UNIVERSITA
=) DIPARTIMENTO DECLL STUD
= DI INGEGNERIA
— DELLINFORMAZIONE DI PADOVA

Stochastic Gradient Descent

Machine Learning 2021
UML book chapter 14 (the slides contain a simplified presentation)

Slides: F. Chiariotti, P. Zanuttigh, F. Vandin, S. Rudes

® Minimize a
—) DIPARTIMENTO

= DI INGEGNERIA

— AR Differentiable Function

 The task: Need a general approach to minimize a differentiable
convex function f(w) with respect to the (weights') vector w
O Recall: the gradient V£ (w) of a differentiable function f: R — Ris:

of(w) of (W))

ow; 7 0wy

Vi(w) = (

U /dea: the gradient points in the direction of the largest increase of fin
the region close to w

[Move in the opposite direction until you find a minima
1 Gradient corresponds to first order Taylor approximation
O First order Taylor: f(u) = f(w) +<u—w,Vf(w)>
1 Good approximation for small steps - need to move step by step
[The theory can be extended to non-differentiable functions using
subgradients (if interested see book, not part of the course)

= D Gradient Descent (GD)

— DELLINFORMAZIONE

General approach to minimize a differentiable convex function f(w)

GD algorithm:
w® « 0
fort <« 0to7T —1do

WD) = w® _ pr £ (w®)
return w = w()

Learning rate
(controls the size of the steps)

Start from an initial point

Q e.g, w® = 0 orrandom value or initial guess....

At each step move in direction opposite to the gradient

Stop when solution does not improve or max iterations reached
Get the final point or the one corresponding to minimum value
of the objective function

oo0 O

g SPARTIVENTG Gradient Descent:

= DI INGEGNERIA

i A Accuracy and Convergence

Hypothesis:
* f(w)isa convex p-Lipschitz function

® recall p-Lipschitz: [|[f(wq) — f(wy)]| < pllwg — ws||
* W* € argming,.| <5} f (W)
* f(w*)is aminima for ||[w| < B

Then:

2
If we run the GD algorithm on f for T steps withn = /pBZ—T, then the
output vector w satisﬁ;/(w) _ f(w*)< BT?

Output of Minima (e.g., ERM solution) Demonstration
GD not part of the course

® Gradient Descent:

= DIPARTIMENTO
— DI INGEGNERIA

— DELLINFORMAZIONE CO rOI I a ry

Hypothesis: f (W) convex p-Lipschitz function, w* € argming,. <5 f (W)

2
Thesis :If we run the GD algorithm on ffor T steps withn = /% , then

Bp

the output vector w satisfies: f(w) — f(w*) < 7

Corollary:
For every € > 0, to achieve f(w) — f(w*) < ¢ it suffices to run the GD

szz

€2

algorithm for a number of iterations that satisfies T >

Demonstration:

 Theorem: If we run for T iterations we get that f(w) — f(w*) < 3—;
Bp BZ pZ
. Need\/_S€—>\/_> - T =2—

= DIPARTIMENTO

= DI INGEGNERIA
— DELLINFORMAZIONE

 Computing the gradient at each
step is computationally demanding
—avoid using exactly the gradient
 SGD: take a (random) vector with
expected value equal to the
gradient direction

Sthocastic Gradient
Descent (SGD)

SGD iterations

average of wit)

Example with
function

1.25(x + 6)>+ (y - 8)
2

SGD algorithm:
w(® < 0
fore & gteT =1 46
choose v; at random from a distribution
such that E|v,|w®] = 7f(w®)
w(t+1) = w(t) — py,

- S
returnw = w(D) (orw = —YT_.. wt)
raC 0

> ommeNo SGD vs GD: Notes (1)

— DELLINFORMAZIONE

Why should we use SGD instead of GD in machine learning applications ?

Consider the ML ERM setting:
find w that minimizes L, (w), i.e., f(w) = L,(w)

Using GD:

» Vf(w) depends on all the m pairs (x;,y;) € S

» Need to process all the training set at each iteration

» Very long computation time if training set is large (as in real world ML problems)

Using SGD:

Need to pick v, such that E[v,lw®] = Vf(w®) = VL (w®)

> pickarandom (x;,y;) €S = v, = V2(w®, (x;,y)))

» Satisfies the requirement

» Can be computed from just a single sample (— much faster !!)

Same discussion apply to regularized losses and other risk minimization framework

* the notation refers to the simplified case of differentiable functions, see the bookfor a more rigorous discussion

> ommeNo SGD vs GD: Notes (2)

— DELLINFORMAZIONE

2 Much faster than GD: at each step only one sample is used for the
computation
o Specially for large training sets standard GD is slow

Q Less stable trajectory
o More "noisy" but could jump out of local minima
= Advanced approaches to stabilize, e.g., momentum

o Sometimes the final point is computed as average of a set of samples (as in
the book) to account for fluctuations

= Better to average only a set of final iterations
= On book average of all iterations (not always smart choice)
o Improvement to get a stable result: use an adaptive step size

= DPRTMENTO Gradient Descent: Variants

— DELLINFORMAZIONE

1. Batch Gradient Descent (standard GD): compute the
gradient over the complete training set

2. Mini-batch Gradient Descent: compute the gradient
over a small set of kK samples

o k: parameter, mini-batch size
o Trade-off between the two "extreme" cases GD and SGD
o Used to train deep neural networks

3. Stochastic Gradient Descent (SGD): use a single
sample to estimate the gradient

=5 SGD: Applications in ML

— DELLINFORMAZIONE

Use SGD to solve ML problems :

1. Risk minimization (ERM)
2.
3. Support Vector Machines (SVM)

4. Neural Networks (in NN / deep learning
lectures)

= eenen SGD for Risk Minimization (1)

— DELLINFORMAZIONE

Stochastic Gradient Descent (SGD) for minimizing L, (w)
params: Scalar n>0 , integer T >0

Init: wV =0
Tor £= 14 .. T
sample z~D
pick v, = Ve(w®,z)
update wttD) = w® — pp,
output w(

§ Minimize L, directly
O Find an unbiased estimate of the gradient of L

0 Sample a single fresh sample and estimate the gradient with it
0 Can be applied to RLM solving its target

g S SGD Finds an Unbiased

= DI INGEGNERIA

— LELLINORIATONE Estimate of the Gradient

§GD finds an unbiased estimate of the gradient of L:

1. Sample z~D: v, = VI(w(®, 2)
2. E|lvijw®| = E, p|[VI(w®,2)| = VE, p[l(w®,2z)] = VLp(w®)

= DIPARTIMENTO

D DRARTHEITO SGD for Risk Minimization (2)

— DELLINFORMAZIONE

* Consider a convex p—Lipschitz-bounded learning problem with
parameters p, B

* Then, for every € > 0, if we run the SGD method for minimizing
Ly (w) with a number of iterations (i.e., number of examples)
2,2 2
T = Bef and withn = /pBZ—T, the output w of SGD satisfies:

E[Lp(W)] < min Lp(w) + e

@ SGD for A-strongly convex
—) DIPARTIMENTO

= DI INGEGNERIA

— DELLINFORMAZIONE fu N Ct I ons an d R I— M

§ SGD for A-strongly convex functions: a good strategy is to use an

: : 1
adaptive step size of value n; = —

At
o Details and theoretical bounds on the book, not part of the course

0 Recall: RLM = The associated optimization problem can be written as
e
min (— lwl|? + LS(W))
w o \2

0 Define f(w) = %IIWII2 + L. (w) :itis 2% = A-strongly convex

» Can apply adaptive learning rate with rate n,= L

= DIPARTIMENTO

= DI INGEGNERIA SG D fo r R L M

— DELLINFORMAZIONE

A _
@ Recall: f(w) = E lwl||? + L, (w): itis A-strongly convex, use n,= %
0 Update rule can be rewritten as

t
1 1

t+D) = O — — (Aw® = —— E .

w w T (Aw® +v,) w2V

=1
Demonstration: see next slide

Q If loss is p-Lipschitz, after T iterations we have that:
2

4
E[f ()] - f (W) <~ (1 +log(T)

Demonstration and details not part of the course

= et SGD for RLM (demonstration)

— DELLINFORMAZIONE

§ Update rule can be rewritten as

WD = 1 (©) _ % (W ©® +v,)

= el SGD for Soft SVM (1)

— DELLINFORMAZIONE

4 Hinge loss |
fhmge (w) = max{0,1 —y < w,x >}

Q (sub)gradient of f"9¢ at w:

Jhinge _ 0 fl—y<wx>< 0
—yx ifl—y<wx>>0

0 Update Rule (for the complete soft-SVM optimization)
t
Wt = ® _) op w(E+D) = _%Z H(®
j=1
o the first equation is standard SGD

o the second is from the variant of SGD for A-strongly convex functions

= el SGD for Soft SVM (2)

— DELLINFORMAZIONE

We want to solve

Variant of SGD for RLM

m

: A 2 1 : — 1 >
i o) (BEL) _ '
min (2 w||* + yo E max{0, 1 y<w.x,>}> W = e Elvj
j:

=]

Note: it's standard to add a % in the regularization term to
simplify some computations.

ﬁ
I
e

Algorithm: Q(t) .
61) — 0 :

fort < 1to] do

erwl e LD

choose i uniformly at random from {1..... m};
if }/i<W(r)-X/‘> < 1 then #(t+1) g(t) +Yix1'J<_ Hinge loss: gradient is 0

: if correctly classified
t+1 t). — :
| else 9() = H()' and —y;x; if error

return - Or w = W(T)

—.
Il
e

SGD for

Soft SVM with Kernels

We want to solve:
. 1 .
min (Awl|? -+~ 27, max{0,1 - y; < w,p(x;) >}) (¥)

SGD for Solving Soft-SVM with Kermnels

Goal: Solve Equatior (*)

parameter: T m

Ve BT 651 Sl Standard Soft-SVM
A 1
m“iln (2w[2 + = ; max{0,1 — y<w.x,—)})
Note: it's standard to add a % in the regularization term to
simplify some computations.

Algorithm:
60 0 ;
for t < 1 to T do

Initialize: 3(Y = 0 00 = ()
for t = T / j=1
R | t
Let o = L 3®

Choose ¢ uniformly at random from [m)]
For all 5 # ¢ set ;3](.”1) = BJ(.t)
7oK o) < 1)
Set ,:3z-t+l) = ;‘3?) + ¥ i
Else w® = Z aj(t)lp(xj)
=1
Set g1 = g® '
Output: w =30 | @;1(x;) where & = + Z?:l at)

let w(t) « Lgo);

choose i uniformly at random from {1..... m};
if y;(w(®), x;) <1 then #(t+1) (1) L y.x;:
else A1) g(),

sl T t):
return w — + thlw(),

compare with previous algorithm

« w=Y" oy (x;) from Representer
theorem: maintain a instead of w

* Theorem: the new procedure and the
old one applied on the feature space
(i.e., replacing x with (X)) lead to the
same results (no demonstration)

2 >GD: Issues

— DELLINFORMAZIONE

O The selection of the learning rate 7 is a critical point

o If n toosmall: the optimization is stable but the convergence can be very slow
o Ifn toolarge: the convergence is fast but the optimization can be very unstable

0 Simple solution: use adaptive learning rates, e.g.,
o Progressively reducing the learning rate according to a pre-defined schedule

o Example: for RLM optimization with SGD n; = i is used

o However these approaches requires rules and thresholds to be defined in
advance and thus are difficult to adapt to different problems

0 Additionally, the same learning rate applies to all parameter updates

» The various parameters have different behaviors and the learning rate could be
too fast for some and too slow for others

= DIPARTIMENTO

= DI INGEGNERIA M O m e nt U m

— DELLINFORMAZIONE

> @&

SGD without momentum

SGD with momentum

1 SGD has troubles (i.e., it oscillates) in areas where the surface curves much more
steeply in one dimension than in another (which are common around local optima)
J Momentum: the update is the linear combination of previous gradient and new one
» The momentum parameter y is usually set to 0.9 or a similar value

v =y " 41— 9) VLw®)

w(ttD) = y(® _ py(®

O It helps accelerate SGD in the relevant direction and dampens oscillations

Using momentum is like pushing a ball down a hill. The ball accumulates momentum as it rolls downhill, becoming faster and faster on the way.
The same thing happens to our parameter updates: the momentum term increases for dimensions whose gradients point in the same directions
and reduces updates for dimensions whose gradients change directions. As a result, we gain faster convergence and reduced oscillation

= DPRTMENTO Advanced SGD schemes

— DELLINFORMAZIONE

0 Adagrad adapts the learning rate for each parameter independently

o It performs smaller updates (i.e. low learning rates) for parameters associated
with frequently occurring features

o It performs larger updates (i.e. high learning rates) for parameters associated
with infrequent features

2 Adadelta (improved version of ADAgrad)

U

RMSprop (improved version of ADAgrad)

a2 Adam (Adaptive Moment Estimation)
o It also computes adaptive learning rates for each parameter
o It combines ideas from Adagrad and momentum

o Whereas momentum can be seen as a ball running down a slope, Adam
behaves like a heavy ball with friction, which thus prefers flat minima in the
error surface

Details not part of the course

