The uncertain path of determinism in Classical Mechanics

Giancarlo Benettin

Università di Padova
Dipartimento di Matematica "Tullio Levi-Civita"

Course of Mathematical Physics, $\triangle \times \times \times \times \times \times \times$

The kingdom of the deterministic approach

Determinism

- The laws of Mechanics are such that the present state of a system completely determines the future (and the past) of the system
state: a suitable set of variables (e.g.: position and velocity of all particles); "initial datum"

Determinism

- The laws of Mechanics are such that the present state of a system completely determines the future (and the past) of the system
state: a suitable set of variables (e.g.: position and velocity of all particles); "initial datum"
- infinite perfectibility: a sufficiently precise knowledge of the system, and of the initial data, allows to predict the future, at any time, with arbitrary high precision

Determinism

- The laws of Mechanics are such that the present state of a system completely determines the future (and the past) of the system
state: a suitable set of variables (e.g.: position and velocity of all particles); "initial datum"
- infinite perfectibility: a sufficiently precise knowledge of the system, and of the initial data, allows to predict the future, at any time, with arbitrary high precision
Intrinsically random system - aleatoric

Intrinsic unpredictability (atomistic philisophers, V sec. b.C.)

Possibly: probabilistic laws statistic regularity

Determinism: the "two-spheres model"
Two angles:

$$
\begin{aligned}
& \varphi \mapsto \varphi+\omega t \text { (day) } \\
& \Phi \mapsto \Phi+\Omega t \text { (year) }
\end{aligned}
$$

It explains:

- equinoxes, solstices; seasons
- diff. length of day and night, along the year
- alternation of constellations in the night sky

Determinism: the "two-spheres model"
Two angles:

$$
\begin{aligned}
& \varphi \mapsto \varphi+\omega t \text { (day) } \\
& \Phi \mapsto \Phi+\Omega t \text { (year) }
\end{aligned}
$$

It explains:

- equinoxes, solstices; seasons
- diff. length of day and night, along the year
- alternation of constellations in the night sky
"Model":

Not really satisfactory

Does not explain:
exact duration of seasons motion of planets

Not really satisfactory

Does not explain:

exact duration of seasons motion of planets

Planets :
complicated motions not uniform

Not really satisfactory

More complicated model:
Ptolemy
Does not explain:
exact duration of seasons motion of planets

Not really satisfactory

More complicated model:
Ptolemy
Does not explain:
exact duration of seasons motion of planets

Not really satisfactory

Does not explain:
exact duration of seasons motion of planets

More complicated model:
Ptolemy

Not really satisfactory

Does not explain: exact duration of seasons motion of planets

More complicated model:
Ptolemy
Copernicus simplifies, not really better

Losing models, no hope this way !

Towards a better model

Kepler laws: motions on ellipses
low of areas
$T^{2}=K a^{3}$

The scientific revolution (Newton, Principia 1687; after Kepler, Galileo...)

The scientific revolution (Newton, Principia 1687; after Kepler, Galileo...)

1) $m \vec{a}=\vec{F}$
2) $F=G \frac{M m}{r^{2}}, \quad$ attractive

+ differential calculus

$$
\frac{\mathrm{d}^{2} \vec{r}_{i}}{\mathrm{~d} t^{2}}=\frac{1}{m_{i}} \vec{F}_{i}\left(\vec{r}_{1}, \ldots, \vec{r}_{n}\right)
$$

The scientific revolution (Newton, Principia 1687; after Kepler, Galileo...)

1) $m \vec{a}=\vec{F}$
2) $F=G \frac{M m}{r^{2}}, \quad$ attractive

+ differential calculus

$$
\frac{\mathrm{d}^{2} \vec{r}_{i}}{\mathrm{~d} t^{2}}=\frac{1}{m_{i}} \vec{F}_{i}\left(\vec{r}_{1}, \ldots, \vec{r}_{n}\right)
$$

$\Longleftrightarrow \quad$ Kepler laws
(+ terrestrial physics...)

The scientific revolution (Newton, Principia 1687; after Kepler, Galileo...)

1) $m \vec{a}=\vec{F}$
2) $F=G \frac{M m}{r^{2}}$,
attractive

+ differential calculus

$$
\frac{\mathrm{d}^{2} \vec{r}_{i}}{\mathrm{~d} t^{2}}=\frac{1}{m_{i}} \vec{F}_{i}\left(\vec{r}_{1}, \ldots, \vec{r}_{n}\right)
$$

The winning paradigm !

- developments, generalizations; mathematical rigor
$\left.\begin{array}{l}\text { Euler } \\ \text { Lagrange } \\ \text { Laplace... } \\ \text {... Cauchy ... }\end{array}\right\} \quad$ "Analitical Mechanics" - XVIII sec 1

The winning paradigm !

- developments, generalizations; mathematical rigor
$\left.\begin{array}{l}\text { Euler } \\ \text { Lagrange } \\ \text { Laplace... }\end{array}\right\} \quad$ "Analitical Mechanics" - XVIII sec
... Cauchy ...

in the abstract model determinism becomes a theorem
(Cauchy, beginning of XIX century)

An impressive progression of confirmations

- it includes new phenomena: e.g., the flattened orbits of comets (Halley in 1682 predicts the return of his comet in 1757; will be in 1758)

An impressive progression of confirmations

- it includes new phenomena: e.g., the flattened orbits of comets (Halley in 1682 predicts the return of his comet in 1757; will be in 1758)

- it includes tides; the flattened shape of the Earth spheroid

An impressive progression of confirmations

- it includes new phenomena: e.g., the flattened orbits of comets (Halley in 1682 predicts the return of his comet in 1757; will be in 1758)

- it includes tides; the flattened shape of the Earth spheroid
- it includes the "precession of equinoxes" :

Hypparcus (II century b.C.)

Newton, Principia, 1687
(Euler, d'Alembert)

$$
T \simeq 26.000 \text { years }
$$

An impressive progression of confirmations

- it includes new phenomena: e.g., the flattened orbits of comets (Halley in 1682 predicts the return of his comet in 1757; will be in 1758)

- it includes tides; the flattened shape of the Earth spheroid
- it includes the "precession of equinoxes" :

Hypparcus (II century b.C.)
\downarrow
Newton, Principia, 1687
(Euler, d'Alembert)
$T \simeq 26.000$ years

An impressive progression of confirmations

- it includes new phenomena: e.g., the flattened orbits of comets (Halley in 1682 predicts the return of his comet in 1757; will be in 1758)

- it includes tides; the flattened shape of the Earth spheroid
- it includes the "precession of equinoxes" :

Hypparcus (II century b.C.)

Newton, Principia, 1687
(Euler, d'Alembert)

$$
T \simeq 26.000 \text { years }
$$

- it includes: effects of the reciprocal attraction of planets !

Laplace: new theoretical methods, corrections to elliptic motions much more accurate observations; statistical methods computation and observation do correspond!

Kepler laws = first approximation

- it includes: effects of the reciprocal attraction of planets !

Laplace: new theoretical methods, corrections to elliptic motions much more accurate observations; statistical methods computation and observation do correspond!

Kepler laws = first approximation

- The discovery of Neptune:

1781: Herschel discovers Uranus; $T=84$ years
1821 on: its motion has little unexplained irregularities
Corrections to Newton's law (to the model)?
Unknown celestial body?

Neptune

- it includes: effects of the reciprocal attraction of planets !

Laplace: new theoretical methods, corrections to elliptic motions much more accurate observations; statistical methods computation and observation do correspond!

Kepler laws = first approximation

- The discovery of Neptune:

Neptune

1781: Herschel discovers Uranus; $T=84$ years
1821 on: its motion has little unexplained irregularities
Corrections to Newton's law (to the model)? Unknown celestial body?

Adams, Le Verrier, 1846 : compute the position Galle, 1846 , finds the planet where predicted (diff. 1°)

25 september 1846, Galle to Le Verrier:
... the planet, whose position you predicted, really exist. The same day I received your letter, I found a star of $8^{\text {th }}$ magnitude, which did not appear in the collection of the sky maps published by the Berlin Royal Academy. The observation of the next night decided it was the planet you were searching for.

The reply:
Thanks to you, we are definitely in possess of the new world. (...) The Bureau des Longitudes chose the name Neptune. The sign: a trident.

Laplace, Essai philosophique sur les probabilités, 1812 :

" We may regard the present state of the universe as the effect of its past and the cause of its future. An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect were also vast enough to submit these data to analysis, it would embrace in a single formula the movements of the greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past would be present before its eyes."

Laplace, Essai philosophique sur les probabilités, 1812 :

" We may regard the present state of the universe as the effect of its past and the cause of its future. An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect were also vast enough to submit these data to analysis, it would embrace in a single formula the movements of the greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past would be present before its eyes."

Luminous
deterministic
view

Beyond the mechanic-deterministic view the crisis of mechanics between XIX and XX centuries

- not only mechanics: elettromagnetism Independent. Which is fundamental?

Beyond the mechanic-deterministic view

 the crisis of mechanics between XIX and XX centuries- not only mechanics: elettromagnetism Independent. Which is fundamental?
- end XIX - beginning XX sec :
general rethinking inside mechanics
Predictability ?
\rightarrow modern notion of chaotic motion

Henry Poincaré (1854-1912) :
sensitive dependence on initial data

My favourite example

$$
\begin{aligned}
& \ell=10 \mathrm{~cm} \\
& \begin{aligned}
\frac{\mathrm{d}^{2} \vartheta}{\mathrm{~d} t^{2}} & =+\omega^{2} \sin \vartheta \\
& \simeq \omega^{2} \vartheta ; \quad \omega=\sqrt{\frac{g}{\ell}} \simeq 10 \mathrm{sec}^{-1}
\end{aligned}
\end{aligned}
$$

My favourite example

$$
\begin{aligned}
& \ell=10 \mathrm{~cm} \\
& \begin{aligned}
\frac{\mathrm{d}^{2} \vartheta}{\mathrm{~d} t^{2}} & =+\omega^{2} \sin \vartheta \\
& \simeq \omega^{2} \vartheta ; \quad \omega=\sqrt{\frac{g}{\ell}} \simeq 10 \mathrm{sec}^{-1}
\end{aligned}
\end{aligned}
$$

Solution, for $v_{0}=0$:

$$
\vartheta_{t}=\frac{1}{2} \vartheta_{0}\left(e^{\omega t}+e^{-\omega t}\right) \simeq \frac{1}{2} \vartheta_{0} e^{\omega t}
$$

How much time to reach ϑ_{t} ?

$$
t \simeq \frac{1}{\omega} \log \frac{2 \vartheta_{t}}{\vartheta_{0}}
$$

$$
t=\frac{1}{\omega} \log \frac{2 \vartheta_{t}}{\vartheta_{0}}
$$

$$
\begin{aligned}
& t=\frac{1}{\omega} \log \frac{2 \vartheta_{t}}{\vartheta_{0}}=\frac{1}{\omega} \log \frac{1}{\vartheta_{0}} \\
& \vartheta_{t}=0.5 \mathrm{rad}
\end{aligned}
$$

$$
\begin{aligned}
& t=\frac{1}{\omega} \log \frac{2 \vartheta_{t}}{\vartheta_{0}}=\frac{1}{\omega} \log \frac{1}{\vartheta_{0}} \\
& \vartheta_{t}=0.5 \mathrm{rad}
\end{aligned}
$$

$$
\vartheta_{0}=10^{-3} \mathrm{rad}
$$

$$
t=0.7 \mathrm{sec}
$$

$$
\begin{aligned}
& t=\frac{1}{\omega} \log \frac{2 \vartheta_{t}}{\vartheta_{0}}=\frac{1}{\omega} \log \frac{1}{\vartheta_{0}} \\
& \vartheta_{t}=0.5 \mathrm{rad}
\end{aligned}
$$

$$
\vartheta_{0}=10^{-3} \mathrm{rad}
$$

$$
t=0.7 \mathrm{sec}
$$

$$
1.4
$$

$$
\begin{aligned}
& t=\frac{1}{\omega} \log \frac{2 \vartheta_{t}}{\vartheta_{0}}=\frac{1}{\omega} \log \frac{1}{\vartheta_{0}} \\
& \vartheta_{t}=0.5 \mathrm{rad}
\end{aligned}
$$

$$
\begin{array}{cc}
\vartheta_{0}=10^{-3} \mathrm{rad} & t=0.7 \mathrm{sec} \\
10^{-6} & 1.4 \\
10^{-12} & 2.8
\end{array}
$$

$$
\begin{aligned}
& t=\frac{1}{\omega} \log \frac{2 \vartheta_{t}}{\vartheta_{0}}=\frac{1}{\omega} \log \frac{1}{\vartheta_{0}} \\
& \vartheta_{t}=0.5 \mathrm{rad}
\end{aligned}
$$

$$
\begin{array}{cc}
\vartheta_{0}=10^{-3} \mathrm{rad} & t=0.7 \mathrm{sec} \\
10^{-6} & 1.4 \\
10^{-12} & 2.8 \\
10^{-24} & 5.6
\end{array}
$$

$$
\begin{aligned}
& t=\frac{1}{\omega} \log \frac{2 \vartheta_{t}}{\vartheta_{0}}=\frac{1}{\omega} \log \frac{1}{\vartheta_{0}} \\
& \vartheta_{t}=0.5 \mathrm{rad}
\end{aligned}
$$

$$
\begin{array}{cc}
\vartheta_{0}=10^{-3} \mathrm{rad} & t=0.7 \mathrm{sec} \\
10^{-6} & 1.4 \\
10^{-12} & 2.8 \\
10^{-24} & 5.6
\end{array}
$$

attraction of the Moon

$$
\begin{aligned}
& t=\frac{1}{\omega} \log \frac{2 \vartheta_{t}}{\vartheta_{0}}=\frac{1}{\omega} \log \frac{1}{\vartheta_{0}} \\
& \vartheta_{t}=0.5 \mathrm{rad}
\end{aligned}
$$

$$
\begin{array}{cr}
\vartheta_{0}=10^{-3} \mathrm{rad} & t=0.7 \mathrm{~s} \\
10^{-6} & 1.4 \\
10^{-12} & 2.8 \\
10^{-24} & 5.6
\end{array}
$$

attraction of the Moon
a person, 1m distance

$$
\begin{aligned}
& t=\frac{1}{\omega} \log \frac{2 \vartheta_{t}}{\vartheta_{0}}=\frac{1}{\omega} \log \frac{1}{\vartheta_{0}} \\
& \vartheta_{t}=0.5 \mathrm{rad}
\end{aligned}
$$

$\vartheta_{0}=10^{-3} \mathrm{rad}$	$t=0.7 \mathrm{sec}$
10^{-6}	1.4
10^{-12}	2.8
10^{-24}	5.6

attraction of the Moon
a person, 1 m distance
a mosquito, 1km distance

A simplified billiard

A simplified billiard

$$
\begin{aligned}
& \text { second trajectory, } \\
& \Delta \vartheta=10^{-6} \mathrm{rad} \\
& 9 \text { collisions }
\end{aligned}
$$

A simplified billiard

second trajectory,
$\Delta \vartheta=10^{-6} \mathrm{rad}$
9 collisions
12 collisions

A simplified billiard

second trajectory,
$\Delta \vartheta=10^{-6} \mathrm{rad}$
9 collisions
12 collisions
15 collisions

sensitive dependende on the initial datum for generic initial data!

"Chaotic"system :

$$
d_{t} \simeq d_{0} e^{\lambda t}, \quad \lambda>0
$$

exponential instability
for a relevant set of motions (positive measure)

"Chaotic"system :

$$
d_{t} \simeq d_{0} e^{\lambda t}, \quad \lambda>0
$$

exponential instability
for a relevant set of motions (positive measure)
little pendulum: $\quad \lambda=\omega=10 \mathrm{sec}^{-1} ; \quad e^{10 \times 5.6} \simeq 10^{24}$

The "butterfly effect"

Morpho-Menelaus

the Hurricane Harvey (Texas, 2017)

Eduard N. Lorenz (1968; a talk, 1972):
"Can the flap of a butterfly's wings in Brazil set off a tornado in Texas?"

The "butterfly effect"

Morpho-Menelaus

the Hurricane Harvey (Texas, 2017)

Eduard N. Lorenz (1968; a talk, 1972):
"Can the flap of a butterfly's wings in Brazil set off a tornado in Texas?"
In turbulence conditions: yes, it might happen (time scale: a few weeks)

In the Solar System?

- Mercury: quite pronunced chaotic motions, $\simeq 10$ millions years
- Venus, Earth: small chaotic oscillations
- Mars: intermediate behavior
- outer planets: thin chaotic regions?
(1990 - today; J. Laskar)

In the Solar System?

- Mercury: quite pronunced chaotic motions, $\simeq 10$ millions years
- Venus, Earth: small chaotic oscillations
- Mars: intermediate behavior
- outer planets: thin chaotic regions?
(1990 - today; J. Laskar)

- comets: similar to billiards, a few thousands of years (Lexell, 1770)

infiltrations of chaos

The forced pendulum

add a small external periodic force:

$$
\frac{\mathrm{d}^{2} \vartheta}{\mathrm{~d} t^{2}}=-\omega^{2} \sin \vartheta+\varepsilon \cos \Omega t
$$

The forced pendulum

add a small external periodic force:

$$
\frac{\mathrm{d}^{2} \vartheta}{\mathrm{~d} t^{2}}=-\omega^{2} \sin \vartheta+\varepsilon \cos \Omega t
$$

no force, $\varepsilon=0$:

LLLL...

RRRR...

LRLR...

The forced pendulum

add a small external periodic force:

$$
\frac{\mathrm{d}^{2} \vartheta}{\mathrm{~d} t^{2}}=-\omega^{2} \sin \vartheta+\varepsilon \cos \Omega t
$$

no force, $\varepsilon=0$:

LLLL...

RRRR...

LRLR...

Theorem: for small $\varepsilon>0$ all sequeces are realized

Unpredictability \longrightarrow probability?

Chaotic motions, very irregular, may become statistically regular ("ergodic problem", difficult)

Chaotic billiards :
a generic trajectory obeys "simple" statistical rules
(Ya. Sinai, 1962)

Unpredictability \longrightarrow probability?

Chaotic motions, very irregular, may become statistically regular ("ergodic problem", difficult)

probability
to be in A, B, C...
proportional to the area

Unpredictability \longrightarrow probability?

Chaotic motions, very irregular, may become statistically regular ("ergodic problem", difficult)

probability
to be in A, B, C...
proportional to the area
probability of a collision proportional
to the lenght of the border

Unpredictability \longrightarrow probability?

Chaotic motions, very irregular, may become statistically regular ("ergodic problem", difficult)

probability
to be in A, B, C...
proportional to the area
probability of a collision proportional
to the lenght of the border

Unpredictability \longrightarrow probability?

Chaotic motions, very irregular, may become statistically regular ("ergodic problem", difficult)

Unpredictability of trajectories

statistical predictability

Unpredictability \longrightarrow probability?

Chaotic motions, very irregular, may become statistically regular ("ergodic problem", difficult)

deterministic dynamics

precise statistical laws

How computers do produce random numbers?
(criptography...)

Computers: absolutely deterministic devices

How computers do produce random numbers? (criptography...)

Computers: absolutely deterministic devices

A chaotic dynamics is used
(sophisticated)

Conclusion?

The instab. of chaotic motions makes uncertain the construction of a model
deterministic model, trajectories?
probabilistic model,
 statistical laws?

Conclusion?

The instab. of chaotic motions makes uncertain the construction of a model deterministic model, trajectories?
probabilistic model, statistical laws?

determinism and probability are complementary descriptions

Conclusion?

The instab. of chaotic motions makes uncertain the construction of a model
deterministic model, trajectories?
probabilistic model, statistical laws?

determinism and probability are complementary descriptions the pure deterministic image can be misleading
true, but misleadind

Only by chance?

"The greatest chance is the birth of a great man. It is only by chance that the meeting occurs of two genital cells of different sex that contain precisely, each on its side, the mysterious elements whose mutual reaction is destined to produce genius. (...)

How little it would have taken to make the spermatozoid which carried them deviate from its course. It would have been enough to deflect it a hundredth part of an inch, and Napoleon would not have been born and the destinies of a continent would have been changed. No example can give a better comprehension of the true character of chance. "

Henry Poincaré, Le hazard, 1907

Also in: Science et Méthode, IV - Le hazard
English: Science and Method, IV - Chance
Itanian: Scienza e metodo, IV - II caso

