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Key idea: jointly minimize empirical risk and a regularization function

Q Hypothesis h: defined by a vectorw = (wy, ....,wy)T € R4

> e.g., coefficients of a linear model, weights in a neural network, etc..
O Regqularization function R:R%* — R, function of w
O Regularized Loss Minimization (RLM): select h from:

argminw(LS (w) + R(w))

O L,(w): standard loss for the considered problem
O R(w): regularization term (measures in some way the "complexity" of the
found solution)

O The regularization term balances between low empirical risk and aiming
at less complex hypotheses
O Itis possible to view the extra term as a "stabilizer"
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Tikhonov Reqularization

0 Define function R using the 12 norm of the weights:
R(w) = Alwll? = 21X, wi

O Output of function R is a real positive number

0 Learning Rule: A(s) = argmin,,(L.(w) + Allwl|*)

a ||lw||? : measures the "complexity” of the hypothesis defined by w
QO A: controls the amount of regularization

o It controls the trade-off between empirical error and complexity
o Low empirical error but risk of overfitting or higher empirical error

hiit lnwer coamnlevityv
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Ridge Regression:
Linear Regression with squared loss + Tikhonov reqularization

Linear Regression with squared loss: find w that minimizes the squared loss

m
w = argminwz (Kw,x; > —vy;)*
i

Ridge Regression : find w that minimizes

w = argmin,, | A||w||* +— z §(<wx > —y;)? )
i=1

) balances between the 2 targets Balancnrig ShOU|d_ riot depend
on the size of training set
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* Find optimal w: minimize loss ( A||w/||* + %Zi% (Kw,x;>—-y)?%)

Compute gradient w.r.t. wand setto O

%,

L 1
o = 2w + ;Zﬁ1(< w,x; > —y;)x; = 0 - 2Amw + X7 (w, x;)x; =

m
= Li=1YiXi

+ =l

Set (as for standard least squares)

RO S

Xm

The solution can be rewritten as*:
20miw+Aw=b - w=Q2AmI+A)" b

*differently from standard least square in this case the matrix is always invertible
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= e and Stability

a Tikhonov regularization makes the learner stable w.r.t.
small perturbations of the training set

[ this in turn leads to small bounds on generalization error

2 Informally: an algorithm A is stable if a small change of
the training data S (i.e., its input) will lead to a small
change of its output hypothesis
o whatis a “small change of the training data”?

o whatis a “small change of its output hypothesis”?
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g "small change of the training data" = replace one sample!

o GivenS = (z4, ..., Z,,) and an additional example Z’ (i.e., pair instance
label/target) let S® = (zq, ..., Zi—1, 7, Zis 1) oer Zpm)

0 “small change of its output hypothesis” = small change in the loss
o On-Average-Replace-One-Stable (OARQS) algorithms

Definition:
Let be €: N — IR a monotonically decreasing function. We say that a learning

algorithm A is on-average-replace-one-stable (OAROS) with rate € (m) if for
every distribution D:

/Ess,zf).vnmal-wfm)[l(A(S“)),zi) — 1(A(S), z)] < e(m)

\/ Depends on

With 2" in place of z training set size

Draw IID from D Selgct at random
which to replace
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Theorem:
If algorithm A is OAROS with rate e(m) then:

Es.pm[Lp(A(S)) — Ls(A(S))] < e(m)

Demonstration
1. True error: expected loss on one IID sample (from D):
VI, IEs[LD(A(S))] - ]ES,Z/ [l(A(S))Z,)] = ]ES,Z’ [l(A(S(L))’Zl)]
2. Training error: average error on one sample in training set:
Es[Ls(A(S))] = Es,; [1(A(S), 2]
3. Combine (1)+(2) and exploit linearity of expectation and OAROS def.
Es[Lp(A(S)) — Ls(A(S))] = Eg,r; [L(A(SD), ;) — L(A(S), z)] < e(m)
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Definition (Lipschitzness):
> Let C ¢ R? . A function f: R%-> R¥ is p-Lipschitz over C if
Vwi, wy € C, we have that ||f(wq) — f(w2) || < pllwy — wy||

0 Intuitively: the function cannot change too fast

0 For derivable functions corresponds to bound on derivative:
o If derivative bounded by p at any point = function is p-Lipschitz
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Theorem:

Assume the loss function is convex and p-Lipschitz continuous.
2

Then, the RLM rule with regularizer A||w||? is OAROS with rate iim :
It follows that for the RLM rule:

Es-pm|Lp(A(S)) — Ls(A(S))] <

2,02

= Im

Tikhonov Regularization is a Stabilizer

Larger A leads a more stable solution (= less overfitting)
Larger training set also leads to more stable solution
First step: demonstration not part of the course

O 0O 0 0 O

Second step: consequence of previous theorem
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Es|Lp(A(S))| = Eg[Ls(A(S))] + Es|Lp(A(S)) — Ls(A(S))]

o E; [LS(A(S))] : how well A fits the training set S
Q E; [LD (A(S)) — Ly (A(S))] : measures overfitting, bounded by stability of A

In Tikhonov regularization, A controls tradeoff between the 2 terms

0 howdo LS(A(S)) and ||lw||? vary as a function of 1 ?
o Larger A leads to higher empirical risk Lg (A(S))
0 how may E¢|Lp (A(s)) — Ls(A(S))] change as a function of 1 ?

o On the other side increasing A the stability term Es[L,(A(s)) — Ls(A(S))] decreases
O Howtoset A7

o Theoretical bound in the book
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Es|Lp(A(S))| = Eg[Ls(A(S))] + Es|Lp(A(S)) — Ls(A(S))]
o E; [LS(A(S))] : how well A fits the training set S
0 E|Lp(A(S)) — Ls(A(S))] : measures overfitting, bounded by stability of A

Small A: focus on training error
Training error L : small
Difference Lp — L;: large
Overfitting the training data

Large A: focus on regularization
Training error L, : large
Difference L — L,: small
Underfitting the training data

L




