1) QUESTIONS ABOUT PREVIOUS EXERCISES
2) LIMITS
(3) REVIEW EXERCISES / CONTINUITY)
3) $\lim _{x \rightarrow \infty} \frac{3 x^{2}-\left(e^{x^{2}}-1\right) \sin ^{2} x}{x^{3}+e^{\alpha x}} \alpha \in \mathbb{R}$

N: $\lim _{x \rightarrow+\infty} 3 x^{2}-(\underbrace{e^{x^{2}}-1}) \sin ^{2} x \approx \lim _{x \rightarrow+\infty} \underbrace{3 x^{2}}-e^{x^{2}} \sin ^{2} x$

$$
\lim _{x \rightarrow+\infty} \frac{3 x^{2}}{e^{x^{2}} \sin ^{2} x}=\lim _{x \rightarrow+\infty} 3 x^{2} e^{-x^{2}} \frac{1}{\sin ^{2} x}=[0,1]\left[\frac{0}{0}\right]
$$

$$
3 x^{2}=\sigma\left(e^{x^{2}} \sin ^{2} x\right)
$$

$$
\begin{aligned}
& \approx \lim _{x \rightarrow+\infty}-e^{x^{2}} \sin ^{2} x \\
& : \lim _{x \rightarrow \infty} \frac{-e^{x^{2}} \sin ^{2} x}{x^{3}+e^{\alpha x}}
\end{aligned}
$$

does not exist because $\lim \sin ^{2} x$ does not ${ }_{\text {exist }}^{x \rightarrow+\infty}$

$$
\begin{aligned}
& \text { 5) } \lim _{x \rightarrow+\infty} \frac{x^{3}-(3+\cos x)^{x}}{3^{-2 x}+2 x^{3}} \\
& N: \quad x^{3}-(3+\cos x)^{x}=f(x) \\
& x^{3}-2^{x} \leqslant f(x) \leqslant x^{3}-4^{x} \quad x^{3}=\sigma\left(a^{x}\right) \text { a>1 } \\
& \text { (}[-1,1] \\
& \lim _{x \rightarrow+\infty} x^{3}-(3+\cos x)^{x}=-\infty \\
& \frac{N}{D}: \lim _{x \rightarrow+\infty} \frac{-(3+\cos x)^{x}}{2 x^{3}+3^{-\alpha x}} \\
& \alpha=0, \alpha>0 \quad 3^{-\alpha x}=\sigma\left(x^{3}\right) \leadsto \lim _{x \rightarrow+\infty}-\frac{(3+\cos x)^{x}}{2 x^{3}}=-\infty \\
& \alpha \geqslant 0--\infty \\
& \alpha<0 \quad x^{3}=\sigma\left(3^{-\alpha x}\right) \Longrightarrow \lim _{x \rightarrow+\infty}-\frac{(3+\cos x)^{x}}{3-\alpha x}=\lim _{x \rightarrow+\infty}-\left(\frac{3+\cos x}{3^{-\alpha}}\right)^{x} \\
& f(x)=\frac{3+\cos x}{3^{-\alpha}} \geqslant 1+\varepsilon, \varepsilon>0, \forall x \quad \lim _{x \rightarrow+\infty} f(x) \geqslant \lim _{x \rightarrow+\infty}(1+\varepsilon)^{x}=+\infty \\
& f(x)=\frac{3+\cos x}{3-\alpha} \leqslant 1-\varepsilon, \varepsilon>0, \forall x \lim _{x \rightarrow+\infty}(1-\varepsilon)^{x}=0 \geqslant \lim _{x \rightarrow+\infty} f(x)
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=0 \quad \lim _{x \rightarrow \infty}-\frac{e^{x^{2}}}{x^{3}+1} \sin ^{2} x \approx \lim _{x \rightarrow \infty}-\frac{e^{x^{2}}}{x^{3}} \sin ^{2} x \text { (7) } \\
& \alpha<0 \quad \lim _{x \rightarrow \infty}-\frac{e^{x^{2}}}{x^{3}+\sigma\left(x^{3}\right)} \sin ^{2} x \quad \nexists \\
& \alpha>0 \quad \lim _{x \rightarrow+\infty}-\frac{e^{e^{x^{2}}\left(x^{3}\right)}}{x^{2}+e^{\alpha x}} \sin ^{2} x=\lim _{x \rightarrow+\infty}-\underbrace{e^{x^{2}-\alpha x}}_{\alpha=\sigma\left(e^{x}\right)} \sin ^{2} x \approx \lim _{x \rightarrow \infty}-e^{x^{2}} \sin ^{2} x \nexists\left(\not x^{2}\right)< \\
& \begin{array}{l}
\alpha x=\sigma\left(x^{2}\right) \\
Z \forall \alpha \in I R
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{3+\cos x}{3^{-\alpha}} \leqslant 1-\varepsilon, \varepsilon>0, \forall x \quad \lim _{x \rightarrow+\infty}(1-\varepsilon)^{x}=0 \geqslant \lim _{x \rightarrow+\infty} f(x)
\end{aligned}
$$

$$
\begin{align*}
& \text { we can find } 2 \text { subsequences of values for } x \\
& \text { that leads to two different limits } \\
& \text { [ecg. when } \cos x_{11}=1 \text { and } \cos x_{n 1}=-1 \quad \lim f\left(x_{n 1}\right) \neq \lim f\left(x_{n 2}\right) \text {] } \\
& \rightarrow \text { the limit of the sequence } \lim _{n \rightarrow+\infty} f\left(x_{n}\right) \nexists \\
& \text { twas also the limit of oar function } \nexists \\
& \text { 1) } \lim _{x \rightarrow \infty} \frac{e^{-\frac{1}{x}}\left(2 x^{2}-x^{1-\alpha}\right)+3 x^{\alpha} \cos x}{x^{2}} \\
& \begin{aligned}
N: & \underbrace{2 x^{2} e^{-\frac{1}{x}}}-x^{1-\alpha} e^{-\frac{1}{x}}+3 x^{\alpha} \cos x \\
& \lim _{x \rightarrow+\infty} e^{-\frac{1}{x}}\left(2-x^{-1-\alpha}\right)+3 x^{\alpha-2} \cos x
\end{aligned} \\
& \alpha>2 \quad x^{\alpha-2} \rightarrow+\infty \quad \lim _{x \rightarrow+\infty} 3 x^{\alpha-2} \cos x \quad \nexists \\
& \begin{array}{l}
x^{-1-\alpha} \rightarrow 0 \\
x^{-1-\alpha}=\sigma\left(x^{-3}\right)
\end{array}, e^{-\frac{1}{x} \rightarrow 1} \lim _{x \rightarrow+\infty} e^{-\frac{1}{x}}\left(2-x^{-1-\alpha}\right)=2 \\
& \alpha=2 \quad \lim _{x \rightarrow+\infty} 3 \cos x \nexists \\
& \alpha \geqslant 2 \quad A \\
& \alpha<2 \quad x^{\alpha-2} \rightarrow 0 \quad \lim _{x \rightarrow+\infty} 3 x^{\alpha-2} \cos x=0 \\
& -1<\alpha<2 \quad x^{-1-\alpha} \rightarrow 0 \quad \lim _{x \rightarrow \infty} e^{-\frac{1}{x}} \cdot 2=2 \\
& \alpha=-1 \quad x^{-1-\alpha}=1 \quad \lim _{x \rightarrow \infty} e^{-\frac{1}{x}}(2-1)=1 \\
& \alpha<-1 \quad x^{-1-\alpha} \rightarrow+\infty \quad \lim _{x \rightarrow \infty} x^{-1-\alpha}=-\infty
\end{align*}
$$

11) $\lim _{x \rightarrow 0^{+}} \frac{3 \operatorname{arctg} x-3 \alpha^{2} x-\alpha x^{3}}{3 \sin ^{3} x-x^{4}}$
$D: 3 \sin ^{3} x-x^{4}=3 x^{3}+\sigma\left(x^{3}\right)-x^{4}=3 x^{3}+\sigma\left(x^{3}\right)$

$$
\begin{aligned}
N: \quad & 3\left(x-\frac{x^{3}}{3}+\frac{x^{5}}{5}+\sigma\left(x^{5}\right)\right)-3 \alpha^{2} x-\alpha x^{3} \\
& 3\left(1-\alpha^{2}\right) x-(\alpha+1) x^{3}+\frac{3}{5} x^{5}+\sigma\left(x^{5}\right)
\end{aligned}
$$

$\frac{N}{D}: \lim _{x \rightarrow \sigma^{-}} \frac{3\left(1-\alpha^{2}\right) x-(\alpha+1) x^{3}+3 / 5 x^{5}+\sigma\left(x^{5}\right)}{4}$

$$
\begin{array}{ll}
\alpha<-1 \vee \alpha>1 & \left(1-\alpha^{2}\right)<0
\end{array} \lim _{x \rightarrow 0^{+}} \frac{3\left(1-\alpha^{2}\right) x+\sigma(x)}{3 x^{3}+\sigma\left(x^{3}\right)}
$$

$$
\begin{array}{ll}
(-1<\alpha<1) & \left(1-\alpha^{\prime}\right)>0 \quad \lim _{x \rightarrow 0^{+}}\left(1-\alpha^{2}\right) x^{-2} \neq+\infty \\
\alpha=1) & \lim _{x \rightarrow 0^{+}}-\frac{2 x^{3}+\sigma-\left(x^{3}\right)}{3 x^{3}+\sigma\left(x^{3}\right)}=-\frac{2}{3} \\
\alpha=-1 & \lim _{x \rightarrow 0^{+}} \frac{3 / 5 x^{5}+\sigma\left(x^{5}\right)}{3 x^{3}+\sigma\left(x^{3}\right)}=0
\end{array}
$$

7) $\lim _{x \rightarrow 0} \frac{2^{x^{2}-x}-2^{x}+2 \log (2) x+x^{3} \sin \left(\frac{1}{x}\right)}{\sin \left(2 x^{2}\right)+(\cos x-1)^{2}+e^{-3 / x^{2}}}$
$\left.N: \quad e^{\left(x^{2}-x\right) \log 2}-e^{x \log 2}+2 \log 2\right) x+x^{3} \sin \left(\frac{1}{x}\right) \quad \sim \sigma\left(x^{2}\right)$

$$
\begin{aligned}
& f+\left(x^{2}-x\right) \log 2+\frac{\left(x^{2}-x\right)^{2} \log ^{2} 2}{2}+\sigma\left(x^{2}\right)-y-x \log 2-\frac{x^{2} \log ^{2} 2}{2}+\sigma\left(x^{2}\right) \\
& +2 \log 2 x \\
& -x \log 2+x^{2} \log 2+\frac{x^{2} \log ^{2} 2}{2}+\sigma\left(x^{2}\right)-x \log 2-\frac{x^{2} \log ^{2} 2}{2}+\sigma\left(x^{2}\right)+2 \log 2 x \\
& x^{2} \log 2+\sigma\left(x^{2}\right)
\end{aligned}
$$

D: $\quad \sin \left(\alpha x^{2}\right)+(\cos x-1)^{2}+e^{-3 / x^{2}}$

$$
\begin{aligned}
& \alpha x^{2}-\frac{\left(\alpha x^{2}\right)^{2}}{6}+\sigma\left(\alpha x^{6}\right)+\left(1-\frac{x^{2}}{2}-1+\sigma\left(x^{2}\right)\right)^{2}+e^{-3 / x^{2}} \\
& \alpha x^{2}-\frac{\alpha^{3}}{6} x^{6}+\sigma\left(\alpha x^{6}\right)+\frac{x^{4}}{4}+\sigma\left(x^{4}\right)
\end{aligned} O\left(x^{4}\right)
$$

$\frac{N}{D}: \lim _{x \rightarrow 0} \frac{x^{2} \log 2+\sigma\left(x^{2}\right)}{\alpha x^{2}-\frac{\alpha^{3}}{6} x^{6}+\sigma\left(\alpha x^{6}\right)+\frac{x^{4}}{L_{1}}+\sigma\left(x^{4}\right)}$
$\alpha \neq 0 \lim _{x \rightarrow 0} \frac{x^{2} \log 2+\sigma\left(x^{2}\right)}{\alpha x^{2}+\sigma\left(x^{2}\right)}=\frac{\log 2}{\alpha}$
$\lim _{x \rightarrow 0} \frac{x^{2} \log 2+\sigma\left(x^{2}\right)}{\frac{x^{4}}{4}+\sigma\left(x^{4}\right)}=\lim _{x \rightarrow 0} \frac{\log 2}{4} \frac{1}{x^{2}}=+\infty$

hint to solve a previous exercise

3) $\lim _{x \rightarrow a^{+}}\left(e^{x}-e^{2}\right)^{\frac{1}{\log (\sin (x-a))}}$ we woald like to have $\lim _{y \rightarrow 0^{+}}$with $y=x-a$
$\left(e^{x}-e^{2}\right)^{\frac{1}{\log (\sin (x-a))}}=e^{\frac{\log \left(e^{x}-e^{2}\right)}{\log (\sin (x-a))}}=e^{\frac{\left.\log \left(e^{x-a}-1\right) e^{2}\right]}{\log (\sin (x-a))}}=e^{a \frac{\log \left(e^{x-a}-1\right)}{\log (\sin (x-a))}}$

PARAMETRIC LIMITS $(\alpha \in \mathbb{R})$

1) $\lim _{x \rightarrow \infty} \frac{e^{-\frac{1}{x}}\left(2 x^{2}-x^{1-\alpha}\right)+3 x^{\alpha} \cos x}{x^{2}}$
2) $\lim _{x \rightarrow+\infty} \frac{3 x^{2}-\left(e^{x^{2}}-1\right) \sin ^{2} x}{x^{3}+e^{\alpha x}}$
3) $\lim _{x \rightarrow+\infty} \frac{\cos x+x(\operatorname{sgn}(\sin x))}{x^{\alpha}}$
4) $\lim _{x \rightarrow+\infty} \frac{(x+\cos x)^{\alpha}}{\sin (1 / x)}$
5) $\lim _{x \rightarrow+\infty} \frac{x^{3}-(3+\cos x)^{x}}{3^{-2 x}+2 x^{3}}$
6) $\lim _{x \rightarrow+\infty}\left(x^{\frac{x+1}{x}}-x-\alpha \log x\right)$
7) $\lim _{x \rightarrow 0} \frac{2^{x^{2}-x}-2^{x}+2 \ln (2) x+x^{3} \sin \left(\frac{1}{x}\right)}{\sin \left(\alpha x^{2}\right)+(\cos x-1)^{2}+e^{-3 / x^{2}}}$
8) $\lim _{x \rightarrow+\infty} \frac{\left(\frac{1}{x}\right)^{\frac{1}{x}}-2 e^{\frac{1}{x}}+\cos \left(\frac{1}{x}\right)+\frac{2}{x} \log \left(\frac{1}{x}\right)}{(x-1 / 3}$
$\lim _{x \rightarrow+\infty} \frac{\left(\sqrt{1+\sinh \left(\frac{1}{x}\right)}-\sqrt{1+\sin \left(\frac{1}{x}\right)}\right)^{1 / 3}}{(\sqrt{x}}$
9) $\lim _{x \rightarrow 0} \frac{\sqrt{3}\left(e^{x}\right)^{2}-2 \sqrt{3} x+2 x^{2}-\sqrt{3}}{3+\alpha x^{2}-3 e^{x^{2}}+x^{4} \cos \left(\frac{6}{x}\right)}$
10) $\lim _{x \rightarrow \rightarrow \infty} \frac{x^{2}-2^{x}+\sin \left(x^{2}\right)}{6 e^{x}+\sqrt{x^{5}+2 x+1}}$
11) $\lim _{x \rightarrow 0^{+}} \frac{3 \operatorname{arctg} x-3 \alpha^{2} x-\alpha x^{3}}{3 \sin ^{3} x-x^{4}}$
12) $\lim _{x \rightarrow 0^{+}} \frac{3^{x+x^{2}}-e^{x}+(1 \log 3) \sin x+(1+\log 3) 3^{-\frac{1}{x}}}{(\alpha-2) x^{2}+x^{3} \log x}$
13) $\lim \frac{\frac{\alpha}{n^{3 / 2}}-6\left(\frac{\alpha^{2}}{\sqrt{n}}-\sin \left(\frac{1}{\sqrt{n}}\right)\right)-\frac{2}{n^{2}}}{\left(1+\frac{1}{n}-\frac{2}{n^{3}}\right)^{\sqrt{n}}-1}$
14) $\lim _{n \rightarrow+\infty} \frac{1+2 n^{3}-n \sin n+n^{4} \sin \frac{1}{n}}{2 n^{3}+\log 4 n+\sqrt{n^{3}+1}}$
15) $\lim _{n \rightarrow+\infty} \frac{4^{n}-\alpha^{n}}{n^{4} 2^{n}+4^{n}}$
16) $\lim _{n \rightarrow+\infty} \frac{1-n^{2} \log \left(1+\frac{1}{n^{2}}\right)+\frac{\sin n}{n^{3}}}{n^{\alpha} \operatorname{arctg} \frac{1}{n}}$
