⊕|h2) = 0

P(h3|D) = 0.3, P(⊖|h3) = 1, P(⊕|h3) = 0

hence: ∑
hi∈H

P(⊕|hi )P(hi |D) = 0.4
∑
hi∈H

P(⊖|hi )P(hi |D) = 0.6

and then:

vBayes = arg max
vj∈{⊖,⊕}

∑
hi∈H

P(vj |hi )P(hi |D) = ⊖
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Gibbs classifier

Bayes’ optimal classifier can be very expensive to compute if there are
many hypotheses!
Gibbs algorithm:

Choose a hypothesis at random, with probability P(h|D)

Use it to classify the new instance

Rather surprising fact: assuming that the target concepts are randomly
extracted from H according to an a priori probability on H, then:

E [ϵGibbs ] ≤ 2E [ϵBayes ]
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