1) QUESTIONS ABOUT PREVIOUS EXERCISES
2) STUDY OF A FUNCTION
3)

$$
\begin{aligned}
& \approx \lim _{n \rightarrow 0}-\frac{1}{2} \frac{\left.n^{2}\right) \rightarrow 0}{\left.\sqrt{1+n^{2}}-1\right) \rightarrow 0 \cdot \frac{\sqrt{1+n^{2}}+1}{\sqrt{1+n^{2}+1}}=\lim _{n \rightarrow 0}-\frac{1}{2} \frac{n^{2}\left(1+\sqrt{1+n^{2}}\right)}{11^{1+n^{2}-1}}} \begin{array}{ll}
& \begin{array}{l}
\text { EXERCISE } \\
\text { FROM } \\
\text { 2FINOLO22 } \\
\text { LECTURE }
\end{array} \\
=\lim _{n \rightarrow 0}-\frac{1}{2} \frac{n^{2}\left(1+\sqrt{1+n^{2}}\right)}{n^{2}}=-\frac{1}{2} \cdot(1+1)=-1 &
\end{array}
\end{aligned}
$$

2) $f(x)=x+2 \operatorname{arctg} \frac{1}{x}+\pi$

$$
\begin{aligned}
& D[f]=x \neq 0 \rightarrow D=\mathbb{R}-\{0\} \\
& \operatorname{sgn}(f): x+2 \operatorname{arctg} \frac{1}{x}+\pi>0 \\
& \lim _{x \rightarrow+\infty} x+2 \operatorname{arctg} \frac{1}{x}+\pi=+\infty+2 \cdot 0+\pi=+\infty \\
& \lim _{x \rightarrow-\infty} f(x)=-\infty+\cdots=-\infty \\
& \lim _{x \rightarrow 0^{+}} f(x)=2 \operatorname{arctg}(+\infty)+\pi=\pi+\pi=2 \pi \\
& \lim _{x \rightarrow 0^{-}} f(x)=2 \operatorname{arctg}(-\infty)+\pi=-\pi+\pi=0
\end{aligned}
$$

$\rightarrow f(x)$ is continuous and depirvalle in $D=\mathbb{R}-\{0\}$

$$
\left.P^{\prime}(x)=d x+\operatorname{aratan} 1+\pi\right]=1+, 1-(-1)
$$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[x+2 \operatorname{arctg} \frac{1}{x}+\pi\right]=1+2 \frac{1}{1+\left(\frac{1}{x}\right)^{2}}\left(-\frac{1}{x^{2}}\right) \\
& =1+2 \frac{x^{2}}{x^{2}+1}\left(-\frac{1}{x^{2}}\right)=1-\frac{2}{1+x^{2}}=\frac{-1+x^{2}}{1+x^{2}}
\end{aligned}
$$

$$
\begin{array}{lll}
\operatorname{sgn}\left(f^{\prime}\right): & D \geqslant 0 & f^{\prime} \geqslant 0 \\
& x \leqslant-1 \vee x \\
& M \geqslant 0 \Delta \Rightarrow & x^{2}-1 \geqslant 0
\end{array} \quad f^{\prime}<0 \quad 1<x<1
$$

$\Rightarrow \quad f$ increasing in $]-\infty ;-1] \cup[1 ;+\infty[$
f decreasing in $[-1 ; 0[U] 0 ; 1]$

$$
\begin{aligned}
& f(1)=1+2 \operatorname{arctg} 1+\pi=1+\frac{\pi}{2}+\pi=1+\frac{3}{2} \pi \\
& f(-1)=-1+2 \operatorname{arctg}-1+\pi=-1+\frac{\pi}{2}>0 \quad<_{>} \pi+\left(\frac{\pi}{2}+1\right)<2 \pi
\end{aligned}
$$

ASYMTOTES

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} \frac{f(x)}{x}=\lim _{x \rightarrow+\infty} \frac{x+2 \operatorname{arctg} \frac{1}{x}+\pi}{x}=\lim _{x \rightarrow+\infty} \frac{x+\infty(x)}{x}=1=\lim _{x \rightarrow-\infty} \frac{f(x)}{x} \\
& \lim _{x \rightarrow+\infty} f(x)-1 \cdot x=\lim _{x \rightarrow+\infty} 2 \operatorname{arctg} \frac{1}{x}+\pi=\pi=\lim _{x \rightarrow-\infty} f(x)-1 \cdot x
\end{aligned}
$$

\square OBLIQUE ASYMJOTE $y=x+\pi$

$$
\begin{aligned}
& f^{\prime \prime}(x)=\frac{d}{d x}\left(1-\frac{2}{x^{2}+1}\right)=\frac{d}{d x}\left(-2\left(x^{2}+1\right)^{-1}\right)=+2\left(x^{2}+1\right)^{-2} \cdot 2 x=\frac{4 x}{\left(x^{2}+1\right)^{2}} \\
& \quad \frac{d}{d x} f(x)=\alpha f(x)^{\alpha-1} f^{\prime}(x) \\
& \left.f^{\prime \prime} \geqslant 0 \Leftrightarrow x \geqslant 0 \quad \text { f convex in }\right] 0 ;+\infty[
\end{aligned}
$$

f concave in $]-\infty ; 0[$
16) $\quad f(x)=e^{-x}\left|e^{x}-x^{2}\right|$

$$
=e^{-x}\left(e^{x}-x^{2}\right) \operatorname{sgh}\left(e^{x}-x^{2}\right)
$$

$$
\begin{aligned}
& \frac{d}{d x}|x|=\left\{\begin{array}{cc}
1 & x>0 \\
-1 & x<0
\end{array}=\operatorname{sgn}(x)\right. \\
& |x|=x \cdot \operatorname{sgn}(x)
\end{aligned}
$$

$D=R$
人 $1 e^{x}$ min $\left(0^{x} v^{2}\right)$ _ $\int-11 x>\alpha$

$$
\begin{aligned}
& \mathbb{D}=\mathbb{R} \\
& \operatorname{sgn}(f(x))=+1, e^{e^{x}=x^{2}} \\
& \lim _{x \rightarrow+\infty}\left(1-x^{2} e^{-x}\right)(+1)=1 \rightarrow \text { HOR(zONTAC ASYMTOTE } \\
& \lim _{x \rightarrow-\infty}\left(1-x^{2} e^{-x}\right)(-1)=(-\infty)(-1)=+\infty \\
& x^{2} \quad \operatorname{sgn}\left(e^{x}-x^{2}\right)=\left\{\begin{array}{l}
11 x \times \alpha \\
-1 x<\alpha
\end{array}\right. \\
& f^{\prime}(x)=\frac{d}{d x}\left(\left(1-x^{2} e^{-x}\right) \operatorname{sgn}\left(e^{x}-x^{2}\right)\right)=\operatorname{sgn}\left(e^{x}-x^{2}\right)\left[-2 x e^{-x}+\left(-x^{2}\right)\left(-e^{-x}\right)\right] \\
& \frac{d}{d x} \operatorname{sgn} x=0 \rightarrow \frac{d}{d x} f(x) \operatorname{sgn}(x)=f^{\prime}(x) \operatorname{sgn}(x)+f(x) \operatorname{sgn}(x)
\end{aligned}
$$

$f^{\prime}(x)>0$

\& continuous in \mathbb{R}
f derivable in $\mathbb{R}-\{\alpha\} \quad \lim _{x \rightarrow \alpha^{+}} \underbrace{e^{-x}}_{\hat{0}} \underset{>0}{\left(x^{2}-2 x\right)}=\beta>0$

$$
\lim _{x \rightarrow \alpha^{-}} f^{\prime}(x)=-\beta<0
$$

$$
\left.\begin{array}{rl}
f(\alpha) & =e^{-\alpha}\left|e^{\alpha}-\alpha^{2}\right| \text { with } \alpha \text { salution of } e^{x}-x^{2} \rightarrow \min ^{\prime} f \\
& =0 \\
f(0) & =e^{-0}\left|e^{0}-0^{2}\right|=1|1-0|=1 \\
f(2) & =1-4 e^{-2}<1
\end{array} \quad \rightarrow \max f\right)
$$

12) $f(x)=\log \frac{\left|x^{2}-3\right|}{x+1}$

$$
\begin{aligned}
& \text { (I): } \frac{\left|x^{2}-3\right|}{x+1}>0 \quad \Delta \Rightarrow\left\{\begin{array}{l}
x>-1 \\
x^{2}-3 \neq 0 \quad \Leftrightarrow x \neq \pm \sqrt{3}
\end{array}\right. \\
& D[f]=\frac{]-1 ; \infty[\pm \sqrt{3}\}}{]-1 i+\infty[-\{\sqrt{3}\}}
\end{aligned}
$$

sgnf: $f(x)>0 \Leftrightarrow \frac{\left|x^{2}-3\right|}{x+1}>1 \quad$ in $D x+1>0$

$$
\left|x^{112}-3\right|>x+1
$$

$$
\begin{aligned}
& \begin{array}{l}
{\left[\left\{\begin{array}{l}
x>\sqrt{3} \\
x^{2}-3>x+1
\end{array}\right.\right.} \\
{\left[\begin{array}{l}
-1<x<\sqrt{3} \\
-x^{2}+3>x+1
\end{array}\right.}
\end{array} \\
& -x^{2}-x+2>0 \\
& x^{2}+x-2<0 \\
& x_{12}=\frac{-1 \pm \sqrt{1+8}}{2} \\
& =\frac{-1+3}{2}=-2 ; 1 \\
& \frac{1}{2}+\sqrt{\frac{17}{4}} \sim \frac{1}{2}+\sqrt{4} \\
& \sim \frac{1}{2}+2>\sqrt{3} \\
& x>\frac{1+\sqrt{17}}{2} \\
& \rightarrow\left\{\begin{array}{l}
-1<x<\sqrt{3} \\
-2<x<1
\end{array}\right]-1<x<1 \\
& \rightarrow f(x)>0 \text { in }
\end{aligned}
$$

$$
\begin{aligned}
&]-1,1[\cup] \frac{1+\sqrt{17}}{2} ;+\infty[\\
& \lim _{x \rightarrow+\infty} \log \frac{\left|x^{2}-3\right|}{x+1}=\log +\infty=+\infty \\
& \rightarrow \text { DON'T HAVE ASYMTOTES } \\
& f(x) \sim \log x\left\{\begin{array}{l}
\lim \frac{\log x}{}=0 \\
\lim \log x-0 x=+\infty
\end{array}\right.
\end{aligned}
$$

$$
\lim _{x \rightarrow-\infty} \lim _{x \rightarrow-1^{+}} \log \frac{\left|x^{2}-3\right|}{x+1}=\lim +\infty=+\infty
$$

I VERTICAL AstmTOTE $x=-1$

$$
\lim _{x \rightarrow \sqrt{3}^{ \pm}} \log \frac{\left|x^{2}-3\right|}{x+1}=\lim 0^{+}=-\infty \rightarrow \text { VERTICAL ASYMTOTE }
$$

of continuous and derivable in D

$$
\begin{aligned}
& f^{\prime}(x)=\frac{d}{d x} \log \frac{\left|x^{2}-3\right|}{x+1} \\
& \begin{aligned}
x>\sqrt{3}: \frac{d}{d x} \log \frac{x^{2}-3}{x+1} & =\frac{x+1}{x^{2}-3} \cdot \frac{2 x(x+1)-(1)\left(x^{2}-3\right)}{(x+1)^{2}} \\
& =\frac{2 x^{2}+2 x-x^{2}+3}{\left(x^{2}-3\right)(x+1)}=\frac{x^{2}+2 x+3}{\left(x^{2}-3\right)(x+1)}
\end{aligned} \\
& f^{\prime}>0 \quad x^{2}-3>0 \quad \forall x>\sqrt{3} \\
& x+1>0 \quad \forall x>\sqrt{3} \\
& \begin{array}{cc}
x^{2}+2 x+3>0 & x_{12}=-1 \pm \sqrt{1-3} \\
\Delta<0
\end{array} \\
& \square f^{\prime}>0 \quad \forall x>\sqrt{3} \\
& x<\sqrt{3}: \frac{d}{d x} \log \frac{3-x^{2}}{x+1} \ldots f^{\prime}<0 \quad\{x<\sqrt{3}\} \cap D
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}=0 \quad \ldots \text { NEVER } \\
& \left(f^{\prime \prime}\right)
\end{aligned}
$$

ADDITIONAL EXERCISES: STUDY THE FUNCTIONS
18) $f(x)=\log \left(\frac{\left|x^{2}-5\right|}{x+1}\right)$
19) $f(x)=\log \left|2 e^{2 x}-3\right|$
20) $f(x)=\frac{x|x|}{|x-1|}$

1) $f(x)=x^{2} \sqrt[3]{x+1}$
2) $f(x)=e^{x}\left(\frac{5 x-3}{x^{2}+2 x-3}\right)$
3) $f(x)=\log \left(\left(2-x^{2}\right)(1+x)\right)$
