

Università degli Studi di Padova

Support Vector Machines

Machine Learning 2022-23 UML book chapter 15 Slides: F. Chiariottim, P. Zanuttigh, F. Vandin

SVM: Topics

- 1. Classification margin
- 2. Hard-SVM (linearly separable data and linear model)
- 3. Soft-SVM (not linearly separable data, still a linear model)
- 4. Kernel Methods for SVM (non-linear classification)
- 5. Examples and exercises
- 6. LAB2 on SVM

Classification Margin

Consider a classification problem with two classes:

- $\Box \text{ Training data: } S = ((x_1, y_1), \dots, (x_m, y_m))$
- $\Box x_i \in \mathbb{R}^d$ (\mathbb{R}^2 in the visual example for simplicity)

$$\Box$$
 Label set $\mathcal{Y} = \{-1, 1\}$

DELL'INFORMAZIONE

 \Box Hypothesis set \mathcal{H} = halfspaces

□ Assumption: the data is linearly separable → there exist a halfspace that perfectly classify the training set

Find a solution: there are multiple separating hyperplanes that correctly classify the training set : which one is the best ?

Classification Margin: Example

Margin: minimum distance from an example in the training set
 Idea: best separating hyperplane is the one with the largest margin
 Can tolerate more "*noise*"

Linearly Separable Training Set

Linearly Separable Training Set

- A training set $S = ((x_1, y_1), ..., (x_m, y_m))$ is linearly separable if there exists a halfspace (w, b) such that $y_i = sign(\langle w, x_i \rangle + b) \forall i = 1, ..., m$
 - i.e., it perfectly separate all data in the training set
 - or, equivalently $\forall i : y_i (\langle w, x_i \rangle + b) > 0$

Margin

Given a separating hyperplane defined by L = {v: < v, w > +b = 0} and given a sample x, the distance of x to L is

$$d(\boldsymbol{x},L) = \min\{\|\boldsymbol{x}-\boldsymbol{v}\|: \boldsymbol{v} \in L\}$$

Theorem

If ||w|| = 1 then $d(x, L) = |\langle w, x \rangle + b|$

In this case the margin is $\min| \langle w, x_i \rangle + b|, x_i \in S$

• The closest examples are called *support vectors*

Demonstration

Theorem

- If $\|\boldsymbol{w}\| = 1$ then $d(\boldsymbol{x}, L) = |\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b|$
- 1. The distance between **x** and the hyperplane is: $\min\{\|\mathbf{x} - \mathbf{z}\|, \mathbf{z}; \langle \mathbf{w}, \mathbf{z} \rangle + b = 0\}$
- 2. Define point $v = x (\langle w, x \rangle + b)w$ (*)

a) It lies on the hyperplane:

$$\langle \boldsymbol{w}, \boldsymbol{v} \rangle + \mathbf{b} = \langle \boldsymbol{w}, \boldsymbol{x} \rangle - (\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b) \| \boldsymbol{w} \|^2 + b = 0 \rightarrow \langle \boldsymbol{w}, \boldsymbol{v} \rangle = -\mathbf{b} (**)$$

- b) The distance is $d(x, v) = |\langle w, x \rangle + b|$ $||x - v|| = ||x - x + (\langle w, x \rangle + b) w|| = |\langle w, x \rangle + b| ||w|| = |\langle w, x \rangle + b|$
- 3. Since *v* lies on the hyperplane the distance is at most the one of *v*, let's prove that no other point is closer, take a generic point *u* on hyperplane:

$$||x - u||^{2} = ||(x - v) + (v - u)||^{2} = ||x - v||^{2} + ||v - u||^{2} + 2\langle x - v, v - u \rangle$$

$$from (*) and norm \ge 0 \ge ||x - v||^{2} + 2\langle x - x + (\langle w, x \rangle + b)w, v - u \rangle$$

$$\ge ||x - v||^{2} + 2\langle (\langle w, x \rangle + b)\langle w, v - u \rangle = ||x - v||^{2}$$

Support Vector Machines (Hard-SVM)

Hard-SVM: seek for the separating hyperplane with largest margin (*works only for linearly separable data*)

Equivalent formulation (in the case of separable data):

$$\underset{(\boldsymbol{w},b):\|\boldsymbol{w}\|=1}{\operatorname{argmax}} \min_{i} y_i (<\boldsymbol{w}, \boldsymbol{x_i} > +b)$$

Quadratic Programming Formulation

- Input: $S = ((x_1, y_1), ..., (x_m, y_m))$
- Solve:

)IPARTIMENT()

INGEGNERIA

DELL'INFORMAZIONE

 $(\boldsymbol{w}_{0}, \boldsymbol{b}_{0}) = argmin_{(\boldsymbol{w}, \boldsymbol{b})} \|\boldsymbol{w}\|^{2}$ subject to $\forall i: y_{i} (< \boldsymbol{w}, \boldsymbol{x}_{i} > +\boldsymbol{b}) \geq 1$ Output: $\widehat{\boldsymbol{w}} = \frac{\boldsymbol{w}_{0}}{\|\boldsymbol{w}_{0}\|}, \widehat{\boldsymbol{b}} = \frac{\boldsymbol{b}_{0}}{\|\boldsymbol{w}_{0}\|}$

The objective is a convex quadratic function, constraints are linear inequalities: can be solved with quadratic programming solvers

It is equivalent to Hard-SVM: instead of maximizing margin, fix margin to 1 by scaling its unit of measure with **w**, search of max margin equals to search for minimum norm scaling factor **w**

Demonstration:

Hard-SVM ↔ Quadratic Programming

Hard-SVM: $\underset{(w,b):||w||=1}{\operatorname{min}} y_i(\langle w, x_i \rangle + b)$

DIPARTIMENTO

DI INGEGNERIA

DELL'INFORMAZIONE

 $\begin{aligned} \mathsf{QP:} \left(\boldsymbol{w}_{0}, \boldsymbol{b}_{0} \right) &= argmin_{\left(\boldsymbol{w}, \boldsymbol{b} \right)} \|\boldsymbol{w}\|^{2} \text{ subject to } \forall i: y_{i} \left(< \boldsymbol{w}, \boldsymbol{x}_{i} > + \boldsymbol{b} \right) \geq 1 \\ \text{Output:} \ \widehat{\boldsymbol{w}} &= \frac{\boldsymbol{w}_{0}}{\|\boldsymbol{w}_{0}\|} \ , \widehat{\boldsymbol{b}} = \frac{\boldsymbol{b}_{0}}{\|\boldsymbol{w}_{0}\|} \end{aligned}$

1. Let (**w***, b*) be a solution of Hard-SVM

- 2. Define $\gamma^* = \min_{i \in [m]} y_i (\langle w^*, x_i \rangle + b^*)$, i.e., margin of (w^*, b^*)
- 3. $\forall i: y_i (\langle \mathbf{w}^*, \mathbf{x}_i \rangle + b^*) \ge \gamma^* \rightarrow y_i \left(\langle \frac{\mathbf{w}^*}{\gamma^*}, \mathbf{x}_i \rangle + \frac{b^*}{\gamma^*}\right) \ge 1$
- 4. The pair $\left(\frac{w^*}{\gamma^*}, \frac{b^*}{\gamma^*}\right)$ satisfies QP constraint: it is a solution and w_0 is the one of minimum norm $\rightarrow ||w_0|| \le \left\|\frac{w^*}{\gamma^*}\right\| = \frac{1}{\gamma^*}$ ($||w^*|| = 1$) 5. $\forall i: y_i \left(<\widehat{w}, x_i > +\widehat{b}\right) = \frac{1}{||w_0||} y_i (< w_0, x_i > +b_0) \ge \frac{1}{||w_0||} \ge \gamma^*$ (apply

definition of $\hat{\mathbf{w}}$, then first inequality from purple condition, second from 4)

6. Since $\|\widehat{w}\| = 1$ and $(\widehat{w}, \widehat{b})$ has a margin $\geq \gamma^* \rightarrow (\widehat{w}, \widehat{b})$ is an optimal solution of Hard-SVM

Homogeneous Representation

Formulation with homogeneous halfspaces:

 \Box Assume first component of $x \in \mathcal{X}$ is 1 (homog. representation), then

 $w_0 = \underset{w}{\operatorname{argmin}} ||w||^2 \quad \text{subject to } \forall i: \ y_i < w, x_i > \ge 1$

Notice that this constraint is similar but not exactly the same as the non-homogeneous one

the bias now also goes inside the regularization

However in practice no big difference

Theorem (Support Vectors)

Support Vectors

The Support Vectors are the vectors at minimum distance from $oldsymbol{w}_0$

They are the only training vectors that matter for defining $oldsymbol{w}_0$!

Hypothesis:

- w_0 defined as before: $w_0 = \min_{w} ||w||^2$ subject to $\forall i: y_i \langle w, x_i \rangle \ge 1$
- $I = \{i : |\langle w_0, x_i \rangle| = 1\}$ (indexes of support vectors)

Thesis:

There exist coefficients $\alpha_1, \ldots, \alpha_m$ such that $w_0 = \sum_{i \in I} \alpha_i x_i$

- x_i for $i \in I$ are the "Support Vectors"
- Note: Solving Hard-SVM is equivalent to find α_i for the support vectors ($\alpha_i \neq 0$ only for support vectors)
- Demonstration not part of the course

Duality

The hard-SVM minimization $w_0 = \underset{w}{\operatorname{argmin}} ||w||^2 \text{ subject to } \forall i: y_i \langle w, x_i \rangle \ge 1$

Can be rewritten as a maximization problem:

$$\max_{\boldsymbol{\alpha}\in\mathbb{R}^m:\boldsymbol{\alpha}\geq 0}\sum_{i=1}^m \alpha_i - \frac{1}{2}\sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j y_i y_j \langle \boldsymbol{x_i}, \boldsymbol{x_j} \rangle$$

It is called the "dual" problem

Key property: only requires the inner product between instances but not the direct access to instances

• Will be very useful for the "kernel trick"

Soft-SVM

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Key issue: Hard-SVM needs the data to be linearly separableAlmost never true in practical problems

We need an approach that can work also with non linearly separable data \rightarrow *Soft-SVM*

Soft-SVM: Relax the constraints of Hard-SVM but take into account the violations of the separation into the objective function

Soft SVM: How it works

Relax the constraint :

- Introduce slack variables: $\boldsymbol{\xi} = (\xi_1, \dots, \xi_m), \ \xi_i \ge 0$
- for each i = 1, ..., m: $y_i (< w, x_i > +b) \ge 1 \xi_i$
- ξ_i : how much the constraint is violated

Soft-SVM jointly minimizes

- 1. the norm of $\mathbf{w} (\rightarrow \text{maximize margin})$
- 2. the average of ξ_i (\rightarrow minimize constraint violations)

The tradeoff between the two objectives is controlled by a parameter $\lambda > 0$

Optimization Problem

- Input: $(x_1, y_1), ..., (x_m, y_m)$, parameter $\lambda > 0$
- Solve: $\min_{\boldsymbol{w}, b, \boldsymbol{\xi}} \left(\lambda \|\boldsymbol{w}\|^2 + \frac{1}{m} \sum_{i=1}^m \xi_i \right)$ subject to $\forall i: y_i (< \boldsymbol{w}, \boldsymbol{x_i} > +b) \ge 1 - \xi_i \text{ and } \xi_i \ge 0$
- Output **w**, b
- Large λ : focus on margin ($\lambda \rightarrow \infty$: Hard-SVM)
- Small λ :focus on avoiding errors

Reformulate with Hinge Loss

Hinge Loss:

$$\ell^{hinge}((\boldsymbol{w}, b), (\boldsymbol{x}, y)) = \max\{0, 1 - y(< w, x > +b)\}$$

The problem can be reformulated with the Hinge loss:

$$\min_{\boldsymbol{w},b} \left(\lambda \|\boldsymbol{w}\|^2 + \left(\frac{1}{m} \sum_{i=1}^m \ell^{hinge}((\boldsymbol{w},b),(\boldsymbol{x}_i,y_i)) \right) \right)$$
$$L_s^{hinge}(\boldsymbol{w},b)$$

The Two Formulations Are Equivalent

- 1. $\min_{\boldsymbol{w},\boldsymbol{b},\boldsymbol{\xi}} \left(\lambda \|\boldsymbol{w}\|^2 + \frac{1}{m} \sum_{i=1}^m \boldsymbol{\xi}_i \right) \text{ subject to } \forall i: y_i (<\boldsymbol{w}, \boldsymbol{x}_i > +b) \ge 1 \boldsymbol{\xi}_i \text{ and } \boldsymbol{\xi}_i \ge 0$
- 2. $\min_{\boldsymbol{w},\boldsymbol{b}} \left(\lambda \|\boldsymbol{w}\|^2 + \frac{1}{m} \sum_{i=1}^m \ell^{hinge}((\boldsymbol{w},\boldsymbol{b}),(\boldsymbol{x}_i,y_i)) \right)$
- Demonstration:
- 1. Fix w, b and consider minimization over ξ in (1)
- 2. $\xi_i \ge 0 \rightarrow$ the best assignment is 0 if $y_i(\langle w, x_i \rangle + b) \ge 1$ or $1 y_i(\langle w, x_i \rangle + b)$ otherwise
- 3. This corresponds to $\xi_i = \ell^{hinge}((\boldsymbol{w}, b), (\boldsymbol{x}_i, y_i)) \quad \forall i$
- \rightarrow Soft SVM falls into regularized loss minimization (RLM) paradigm

Examples

Two situations require $\xi_i > 0$

- Wrong classification ($\xi_i > 1$)
- Correct classification but violating margin ($0 < \xi_i \leq 1$)

Practical SVM: The λ Parameter

Examples on 2 different test sets

The parameter λ controls the trade-off between a solution with a large margin that makes some errors or one with a lower margin but with less errors

(the parameter C in sklearn, libsvm and other ML tools has the same role but weights the loss term, i.e., works in the opposite direction)

Homogeneous Version (Soft SVM)

Rewrite with homogeneous coordinates

$$\min_{\boldsymbol{w}} \left(\lambda \|\boldsymbol{w}\|^2 + L_S^{hinge}(\boldsymbol{w}) \right)$$

The Hinge loss is given by

$$L_{S}^{hinge}(\boldsymbol{w}) = \frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y_{i} < \boldsymbol{w}, \boldsymbol{x}_{i} > \}$$

Approaches to solve the problem:

- Use standard solvers for optimization problems
- Use Stochastic Gradient Descent (wait for SGD lecture!)