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Outline

Linear methods for classification and regression

Non-linear transformations

Optimal hyperplane and Support Vector Machine (SVM)

SVM for non linearly-separable data
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Linear Models (recap)

One of the most important types of models in ML

A linear model is in the form fw,b(x) =
∑m

i=1 wixi + b = w · x+ b

Which can also be written as fw(x) =
∑m

i=0 wixi = w · x where x0 = 1
is an ad-hoc artificial feature (coordinate)

For classification, the sign is returned, that is
h(x) = sign(fw(x)) ∈ {−1,+1}
For regression, the original function can be taken, that is
h(x) = fw(x) ∈ R
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The Perceptron Algorithm

hw(x) = sign(
n∑

i=0

wixi ) = sign(w · x)

Given a training set {(x1, y1), . . . , (xn, yn)}
1 Let w = 0

2 Pick a misclassified point xi (sign(w · xi ) ̸= yi )

3 Update the weight vector w← w + yixi
4 Repeat from step 2 until all points are correctly

classified

If data are linearly
separable, then the
perceptron algorithm
always converges to a

valid solution!
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Linear models for classification

Perceptron

Constrained linear problem

Least squares for classification

Logistic regression models

SVM

. . .
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(Multi-variate) Linear Regression

Example: Given a set of characteristics for a user: age, annual salary,
years in residence, years in job, current debits, etc. Predict the credit
line, that is the amount of credit that can be granted to a customer.

Given TRAIN = {(x1, y1), . . . , (xn, yn)}, in linear regression we look
for a hypothesis hw (a linear space) which minimizes the mean
squared error on the training set, that is:

argmin
w

1

n

n∑
i=1

(hw(xi )− yi )
2
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Solving the Linear Regression problem

E (w) =
1

n

n∑
i=1

(hw(xi )− yi )
2

=
1

n

n∑
i=1

(w · xi − yi )
2

=
1

n
||Xw − y||2

where X =


. . . x⊤1 . . .
. . . x⊤2 . . .

...
. . . x⊤n . . .

 , y =


y1
y2
...
yn


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By minimizing the residual error

min
w

E (w) ≡ 1

n
||Xw − y||2

∇E (w) =
2

n
X⊤(Xw − y) = 0

X⊤Xw = X⊤y

w = X′y, where X′ = (X⊤X)−1X⊤

The matrix X′ is the pseudo-inverse of X
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Real Data

16× 16 grey-level images

Standard representation: raw input x = (x1, . . . , x256)

You can also use other representations (e.g. intensity, symmetry)
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Non-linear Mapping

(x1, x2)
Φ→ (x21 , x

2
2 )

Generalized Linear Models: In general, any non-linear transformation

x
Φ→ z (a.k.a. basis function) can be applied to the data. An hyperplane,

hence a linear model, in the transformed space will correspond to a
non-linear decision surface in the original space!
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Linear separability

Consider the hypothesis space of hyperplanes

Take a set of linearly separable points

We have different separating hyperplanes fitting the data

Which is the best?

Two questions:

1 The widest possible margin (or optimal) hyperplane is the best, why?

2 To which w, b this corresponds?
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Margin of a hyperplane

Given the hyperplane w · x+ b = 0, the “distance” of a point x from the
hyperplane can be expressed by the algebraic measure g(x) = w · x+ b.

We can write x = xp + r w
||w||

where:

xp is the normal projection
of x onto the hyperplane

r is the desired algebraic
distance (r > 0 if x is on the
positive side of the
hyperplane, otherwise r < 0)

xp

x
w
w

w

+

−

r > 0
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Margin

g(x) = w · x+ b and x = xp + r w
||w|| ,

Two facts:

Note that g(xp) = 0 (because xp is on the optimal hyperplane)

Since the absolute distance from any nearest positive example is the
same as the absolute distance from any nearest negative example,
then we can consider hypotheses w, b such that g(x) = 1 when x is in
the (positive side) margin hyperplane and g(x) = −1 when x is in the
(negative side) margin hyperplane.

Take xk in the positive margin hyperplane, then

g(xk) = w · xp + b︸ ︷︷ ︸
=0

+r
w ·w
||w||

= r ||w|| ⇒ r =
g(xk)

||w||
=

1

||w||

and hence the margin will be ρ = 2r = 2
||w|| .
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Support Vector Machines: basic idea

Can we apply the Structural Risk Minimization (SRM) principle to
hyperplanes?

We have seen that the hypothesis space of hyperplanes in Rm has
VC = m + 1.

In fact, if we add further constraints on the hyperplanes we can do
better!
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Margin: Link with SRM

Theorem Let R denote the diameter of the smallest ball containing all the
input points. The set of hyperplanes described by the equation
w · x+ b = 0 with margin at least ρ has a VC-dimension VCρ bounded
from above as

VCρ ≤ min{⌈ R2

ρ2
⌉,m}+ 1

where m is the dimensionality of the input space.

Thus, if we consider the hypothesis spaces

Hk = {w · x+ b | ||w||2 ≤ ck} where c1 < c2 < c3 < . . .

and linearly separable data, then the empirical error of Hk is 0 for each k
and the bound on the true risk can be minimized by maximizing the
margin of separation (i.e. minimizing the weight norm).
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Separable Case: Quadratic optimization

If we have n linearly separable examples {(xi , yi )}
n

1
, it is possible to find

the optimal hyperplane solving the following constrained quadratic
optimization problem:

minw,b
1
2 ||w||

2

subject to: ∀i ∈ {1, . . . , n} : yi (w · xi + b) ≥ 1

This is a (convex) constrained quadratic problem. This guarantees a
unique solution!

Many QP algorithms exist with polynomial complexity to find the
solution of this quadratic problem
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Solving the optimization problem

The problem above, called primal problem, can be solved more easily
using the dual formulation.

In the dual problem, Lagrange multipliers αi ≥ 0 are associated with
every constraint in the primal problem (one for each example).

The dual formulation is:

maxα
∑n

i=1 αi − 1
2

∑n
i ,j=1 yiyjαiαj(xi · xj)

subject to: ∀i ∈ {1, . . . , n} : αi ≥ 0 e
∑n

i=1 yiαi = 0.

At the solution, most of the αi ’s are zeros. Those examples
associated with non zero multipliers are called support vectors.
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SVM solution

The primal solution turns out to be:

w =
n∑

i=1

yiαixi

b = yk −w · xk for any xk such that αk > 0

and hence:

h(x) = sign(w · x+ b) = sign(
n∑

i=1

yiαi (xi · x) + b)

that is, the decision function only depends on dot products between the
point and other points in the training set (the support vectors).
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SVM for the Non-separable case

If the examples are NOT linearly separable we have to allow that some
constraints are violated. This can be done by

- introducing slack variables ξi ≥ 0, i = 1, . . . , n , one for each
constraint:

yi (w · xi + b) ≥ 1− ξi

- modifying the cost function so to penalize slack variables which are
not 0:

1

2
||w||2 + C

n∑
i=1

ξi

where C (regularization parameter) is a positive constant controlling
the tradeoff between the complexity of the hypothesis space and the
number of margin errors.
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SVM for the Non-separable Case

The dual of this new formulation is very similar to the previous one:

maxα
∑n

i=1 αi − 1
2

∑n
i ,j=1 yiyjαiαj(xi · xj)

subject to: ∀i ∈ {1, . . . , n} : 0 ≤ αi ≤ C e
∑n

i=1 yiαi = 0.

The main difference is due to the fact that the dual variables are upper
bounded by C . The value for b is obtained similarly to the separable case
(with some minor differences...).
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Analysis of SVM for the non-separable case

The parameter C can be seen as a way to control overfitting

As C becomes larger it is unattractive to not respect the data at the
cost of reducing the geometric margin

When C is small, larger margin is possible at the cost of increasing
errors in training data

Interestingly, the SVM solution is in the same form as in the hard
margin case!

Nevertheless, this formulation is not always satisfactory because of the
limited separation capability of a hyperplane.
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Another approach

How can we separate these data?

Fabio Aiolli (Generalized) Linear Models and SVM 9th / 14th November, 2022 22 / 50



Another approach

Projecting them into a higher dimensional space

x→ φ(x)
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Nonseparable case

When the examples are not linearly separable, an alternative approach
based on the following two steps can be used

1 the input vectors (input space) are projected onto a larger space
(feature space);

2 the optimal hyperplane in feature space is computed (e.g. using the
formulation with slack variables)
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Nonseparable case

Step 1 is justified by Cover’s theorem on separability, which states that
non-linearly separable patterns may be transformed into a new feature
space where the patterns are linearly separable with high probability,
provided that the transformation is nonlinear, and that the dimensionality
of the feature space is high enough.

Step 2 is justified by the fact that the optimal hyperplane (in the feature
space) minimizes the VC-dimension.
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Nonseparable case

We can assume that any of the new feature space coordinate is generated
by a nonlinear function φj(·). Thus, we can consider M functions
φj(x) with j = 1, . . . ,M. A generic vector x is thus mapped into the
M-dimensional vector

φ(x) = [φ1(x), . . . , φM(x)]

Step 2 asks to find the optimal hyperplane into the M-dimensional feature
space. A hyperplane into the feature space is defined as

M∑
j=1

wjφj(x) + b = 0

or, equivalently
M∑
j=0

wjφj(x) = w · φ(x) = 0

where we added a coordinate φ0(x) = 1 and w0 = b.
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Nonseparable case

By

w =
n∑

k=1

ykαkφ(xk)

the equation defining the hyperplane becomes

n∑
k=1

ykαkφ(xk) · φ(x) = 0

where φ(xk) · φ(x) represents the dot product (in feature space) between
vectors induced by the k-th training instance and the input x.
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Kernel functions

Now, what we need is a function K (·, ·) (called kernel function) such that

K (xk , x) = φ(xk)·φ(x) =
M∑
j=0

φj(xk)φj(x) = K (x, xk) (symmetric function)

If we get such a function, we could compute the decision function in
feature space WITHOUT explicitly representing the vectors into the
feature space:

n∑
k=1

ykαkK (xk , x)

Functions with this property do actually exist, if some conditions are
satisfied... namely, Mercer’s conditions.
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Kernel functions

In general, a kernel function satisfying Mercer’s conditions represents a
dot-product between vectors generated by some (non-linear)
transformation.

Note that we do not need to know such a transformation!!

Examples of popular kernel functions:

Linear kernel, K (x, z) = x · z
Polynomial kernel of degree s ∈ N, K (x, z) = (x · z+ c)s , c > 0

Exponential kernel, K (x, z) = exp(x · z)
Radial-basis function (RBF) kernel, K (x, z) = exp(−γ∥x− z∥2),
γ > 0
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Formulation with Kernel

The introduction of a kernel does not modify the problem formulation:

maxα
∑n

i=1 αi − 1
2

∑n
i ,j=1 yiyjαiαjK (xi , xj)

subject to: ∀i ∈ {1, . . . , n} : 0 ≤ αi ≤ C and
∑n

i=1 yiαi = 0.

where the needed kernel values are computed over all pairs of vectors
(K (xi , xj), with i , j = 1, . . . , n) and arranged into a matrix K ∈ Rn×n

(symmetric and positive definite) known as kernel matrix or gram matrix.
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Formulation with Kernel

E.g., if we use a polynomial kernel with degree p = 3 we obtain
K i ,j = (xi · xj + 1)3 and a new instance x is classified by the following
discriminant function

h(x) = sign(
∑

xk∈SV
ykα

∗
kK (xk , x)) = sign(

∑
xk∈SV

ykα
∗
k(xk · x+ 1)3)

where SV is the set of support vectors and α∗
k are the optimal values for

the support vectors (the remaining dual variable are 0 ⇒ corresponding
vectors, and kernels, do not contribute to the sum).
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Formulation with Kernel

Using this approach, we can use a nonlinear transformation φ(·)
IMPLICITLY, in fact what we need is not the explicit representation of
vectors in feature space, but their dot product into the feature space. This
can be directly computed in the input space via the kernel function.

Examples of decision surfaces generated IN THE INPUT SPACE with or
without kernel (polynomial with degree 3) both for the separable and
nonseparable case:

separable degree 3 poly not separable degree 3 poly
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Example of mapping: polynomial kernel

Given two vectors x and z and the following mapping φ()

x = (x1, x2); φ(x) = (x21 , x
2
2 ,
√
2x1x2)

z = (z1, z2); φ(z) = (z21 , z
2
2 ,
√
2z1z2)

A dot product between φ(x) and φ(z) corresponds to evaluate the
function K2(x, z) = ⟨x, z⟩2

⟨φ(x), φ(z)⟩ = ⟨(x21 , x22 ,
√
2x1x2), (z

2
1 , z

2
2 ,
√
2z1z2)⟩ =

= x21 z
2
1 + x22 z

2
2 + 2x1z1x2z2 = (x1z1 + x2z2)

2 = ⟨x, z⟩2 = K2(x, z)

K2() is faster to evaluate than ⟨φ(x), φ(z)⟩!
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Examples of φ(): Polynomial and exponential Kernels

Homogeneous polynomial kernels: k(x, z) = ⟨x, z⟩s can be constructed by
defining an embedding map, indexed by all monomials of degree s:

φi(x) = βi

n∏
k=1

x ikk

such that i = (i1, . . . , in) and
∑n

k=1 ik = s, and opportune β’s

Non-homogeneous polynomial kernels: k(x, z) = (⟨x, z⟩+ c)s can be
constructed by defining an embedding map, indexed by all monomials of
degree less or equal to s:

φi(x) = βi

n∏
k=1

x ikk

such that i = (i1, . . . , in) and
∑n

k=1 ik ≤ s, and opportune β’s

Exponential and RBF kernels: similar embedding to the ones given above
but with all possible monomials/degrees (infinite number of features)!
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Representation with kernels

We are given a set of objects S = {x1, x2, . . . , xn}. How can they be
represented?

Classical (explicit) representation: φ(x)→ F
Kernel (implicit) representation:

K : X × X → R (paired comparisons, symmetric function)
S represented by a symmetric matrix K = [K (xi , xj)]i,j ∈ Rn×n

Fabio Aiolli (Generalized) Linear Models and SVM 9th / 14th November, 2022 35 / 50



Kernel and Gram matrix: definitions

Definition

A kernel function is a function K (·, ·) such that for all x, z ∈ X , it satisfies
K (x, z) = φ(x) · φ(z) where φ(x) is a mapping from X to an (inner
product or Hilbert) space H.

Definition

The Gram (or kernel) matrix associated with the kernel function K (·, ·),
evaluated on a finite subset of examples X = {x1, . . . , xn}, xi ∈ X , is the
matrix K ∈ Rn×n such that

Ki ,j = K (xi , xj).

The matrix K is symmetric and positive definite by definition.
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Advantages of using kernels

Representation with kernel matrices has some advantages:

same algorithm for different typologies of data
modularity of the design of kernel and algorithms
the integration of different views is simpler

The dimensionality of data depends on the number of objects and not
from their vector dimensionality

Comparison between objects can result computationally simpler than
using the explicit object representation: kernel computation vs. dot
product
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Kernel Modularity

Modularity in the design/definition of the kernel (representation) and the
learning algorithm used for model computation (classification, regression,
ranking, etc.)
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The Kernel Trick

Any algorithm for vectorial data which can be expressed in terms of
dot-products can be implicitly executed in the feature space associated to
a kernel, by simply replacing dot-products with kernel evaluations.

Kernelization of popular linear or distance-based methods (e.g.
Perceptron and kNN)

Application of algorithms for vectorial data (SVM, Perceptron, etc.)
to non-vectorial data using ad-hoc kernels (e.g. kernel for structures)
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The Kernel Trick - Distances in feature space

Given two objects, x , z ∈ X , the distance between the two objects in
feature space is computed by:

d(x , z) = ||φ(x)− φ(z)||

d2(x , z) = ||φ(x)− φ(z)||2

= φ(x) · φ(x) + φ(z) · φ(z)− 2φ(x) · φ(z)
= K (x , x) + K (z , z)− 2K (x , z)

That is, d(x , z) =
√
K (x , x) + K (z , z)− 2K (x , z).

Note that the values φ(x), φ(z) are not explicitly used!
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SVM with Kernels
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Linear vs. Poly kernel
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RBF kernels

K (x, z) = exp(−γ||x− z||2)
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Closure Properties

Let K1,K2 be kernels defined on X × X . a ∈ R+, ϕ : X → RN with K3 a
kernel over RN × RN . Then,

K (x, z) = K1(x, z) + K2(x, z) is a kernel

K (x, z) = aK1(x, z) is a kernel

K (x, z) = K1(x, z) · K2(x, z) is a kernel

K (x, z) = K3(ϕ(x), ϕ(z)) is a kernel

A kernel can be easily normalized (such to have normalized data in feature
space ||ϕ(x)|| = 1):

K̃ (x, z) =
K (x, z)√

K (x, x)K (z, z)
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Kernel extensions to other types of inputs

Kernel for strings
Idea: given two strings, compute the number of shared sub-strings
(dynamic programming algorithms exist to make efficient the
computation of these kernels)

Kernel for trees
Idea: given two trees, compute the number of shared sub-trees (also
here dynamic programming algorithms exist to make efficient the
computation of these kernels)

Kernel for graphs
Idea: similar to the ones above, e.g. counting common walks.
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Regression with SVM: Basic idea

When considering a regression problem, the idea is to define an ϵ-tube:

predictions which differ from the desired value for more that ϵ in absolute error

are linearly penalized, otherwise they are not considered errors.
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Fabio Aiolli (Generalized) Linear Models and SVM 9th / 14th November, 2022 46 / 50



Regression with SVM

The ϵ-tube idea leads to the following formulation

minw,b,ξ,ξ∗
1
2 ||w||

2 + C
∑n

i=1(ξi + ξ∗i )
subject to:
∀i ∈ {1, . . . , n}

yi −w · xi − b ≤ ϵ+ ξi
w · xi + b − yi ≤ ϵ+ ξ∗i
ξi , ξ

∗
i ≥ 0

which has the following dual formulation...

maxα,α∗ −ϵ
∑n

i=1(αi + α∗
i ) +

∑n
i=1 yi (αi − α∗

i )+
− 1

2

∑n
i,j=1(αi − α∗

i )(αj − α∗
j )K (xi , xj)

subject to:∑n
i=1(αi − α∗

i ) = 0
αi , α

∗
i ∈ [0,C ]
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Kernel methods

Several kernel methods, including SVM, can be interpreted as solving
the following problem:

arg min
f ∈H

L(f (x1), . . . , f (xn)) + Λ||f ||H

L is a loss (or cost) function associated to the empirical risk

The norm is the “smoothness” of the function. In fact, the meaning
of “smoothness” depends on the considered kernel and feature space.

Λ is a trade-off regularization coefficient

The problem above can be shown to always have a solution of type:

f (x) = w · φ(x) =
n∑

i=1

αiK (xi , x)

That is the optimization problem can be formulated with n variables. If
n≪ d then we get a computational advantage
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Kernel and Random Features

Disadvantages of kernels are:

Memory space required to store the kernel matrix

Time required to evaluate the scoring function (real-time applications)

Recently, there have been effort to ”linearize” the kernel. This can be
done by sampling a finite set of non-linear features φ̄(x), such that

⟨φ̄(x), φ̄(z)⟩ ≈ ⟨φ(x), φ(z)⟩ = K (x, z)
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Recap

Motivate the Support Vector Machine (SVM) method from a
theoretical point of view

Discuss methods for handling non-linearly separable data with SVMs

In the context of kernel methods (e.g. SVM), describe the concept of
kernel and its close link with data representation

Relationship between Perceptron and SVM: is it possible to see
Perceptron as a kernel method?

Relations between Neural Networks and SVM: where is the ”kernel”
in Neural Networks? What are the differences in terms of objective
function between the two methods?
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