Consider the noisy typewriter channel, mapping

$$
\mathcal{A}_{Z}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \ldots, \mathrm{Y}, \mathrm{Z},-\}
$$

with $\left|\mathcal{A}_{Z}\right|=27$, into $\mathcal{A}_{Y}=\mathcal{A}_{Z}$, where each letter is mapped with equal probabilities into the preceding, the following or the same letter (p. 41-44 of the notes). Design an efficient code by which to reliably send symbols from $A_{X}=A_{Z}$ through the channel (i.e., you should be able to send and retrieve a text using the 27 symbols with no error).

Solution: We can base an efficient and reliable code by using a subset of non-confusable inputs, e.g.,

$$
|S|=\{\mathrm{B}, \mathrm{E}, \mathrm{H}, \mathrm{~K}, \mathrm{~N}, \mathrm{Q}, \mathrm{~T}, \mathrm{~W}, \mathrm{Z}\}
$$

with $|S|=9$. Since there are 81 sequences of 2 symbols from $|S|$,

$$
\left|S^{(2)}\right|=81
$$

and $81>27$, we can just select any subset of 27 pairs of symbols from S, i.e.,

$$
S^{\prime} \subset S^{(2)}
$$

with $\left|S^{\prime}\right|=27$, to reliably encode the input. For instance, we can divide the 27 letters into 3 groups of 9 letters,

$$
g_{1}=\{\mathrm{A}, \mathrm{~B}, \ldots, \mathrm{I}\}, \quad g_{2}=\{\mathrm{J}, \mathrm{~K}, \ldots, \mathrm{R}\}, \quad g_{3}=\{\mathrm{S}, \mathrm{~T}, \ldots,-\}
$$

and use the first letter of the code to encode for the group, e.g.,

$$
g_{1} \mapsto \mathrm{~B}, \quad g_{2} \mapsto \mathrm{E}, \quad g_{3} \mapsto \mathrm{H}
$$

and the second letter of the code to encode for the specific letter within the group,

$$
\begin{aligned}
& \{A, B, \ldots, I\} \mapsto\{B, E, \ldots, Z\} \\
& \{J, K, \ldots, \mathrm{R}\} \mapsto\{B, E, \ldots, Z\} \\
& \{S, T, \ldots,-\} \mapsto\{B, E, \ldots, Z\}
\end{aligned}
$$

arriving at the two-letter code $E: A_{X} \rightarrow S^{(2)}$:
$\mathrm{A} \mapsto \mathrm{BB}, \quad \mathrm{B} \mapsto \mathrm{BE}, \quad \mathrm{C} \mapsto \mathrm{BH}, \quad \mathrm{D} \mapsto \mathrm{BK}, \quad \mathrm{E} \mapsto \mathrm{BN}, \quad \mathrm{F} \mapsto \mathrm{BQ}, \quad \mathrm{G} \mapsto \mathrm{BT}, \quad \mathrm{H} \mapsto \mathrm{BW}, \quad \mathrm{I} \mapsto \mathrm{BZ}$,
$\mathrm{J} \mapsto \mathrm{EB}, \quad \mathrm{K} \mapsto \mathrm{E}, \quad \mathrm{L} \mapsto \mathrm{EH}, \quad \mathrm{M} \mapsto \mathrm{EK}, \quad \mathrm{N} \mapsto \mathrm{EN}, \quad \mathrm{O} \mapsto \mathrm{EQ}, \quad \mathrm{P} \mapsto \mathrm{ET}, \quad \mathrm{Q} \mapsto \mathrm{EW}, \quad \mathrm{R} \mapsto \mathrm{EZ}$,
$\mathrm{S} \mapsto \mathrm{HB}, \quad \mathrm{T} \mapsto \mathrm{HE}, \quad \mathrm{U} \mapsto \mathrm{HH}, \quad \mathrm{V} \mapsto \mathrm{HK}, \quad \mathrm{W} \mapsto \mathrm{HN}, \quad \mathrm{X} \mapsto \mathrm{HQ}, \quad \mathrm{Y} \mapsto \mathrm{HT}, \quad \mathrm{Z} \mapsto \mathrm{HW}, \quad-\mapsto \mathrm{HZ}$,
The average length of this code is 2 , irrespective of the input distribution. The rate is

$$
R=\frac{K}{2}=\frac{\log 27}{2}=\frac{3 \log 3}{2}
$$

We know that the channel capacity is

$$
C=\max _{Z} I[Z: Y]=2 \log 3>R=\frac{3}{2} \log 3
$$

which is more than the channel capacity. When using the channel at itys capacity, we should use 1.5 letters to encode a single letter (not 2). We know that we can achieve the capacity by encoding sequences of messages $\mathcal{A}_{X}^{(m)}$ into non-confusable sequences of inputs strings $\mathcal{A}_{Z}^{(n)}$, and in the limit $n \rightarrow \infty$, we should communicate information at the channel capacity. In fact, for this simple case it is sufficient to consider $m=2, n=3$. For $n=3$, we can consider the set of sequences of 3 non-confusable input symbols,

$$
z^{(3)} \in S^{(3)}
$$

with $\left|S^{(3)}\right|=9^{3}=729$. These sequences are sufficient to reliably encode $27^{2}=$ 729 symbols $x^{(2)} \in \mathcal{A}_{X}^{(2)}$. In other words, we can map a pair of letters $X^{(2)} \in \mathcal{A}_{X}$ from the 27-letter alphabet into a triple of letters from $S^{(3)}$, e.g.
$\mathrm{AA} \mapsto \mathrm{BBB}, \quad \mathrm{AB} \mapsto \mathrm{BBE}, \quad \mathrm{AC} \mapsto \mathrm{BBH}, \quad . . . \quad-\mathrm{U} \mapsto \mathrm{ZZT}, \quad-\mathrm{Z} \mapsto \mathrm{ZZW}, \quad--\mapsto \mathrm{ZZZ}$
This is (n, K) block code with $n=3$ and $K=\log 729=6 \log 3$. Hence the rate is

$$
R=\frac{K}{n}=2 \log 3=C
$$

achieving the channel capacity. In this code, we use only 1.5 letters to encode a letter.

