MATHEMATICAL PHYSICS

Control Systems Engineering

First partial exam - 11/11/2022

Exercise 1. Let

$$
V_{k}(x)=\frac{k}{3} x^{3}-x, \quad x \in \mathbb{R} \text { and } k \in \mathbb{R} .
$$

(a) Draw the bifurcation diagram for $\dot{x}=V_{k}(x)$.
(b) Draw the cobweb plot for the discrete dynamical system given by the iteration of the map $V_{1}(x)$. Determine equilibria and their (linear) (un)stability.
(c) Draw the phase-portraits for $\ddot{x}=-V_{k}^{\prime}(x)$ corresponding to $k>0$, $k<0$ and $k=0$.
(d) Linearize $\ddot{x}=-V_{1}^{\prime}(x)$ around $(\pm 1,0)$. Establish the quality of these equilibria for the linearized system; say -if it makes sense- the winding direction.
(e) Establish for which values of $v \in \mathbb{R}$ the solution of $\ddot{x}=-V_{1}^{\prime}(x)$ with initial datum $(1, v)$ is periodic.
(f) How many orbits of $\ddot{x}=-V_{1}^{\prime}(x)$ correspond to the energy value $E=V_{1}(-1)$?

Exercise 2. Let consider the vector field on \mathbb{R}^{3} :

$$
X(x, y, z)=\left(\begin{array}{c}
y z^{2} \\
-(x-1)^{2} x z^{2} \\
(2-x) x^{2} y z
\end{array}\right)
$$

(a) Prove that $F(x, y, z)=x^{2}+y^{2}-z^{2}$ is a first integral for X.
(b) Give the definition of (topological) stability and asymptotic stability. Explain why the equilibrium $(1,0,2)$ for X cannot be asymptotically stable.
(c) Can the dynamics corresponding to such X have a limit cycle?

Exercise 3. Give the definition of invariant set for a continuous flow $\varphi_{t}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Let $\beta \in \mathbb{R}$ be fixed. For the vector field on \mathbb{R}^{2} :

$$
X(x, y)=\binom{-3 x+y}{(\beta-3) y}
$$

show that the line $y=\beta x$ is an invariant set.
Exercise 4. Sketch a phase portrait in the plane consistent with the following information: three equilibria, one saddle and two stable nodes.

