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Chapter 1

Lie Groups

1.1 Definition and examples

1.1.A Definition. In the following, differentiable or smooth means C∞ and
submanifold means embedded submanifold. Unless otherwise stated all objects
are smooth. We will denote the identity element of a group G by eG or simply
by e; for groups of matrices we will usually denote it I (the unit matrix).

Definition 1.1.1 A Lie group G is a group which has also the structure of a
(real) smooth manifold such that the group product

µ : G×G→ G , (g, h) 7→ gh

and the group inversion

i : G→ G , g 7→ g−1

are smooth maps. The dimension of a Lie group G is its dimension as a smooth
manifold.

Remark: A topological space may have different, non-diffeomorphic, manifold
structures compatible with the given topology (a well known example is R4

with the Euclidean topology, which has such ‘exotic’ manifold structures). It
so happens that for a group endowed with a (locally Euclidean) topology with
respect to which product and inverse are continuous, instead, there is a unique

smooth structure compatible with that topology. In other words, topological
groups are automatically (and in a unique way) Lie groups.

Exercises 1.1.1 (i) In some books, the definition of Lie groups requires only the smooth-
ness of the map G ×G → G, (g, h) 7→ gh−1. Show that this implies smoothness of product
and inverse.
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2 Chapter 1.

1.1.B Examples. We give now a number of classical examples of Lie groups.
In most cases, we will have to show that a subgroup of a given Lie group is also
a submanifold of it—and hence the product and inversion are automatically
smooth being the restriction of smooth operations to a submanifold. In order
to do that, we will use the following fact: Let f : M → N be a smooth map
between two manifolds M and N ; if, for a given n ∈ f(M), f has constant rank
k in all points of P = f−1(n), then P is a submanifold of M of codimension
k.1 In this situation, the restriction to P of any smooth map on M is smooth
with respect to the submanifold structure of P .

1. (Rn,+), n ≥ 1, with the (additive) group structure and the differentiable
structure given by it being a vector space. Indeed, the sum (x, y) 7→ x+ y and
the group inverse x 7→ −x are differentiable maps. The dimension is n.

2. The multiplicative group R∗ = R \ {0}, since both maps (x, y) 7→ xy
and x 7→ 1/x are differentiable. Its dimension is 1.

3. C∗ := C \ {0} is a group with product given by the multiplication of
complex numbers. It becomes a Lie group of dimension 2 if C∗ is equipped with
the structure of real two-dimensional manifold provided by its identification
with R2 \ 0 (through the map z 7→ (ℜ(z),ℑ(z))).

4. The unit circle

S1 =
{
z ∈ C : |z| = 1

}
∼

{
x ∈ R2 : ‖x‖ = 1

}

is a subgroup of C∗. It is also a 1-dimensional submanifold of C∗. Hence, it is
a Lie group of dimension 1.

5. Direct product of Lie groups. Consider two Lie groups G1 e G2.
The Cartesian product G1 × G2 is a group with product (g1, g2)(g

′
1, g

′
2) =

(g1g
′
1, g2g

′
2). It is also a manifold of dimension dimG1 + dimG2 with the pro-

duct manifold structure. Smoothness of product and inverse follows from the
fact that, in the product manifold structure, a map is smooth whenever its
components are smooth.

6. The 1-dimensional torus T1 := R/2πZ and the n-dimensional torus
Tn := S1 × . . .×S1 (n factors). As all other examples so far, these are abelian
Lie groups.

1The rank of f at a point m is the rank of the linear map Tmf : TmM → Tf(m)N .
If rankTmf = dimN then Tmf is surjective and f is said to be submersive or a
submersion at m. Those points at which a map is submersive are called regular

points; the regular level sets of a map consist entirely of regular points.
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Chapter 1. 3

7. In the following, we will denote by L(n,R), or simply L(n), the set of all
n×n matrices with real entries. L(n) is a real vector space of dimension n2: a
basis is formed by the n2 matrices eij which have all entries zero except a 1 in
position (i, j). A matrix A ∈ L(n) with entries Aij can then be written as

A =
∑

ij

Aijeij (1.1.1)

and, as in any vector space, all questions about continuity or smoothness of
maps reduce to control that they are continuous or smooth functions of the
matrix entries.

The subset of L(n,R) of all invertible matrices, GL(n,R) ≡ GL(n) = {A ∈
L(n,R) : detA 6= 0}, is a (non-abelian, if n > 1) group with the matrix
multiplication as product. Since the function det : L(n) → R is continuous
(it is a polynomial in the matrix entries), GL(n) = det−1(R \ {0}) is an open
subset of L(n) and hence an n2-submanifold of L(n). The matrix multiplication
is polynomial in the matrix entries and hence smooth. The matrix inversion
A 7→ A−1 is smooth as well because, by the cofactor expansion (or Cramer’s
rule), the entries A−1 can be written as ratios of two polynomials in the entries
of A, with denominator detA 6= 0. Thus, GL(n,R) is a Lie group of dimension
n2.

8. Similar arguments show that GL(n,C) is a Lie group of dimension 2n2

(it is an open subset of L(n,C), which is a vector space of real dimension 2n2).

9. The orthogonal group O(n) :=
{
R ∈ L(n,R) : RRT = I

}
is a Lie

group of dimension 1
2n(n− 1). Indeed, on the one hand, O(n) is a subgroup of

GL(n). On the other hand, as we show below, O(n) is a submanifold of L(n)
of dimension 1

2n(n− 1); therefore, smoothness of the group operations follows
from that of GL(n).

In order to prove that O(n) is a submanifold of L(n) we proceed as follows.
• Let Symm(n) be the vector subspace of L(n) formed of all symmetric
matrices. Since a symmetric matrix has at most 1+2+ . . .+(n− 1)+n =
1
2n(n+ 1) distinct entries, Symm(n) has dimension 1

2n(n+ 1).

• Consider the map

f : L(n) → Symm(n) , A 7→ AAT , (1.1.2)

which is well defined given that (AAT )T = AAT and is smooth because,
again, it is polynomial in the matrix entries. Since A ∈ O(n) if and only
if f(A) = I,

O(n) = f−1(I) .

In order to prove that O(n) is a submanifold of L(n), we thus prove that
f is a submersion at all points of O(n), namely, that if R ∈ O(n) then

F. Fassò (University of Padova) - Lie Groups and Symmetry (2002/2)



4 Chapter 1.

the tangent map TRf : TRL(n) → Tf(R)Symm(n) is surjective. This will

also prove that dimO(n) = dimL(n)− dim Symm(n) = n2 − 1
2n(n+ 1) =

1
2n(n− 1).

• We begin by computing the tangent map

TAf : TAL(n) → Tf(A)Symm(n)

at the points A ∈ L(n). Instead of determining the entries of this map,
which requires choosing coordinates and computing partial derivatives, it is
often easier to directly determine the way it transforms tangent vectors—
and this is indeed the procedure we will use most of the times. In order to
explain how to do it, we first remind the definition of tangent map. The
tangent vectors to a manifold M in a point m ∈ M are the derivatives
of curves through m: v ∈ TmM if and only if v = γ′(0) for a curve
γ : I ⊂ R → M such that γ(0) = m. If f : M → N is a smooth map
between two manifolds M and N , then Tmf : TmM → Tf(m)N is the map
that transforms v = γ′(0) into Tmf · v := (f ◦ γ)′(0) (note that this is a
linear map between the vector spaces TmM and Tf(m)N). If, as in the
present case, the manifold M is a vector space E then its tangent spaces
can be identified with E and a convenient choice of a curve through a point
x ∈ E and tangent to a vector v ∈ E is the straight line t 7→ x+ tv.

• Proceeding in this way, we consider two matrices A, V ∈ L(n) and compute

TAf · V =
d

dt

[
f(A+ tV )

]
t=0

=
d

dt

[
(A+ tV )(A+ tV )T

]
t=0

=
d

dt

[
AAT + t(V AT +AV T ) + t2V V T

]
t=0

= V AT +AV T .

Since Tf(A)Symm(n) can be identified with Symm(n), this shows that
surjectivity of TAf amounts to the fact that, for any symmetric matrix S,
there exists a matrix V ∈ L(n) such that

V AT +AV T = S .

This does in fact happen if A ∈ O(n) (take V = 1
2SA). We conclude that

f : L(n) → Symm(n) is a submersion at all points of O(n) and hence O(n)
is a submanifold of L(n).

We have so far proven that O(n) is a Lie group of dimension 1
2n(n− 1). It is

called the orthogonal group. Let us see some properties of it.
Orthogonal matrices have determinant ±1 (given that RRT = I). O(n) is

thus not connected, being the union of the two (closed and nonempty) disjoint
subsets SO±(n) = {R ∈ O(n) : detR = ±1}. It can be proven that SO±(n)
are both connected; we will do this later, but only in the case n = 3.

F. Fassò (University of Padova) - Lie Groups and Symmetry (2002/2)



Chapter 1. 5

Proposition 1.1.2 O(n) is compact.

Proof. Since L(n) is a finite-dimensional real vector space, by the Heine-Borel
theorem a subset of L(n) is compact if and only if it is closed and bounded
(in some norm—they are all equivalent). O(n) is closed because the function
f as in (1.1.2) is continuous. Consider the norm ‖ · ‖F on L(n) associated to
the (Frobenius) inner product (A,B) 7→ tr (ATB). If A1, . . . , An ∈ Rn are the
columns of A, then ‖A‖2F =

∑
i ‖Ai‖2, where ‖ · ‖ is the Euclidean norm. If

A ∈ O(n), its columns are orthonormal vectors and ‖A‖2F = n. Thus, O(n) is
contained in the ball of radius

√
n of L(n) and is bounded.

10. The special orthogonal group SO(n) = SO+(n) consists of the orthogo-
nal matrices with determinant +1. It is a subgroup of O(n) and an open subset
of it (why?). Hence, it is a Lie group of dimension equal to that of O(n).

11. The unitary group U(n). An argument similar to that used for
O(n) shows that the unitary group U(n) :=

{
A ∈ GL(n,C) : AA∗ = I

}
is

a (real) submanifold of L(n,C) (thought of as a 2n2-dimensional real vector
space) whose codimension equals the dimension of the subspace of L(n,C) that
consists of all hermitian matrices (thought of as a real vector space). Since in
an n× n hermitian matrix one can freely choose the n diagonal entries, which
are real, and the real and imaginary parts of the 1

2n(n − 1) entries below the
diagonal, this subspace has dimension n2. Therefore, U(n) is a Lie group of
dimension n2.

Proposition 1.1.3 For any n ≥ 1, U(n) is compact and connected.

Proof. Compactness is proved as for O(n). Next, recall that any unitary
matrix A is (unitarily) similar to a diagonal matrix: there exists an invertible
(actually, unitary) matrix P and a diagonal matrix D such that A = PDP−1.
On the other hand, the eigenvalues of a unitary matrix are complex numbers
of modulus one. Hence

A = Pdiag
(
eiθ1 , . . . , eiθn

)
P−1

with θ1, . . . , θn ∈ R. The path

[0, 1] ∋ t 7→ Pdiag
(
eitθ1 , . . . , eitθn

)
P−1

joins the identity to A. Thus, U(n) is pathwise-connected and hence
connected.

12. The special unitary group. SU(n) := {A ∈ U(n) : detA = 1} is a Lie
group of dimension n2 − 1. To prove this, first observe that the determinant of
a unitary matrix is a complex number of absolute value 1 because, if AA∗ = I,

F. Fassò (University of Padova) - Lie Groups and Symmetry (2002/2)



6 Chapter 1.

then | detA|2 = | det(AA∗)| = 1. Clearly, det : U(n) → S1 is surjective (see the
Exercises).

Thus, let us regard the determinant as the map

det : U(n) → S1 ,

which is a smooth map between smooth manifolds. If we prove that this map
has rank 1 at each point A ∈ SU(n), then we conclude that SU(n) = det−1(1)
is a codimension 1 submanifold of U(n).

Saying that det has rank 1 at a point A ∈ SU(n) means that there exists a
vector V ∈ TAU(n) such that TA det ·V 6= 0. Fix A ∈ SU(n) and consider the
curve

γ : R → U(n) , t 7→ eitA

which passes through A at t = 0. Its derivative γ′(0) = iA is a vector in
TAU(n) and

TA det ·iA = d
dt det(e

itA)|t=0 .

But, det(eitA) = eint det(A) = eint (since A ∈ SU(n)) and hence TA det ·iA =
ni 6= 0.

SU(n) is compact (being a closed subset of U(n)) and connected.

13. S3. It turns out that, among all spheres Sn := {x ∈ Rn+1 : ‖x‖ = 1},
only two can be given the structure of a Lie group: S1 and S3. We describe
here the Lie group structure of S3. As a manifold, it has dimension 3; in all
computations below, we will tacitly embed it in R4. The group structure of S3

comes from the restriction to S3 of the well known quaternion product of R4.
Recall that an algebra A is a vector space together with a bilinear operation

A × A → A, called the ‘product’. Denote x = (x0, x), with x = (x1, x2, x3),
the points of R4 (occasionally, we will say that x0 and x are, respectively, the
‘scalar’ and ‘vector’ parts of x = (x0, x)). Then, the quaternion product in R4

is defined as

(x0, x)(y0, y) :=
(
x0y0 − x · y , x0y + y0x+ x× y

)
(1.1.3)

where · and × are the standard inner and cross products in R3. This gives R4

the structure of an algebra, the quaternion algebra. As is easily checked, this
algebra is associative, has a unity (the element (1, 0)) and is a division algebra
(every nonzero element has an inverse—which one?), but is not abelian. Since
the null vector 0 does not have an inverse R4 with this product is not a group.

However, a computation shows that, denoting ‖ ‖ the Euclidean norm in
R4, one has ‖xy‖ = ‖x‖‖y‖ for all x, y ∈ R4. Thus, the quaternion product
(1.1.3) restricts to a product on the unit sphere S3 ⊂ R4, and gives it a group
structure, with group identity

eS3 = (1, 0) .

F. Fassò (University of Padova) - Lie Groups and Symmetry (2002/2)



Chapter 1. 7

Since the product (1.1.3) and the associated inverse are smooth in R4 and
therefore on its submanifold S3, S3 with the quaternion product (1.1.3) is a
Lie group of dimension 3. Obviously, it is compact and connected.

Exercises 1.1.2 (i) Verify that the Frobenius inner product in L(n) becomes, under the

identification of L(n) and Rn2
via the basis eij as in (1.1.1), the Euclidean inner product in

Rn2
.

(ii) Show that det : U(n) → S1 is surjective. [Suggestion: consider, e.g., the matrices of the
form eiθI, θ ∈ R].

(iii) Show that the inverse of (x0, x) ∈ S3 is (x0,−x).

(iv) Let Q be the quaternion algebra. Q \ {0} is a group?

(v) Often, the quaternion algebra is defined in a different way. Recall that a linear map

f : A → B between two algebras A and B is an algebra homomorphism if f(a, a′) = f(a)f(a′)
for all a, a′ ∈ A. Consider a real 4-dimensional vector space Q with a basis formed by 4
vectors, conventionally denoted 1, i, j, k. Define a product on Q extending by linearity the
relations

12 = 1 , i2 = j2 = k2 = ijk = −1 (1.1.4)

(from which all other products among the 4 basis vectors follow). Verify that the linear map
Q → R4 defined by 1 7→ (1, 0), i 7→ (0, e1), j 7→ (0, e2), k 7→ (0, e3) is an isomorphism between
Q with this product and R4 with the product (1.1.3). (Here e1, e2, e3 are the vectors of the
canonical basis of R3).

(vi) Verify that a 2 × 2 complex matrix belongs to SU(2) if and only if it has the form
(

a b
−b a

)

with a, b ∈ C such that |a|2 + |b|2 = 1.

1.1.C Left and right translations.

Definition 1.1.4 Let G be a Lie group and g ∈ G. The left translation by g
is the map

Lg : G→ G , h 7→ gh ,

the right translation by g is the map

Rg : G→ G , h 7→ hg

and the conjugation by g is the map

Cg = Lg ◦Rg−1 : G→ G , h 7→ ghg−1 .

Proposition 1.1.5 For any g ∈ G, Lg, Rg and Cg are diffeomorphisms of G
onto itself.

Proof. Lg is smooth and is invertible, with inverse Lg−1 which is smooth as
well. Similarly for Rg and Cg.

F. Fassò (University of Padova) - Lie Groups and Symmetry (2002/2)



8 Chapter 1.

1.1.D Lie group homomorphisms and isomorphisms.

Definition 1.1.6
i. A Lie group homomorphism between two Lie groups G and H is a group

homomorphism between G and H which is also a smooth map.

i. A Lie group isomorphism is a Lie group homomorphism which is also a
diffeomorphism.

Examples: 1. The real exponential exp : R → R∗, t 7→ et, is a Lie group
homomorphism between (R,+) and (R∗, x). It is not an isomorphism because it
is not surjective.

2. det : GL(n,R) → R∗ is a Lie group homomorphism.

3. The map

ϕ : T1 → S1 , x 7→ eix

is a Lie group isomorphism.

4. Consider two reals ω1 and ω2. The map

γ : R → T2 , t 7→ (ω1t, ω2t)mod2π (1.1.5)

is a homomorphism of Lie groups (γ(x+y) = γ(x)+γ(y) mod2π for all x, y ∈ R).
It is well known (Krönecker’s theorem) that γ(R) is a closed curve if ω1 and ω2

are linearly dependent over the rationals, and if not, it is dense in T2..

5. For any g ∈ G, the conjugation Cg is a Lie group isomorphism of G into itself
(it is a diffeomorphism and Cg(hh

′) = Cg(h)Cg(h
′) for all h, h′ ∈ G).

Lie group homomorphisms are a generalization of linear maps between vector
spaces. Linear maps f : x 7→ Ax have special properties: their fibers differ by
translations (f−1(y) = f−1(0) + v with any v ∈ A−1(y)) and their derivative
(being constant2) have constant rank.

Proposition 1.1.7 If f : G→ H is a Lie group homomorphism, then:
i. The fiber of f that contains a point g ∈ G is the left-translation by g of

the fiber of f that contains e.

ii. f has constant rank.

Proof. (Recall that a group homomorphism f : G → H maps the identity
element e of G into the identity element eH of H .)

(i.) This is well known from group theory: the fibers of a group
homomorphisms are the cosets of its kernel:

f−1(f(g)) = gf−1(eH) ∀g ∈ G .

2This is meaningful because the tangent spaces to a vector space can be identified
with the vector space itself.
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Chapter 1. 9

Let us anyway detail it. If g1 ∈ f−1(eH), or f(g1) = eH , then f(Lgg1) =
f(gg1) = f(g)eH = f(g) and so Lgg1 ∈ f−1(f(g)). Thus Lg(f

−1(eH)) ⊆
f−1(f(g)). Conversely, assume g2 ∈ f−1(f(g)). Thus f(g−1g2) = f(g−1)f(g2) =
f(g)−1f(g) = eH and g−1g2 ∈ f−1(eh). Hence Lg−1(f−1(f(g))) ⊆ f−1(eH)
and, since Lg is a diffeomorphism, f−1(f(g)) ⊆ Lg(f

−1(eH)).
(ii.) The condition that f is a homomorphism (f(gg′) = f(g)f(g′) or

f(Lgg
′) = Lf(g)g

′ for all g, g′ ∈ G) can be written

f ◦ Lg = Lf(g) ◦ f ∀g .

Using the chain rule, compute

Te(f ◦ Lg) = TLgef ◦ TeLg = Tgf ◦ TeLg
Te(Lf(g) ◦ f) = Tf(e)Lf(g) ◦ Tef = TeHLf(g) ◦ Tef .

Since left translations are diffeomorphisms, the linear maps TeLg and TeHLf(g)
are isomorphisms. Thus, this gives

Tgf = TeHLf(g) ◦ Tef ◦ (TeLg)−1

which implies that the linear maps Tgf e Tef have the same rank.

1.1.E Lie subgroups. So far, we have been somehow unprecise about sub-
manifolds. A subset S of a manifold M is said to be an immersed submanifold
ofM if there are a manifold S̃ and an injective immersion j : S̃ →M such that
j(S̃) = S. Sometimes, and in fact more precisely, the immersed submanifold is
defined as the pair (S̃, j). If (S̃, j) is an immersed submanifold, then j(S̃) has a
(unique) manifold structure such that j : S̃ → S = j(S̃) is a diffeomorphism.3

An immersed submanifold (S̃, j) is said to be an embedded submanifold, or
simply a submanifold, if the manifold topology of j(S̃) is the induced topology.4

This is equivalent to the fact that j : S̃ → M is an embedding5. Proper6

injective immersions are embeddings. In particular, any compact immersed
submanifold is an embedded submanifold.

Definition 1.1.8 A subset H of a Lie group G is a Lie subgroup of G if it is
a subgroup and an immersed submanifold of G.

3This manifold structure is given by the final topology (U ⊂ S is open if and only
if j−1(S) is open in S̃) and by an atlas with charts of the form φ ◦ (j|S)

−1, where the
φ’s are charts of S̃).

4Also called relative or subset topology: the open sets of S = j(S̃) are the
intersection of S and the open sets of M .

5Embedding=injective immersion which is a homeomorphism onto its image.
6A map is proper if the preimages of compact sets are compact.
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Equivalently, H is a Lie subgroup of G if there are a Lie group H̃ and an
injective Lie group homomorphism j : H̃ → G such that H = j(H̃). Hence, H
is isomorphic, as a Lie group, to H̃ .

Examples: 1. All subgroups of GL(n) introduced in the previous section are
Lie subgroups of GL(n) (in fact, they are embedded submanifolds).

2. For any k ∈ Z+, the map γ : T1 → T2 given by t 7→ (t, kt)mod2π is a Lie
group isomorphism and thus γ(T1) is a one-dimensional compact Lie subgroup
of T2, isomorphic to T1.

3. If ω1/ω2 /∈ Q, then the image γ(R) of the map (1.1.5) is a non-compact Lie
subgroup of T2 isomorphic to R.

In general, subgroups of a Lie group are not necessarily Lie subgroups.
However, we state without proof the following result:

Proposition 1.1.9 Any subgroup of a Lie group which is a closed subset is an
embedded Lie subgroup.

The closed subgroups of GL(n) are called classical groups, or linear groups
or matrix Lie groups. All subgroups of GL(n) considered in the examples of
section 1.1.B are of this type.

1.1.F S3 and SU(2). As a final example, we investigate the relationships
between the three 3-dimensional, compact and connected Lie groups we have
met: S3, SU(2) and SO(3). We begin from the first two.

Refer to exercise 1.1.2.v. Consider the algebra R4 with the quaternion
product (1.1.3) and the algebra L(2,C) with the matrix product. The linear
map f : R4 → L(2,C) given by

f : (x0, x) = (x0, x1, x2, x3) 7→
(
x0 + ix1 x2 + ix3
−x2 + ix3 x0 − ix1

)

is injective.
If ei = (1, 0, 0), ej = (0, 1, 0) and ek = (0, 0, 1), then the four matrices

M1 := f(1, 0) =

(
1 0
0 1

)
, Mi := f(0, ei) =

(
i 0
0 −i

)
,

Mj := f(0, ej) =

(
0 1
−1 0

)
, Mk := f(0, ek) =

(
0 i
i 0

)

satisfy M2
1 = M1, M

2
i = M2

j = M2
k = MiMjMk = −M1. Hence, a glance at

formulas (1.1.4) shows that f is an algebra isomorphism onto its image.
Since the products of S3 and SU(2) are the restrictions of the products of

the two algebras R4 e L(2,C), this implies that f |S3 : S3 → SU(2) is a group
isomorphism. On the other hand, recalling from Exercise 1.1.2.vi the structure
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of the matrices in SU(2), we see that the restriction of f to the unit sphere S3

of R4 is a bijective map S3 → SU(2) and hence, since f : R4 → f(R4) ⊂ L(2,C)
is a diffeomorphism, is a diffeomorphism.7

We conclude that f |S3 : S3 → SU(2) is a Lie group isomorphism.

1.1.G S3 and SO(3). We now compare S3 and SO(3). In so doing, we will
encounter some objects which, as will become clear later, have a Lie-theoretical
nature.

1. The isomorphism of vector spaces ∧ : R3 → skew(3). The set skew(3)
of all 3 × 3 antisymmetric real matrices is a 3-dimensional linear subspace of
the vector space L(3). The vector product with a fixed vector u ∈ R3 is a
linear antisymmetric map v 7→ u× v and is therefore represented by a (unique)
matrix û ∈ skew(3). This defines a map ˆ : R3 → skew(3) such that ûv = u× v
for all u, v ∈ R3, which is given by

u =



v1
u2
u3


 7→




0 −u3 u2
u3 0 −u1
−u2 u1 0


 . (1.1.6)

Clearly, this map is a linear isomorphism between R3 and skew(3).
We note the following two properties of the isomorphism :̂

û× v = ûv̂ − v̂û ∀ u, v ∈ R3 (1.1.7)

(which, at this stage, can be verified with a non-enlightening direct computa-
tion) and

R̂u = RûRT ∀ R ∈ SO(3) . (1.1.8)

(in fact, R̂u v = (Ru)× v = R(u×RT v) = R(ûRT v)).

2. The matrix exponential. Let exp : L(n) → L(n) be the matrix
exponential map, which is defined as the sum of the series

exp(A) :=

∞∑

n=0

1

n!
An . (1.1.9)

This series is uniformly convergent on compact sets, and exp is thus a smooth
map. Obviously, exp(0̂) = I. Moreover, the matrix exponential map has the
following (well known, or easy to prove) properties:

Proposition 1.1.10 For all A ∈ L(n):

7The restriction of a diffeomorphism to an embedded submanifold is a
diffeomorphism.
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i. exp(A) ∈ GL(n) and exp(A)−1 = exp(−A).
ii. exp(A)T = exp(AT ).

iii. P−1 exp(A)P = exp(P−1AP ) for all P ∈ GL(n)

iv. det(exp(A)) = etr (A)

v. d
dt exp(At) = A exp(At) = exp(At)A for all t ∈ R

At the moment, we are particularly interested in the exponential of skew-
symmetric matrices.

Proposition 1.1.11
i. If A ∈ skew(3) then exp(A) ∈ SO(3).

ii. exp(ω̂) = I+ sin ‖ω‖
‖ω‖ ω̂+ 1−cos ‖ω‖

‖ω‖2 ω̂2 for all ω ∈ R3\{0} (“Euler-Rodrigues

formula”).

iii. exp |skew(3) : skew(3) → SO(3) is surjective.

Proof. (i) If A = −AT then exp(A)T = exp(AT ) = exp(−A) = exp(A)−1 and
exp(A) ∈ O(3). But tr (A) = 0 and so det(exp(A)) = e0 = 1.

(ii) Use identities (1.1.11) and rearrange the terms in the exponential series,
collecting the terms linear and quadratic in ω̂.

(iii) We first prove that, if R ∈ SO(3) fixes a vector ω ∈ R3, namely Rω = ω,
then R = exp(kω̂) with a certain k ∈ R.

Preliminarily, assume that P ∈ SO(3) fixes e3 = (0, 0, 1). Then P =


cosα − sinα 0
sinα cosα 0
0 0 1


 with some α ∈ R. Since ê3 =




0 −1 0
1 0 0
0 0 0


, and

thus ê3
2 = −I + e3e

T
3 , from the Euler-Rodrigues formula it follows that

P = exp(αê3). Consider now an ω ∈ R3 \ {0}. Choose a matrix S ∈ SO(3)
such that Sω = ‖ω‖e3. Then SRST e3 = e3 and so SRST = exp(αê3) for some
α. It follows that R = S−1 exp(αê3)S = exp(αS−1ê3S) = exp(αST ê3S) =

exp(αŜT e3) = exp
(
α

‖ω‖ ω̂
)
.

In view of this, in order to prove the surjectivity we just need to prove
that any matrix R ∈ SO(3) has the eigenvalue 1. All eigenvalues of a matrix
R ∈ SO(3) have modulus one (if Rx = λx with λ ∈ C and x 6= 0 then
‖x‖ = ‖Rx‖ = |λ|‖x‖ and hence |λ| = 1). Together with detR = 1 this
implies that R has the eigenvalue 1. (If R has one real eigenvalue λ and a pair
of complex conjugate eigenvalues α and α 6= α then 1 = detR = |α|2λ and
λ = +1. If R has three real eigenvalues, they cannot all be −1 because their
product is +1).

3. A Lie group homomorphism S3 → SO(3). In the sequel, if q = (q0, q) ∈
R4, we write q̂ for q̂. For all q = (q0, q) ∈ R4 define

E(q) := I+ 2q0q̂ + 2q̂2 . (1.1.10)
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Proposition 1.1.12 The restriction of E to S3 is a Lie group homomorphism
between S3 and SO(3).

Proof. First, we show that E(q) ∈ SO(3) for all q ∈ S3. Indeed, for all q ∈ R4,

E(q)E(q)T = I+ 4
(
(1− q20)q̂

2 + q̂4
)

= I+ 4
(
1− q20 − ‖q‖2

)
q̂2

where the last expression follows from q̂4 = −‖q‖2q̂2 (see Exercise 1.1.3.i). If
q ∈ S3 then q20 + ‖q‖2 = 1 and E(q)E(q)T = I. Thus E(S3) ⊆ O(3). Since S3

is connected and E is continuous, E(S3) is connected. And since E(1, 0) = I ∈
SO(3), E(S3) ⊆ SO(3).

Next, smoothness of E is obvious and a computation shows that E(qp) =
E(q)E(p) for all q, p ∈ S3 (see Exercise 1.1.3.ii).

Proposition 1.1.13 The map E : S3 → SO(3):

i. Is 2 : 1.

ii. Is surjective

iii. Is a local diffeomorphism.

Proof. (i) Clearly E(q) = E(−q) for all q ∈ S3 and therefore each fiber of E
contains at least two points. But it is easily seen that the fiber E−1(I) consists
of exactly two points. Indeed E(q) = I+2q0q̂+2q̂2 = I if and only if q0q̂ = −q̂2,
which implies q̂ = 0 because q̂ is antisymmetric and q̂2 is symmetric. Hence
q0 = ±1 and E−1(I) = {(1, 0), (−1, 0)}. Hence, by Proposition 1.1.7, all other
fibers of E have cardinality 2.

(ii) Since exp ◦ˆ : R3 → SO(3) is surjective, to prove the surjectivity of
E : S3 → SO(3) we show that, for any ω ∈ R3, there exists a q = (q0, q) ∈ S3

such that E(q) = exp ω̂. Being a homomorphism, E maps the identity element
(1, 0) of S3 into the identity element I = exp 0 of SO(3). So, we may limit
ourselves to ω 6= 0. With a little trigonometry, the Euler-Rodrigues formula
may be rewritten as

exp ω̂ = I+ 2

(
sin

‖ω‖
2

)(
cos

‖ω‖
2

)
ω̂

‖ω‖ + 2

(
sin

‖ω‖
2

)2
ω̂2

‖ω‖2 .

This equals I + 2q0q̂ + 2q̂2 if q0 = cos ‖ω‖
2 and u = ω

‖ω‖ sin
‖ω‖
2 ; the resulting

point q = (q0, q) ∈ R4 belongs to S3 because q20 + ‖q‖2 = 1.

(iii) This is equivalent to prove that E has rank 3 at all points of S3. By
Proposition 1.1.7, it is sufficient to verify this fact at the identity (1, 0) of S3.

Embed S3 and its tangent spaces in R4. For any q = (q0, q) ∈ S3,

TqS
3 = {v ∈ R4 : q · v = 0}
= {(v0, v) ∈ R× R3 : q0v0 + q · v = 0} .
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In particular, T(1,0)S
3 = {(0, v) : v ∈ R3}. If q ∈ S3 e v ∈ TqS

3 then

v = d
dt (q + tv)|t=0 and

TqE · v = d
dtE(q + tv)|t=0

= d
dt

[
I+ 2t(q0v̂ + v0q̂ + 2q̂v̂) + O(t2)]t=0

= 2(q0v̂ + v0q̂ + 2v̂q̂) .

Thus T(1,0)E · v = 2v̂ and so T(1,0) is the map (0, v) 7→ 2v̂, which has rank
3.

Thus S3, and hence SU(2), is not isomorphic to SO(3), but it is homomorphic
and a double covering of SO(3). 8

Remarks: (i) The fact that every rotation matrix has the eigenvalue +1 is
sometimes called ‘Euler theorem on the rigid body motion’. In Lie-group terms,
the surjectivity of the map exp : skew(3) → SO(3), known to Euler, means that
the exponential map of SO(3) is surjective (as, we will see, for any compact and
connected Lie group, but not in general).

(ii) The Euler parameters (or Euler-Rodrigues parameters) map E provides a
parametrization of 3d rotations by means of unit quaternions. Even though this
parametrization is not unique—there are two quaternions that correspond to
each rotation—there are various other reasons that make this parametrization
very useful and commonly used in mechanics, engineering and computer gra-
phics. First, this parametrization allows an immediate geometric comprehension
of the rotation: E(q) is the rotation of axis q ed angle α such that cos(α/2) = q0
and sin(α/2) = ‖q‖. Second, the fact that E(q)E(p) = E(qp) makes easy to
determine the axis of the composition of two rotations. And furthermore, even
though it uses 4 parameters instead of 3 coordinates, it has the advantage of
providing a global (though not 1:1) parametrization, while every atlas of SO(3)
requires at least two charts (with complicated transition functions).

Exercises 1.1.3 ( i) Prove that

ω̂2n+1 = (−1)n‖ω‖2n ω̂ , ω̂2n+2 = (−1)n‖ω‖2n ω̂2 , n ∈ N (1.1.11)

[Hints: A simple computation (or a picture) gives ω̂2 = ‖ω‖2(−I+Πω), with Πω the ortho-
gonal projection onto the subspace spanned by ω. Thus ω̂3 = −‖ω‖2ω̂, ω̂4 = −‖ω‖2ω̂2. Use
induction].

8Let M and P be two connected manifolds. A submersion π : M → P is said to
be a covering if, for each p ∈ P , there exist a neighbourhood U ⊂ P of p and, for
each m ∈ π−1(p), a neighbourhood V ⊂ M of m such that π|V is a diffeomorphism
from V onto U . If there exists k ∈ N such that each point p ∈ P has k preimages,
then the covering is said to have k sheets. A basic example of covering is the map
π : R → S1 ⊂ C, π(t) = eit. A local diffeomorphism which is surjective and whose
fibers have constant cardinality k ∈ Z+ is a k-sheeted covering.
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(ii) Verify that E(uv) = E(u)E(v) for all u, v ∈ S3. [Hints: E(uv) = I+ 2(u0v0 − u · v)(u0v̂ +

v0û + û× v) + 2(u0v̂ + v0û + û× v)2, E(u)E(v) = (I + 2u0û + 2û2)(I + 2v0v̂ + 2v̂2) and

û× v = ûv̂ − v̂û.]

1.2 The Lie algebra of a Lie group

1.2.A Lie algebras

Definition 1.2.1
i. A Lie algebra is an algebra A whose product [ , ] : A × A → A is

antisymmetric and satisfies the Jacobi identity

[u1, [u2, u3]] + [u2, [u3, u1]] + [u3, [u1, u2]] ∀ u1, u2, u3 ∈ A .

ii. If (A, [ , ]) is a Lie algebra, a linear subspace B of A is a Lie subalgebra
of A if it is a Lie algebra with the (restriction of) the product [ , ] of A.

iii. A Lie algebra homomorphism between two Lie algebras (A, [ , ]A) and
(B, [ , ]B) is a linear map f : A → B which satisfies f([u, v]A) =
[f(u), f(v)]B for all u, v ∈ A. If such an f is a linear isomorphism, then
it is said to be a Lie algebra isomorphism.

Examples:

1. The linear operators on a vector space, with the commutator [ , ]− as product.
The commutator of linear operators is bilinear and antisymmetric, and a compu-
tation shows that it satisfies the Jacobi identity: for any three linear operators
A,B,C, [A, [B,C]−]− + [B, [C,A]−]− + [C, [A,B]−]− = A(BC − CB)− (BC −
CB)A+B(CA− AC)− (CA− AC)B + C(AB −BA)− (AB −BA)C = 0.

2. L(n,R) and L(n,C) with the matrix commutator are Lie algebras. This can
be proven as in Example 1 (or even seen as a special case of it). We will see
that the Lie algebras of the classical Lie groups are Lie subalgebras of L(n,R)
or L(n,C).

3. skew (n) with the matrix commutator is a Lie subalgebra of L(n). This
follows from the fact that the commutator of two antisymmetric matrices is
antisymmetric (because [A,B]T− = −[AT , BT ]−) and from Exercise 1.2.1.i.

4. (R3,×) is a Lie algebra isomorphic to (skew(3), [ , ]−). The cross product is
bilinear and antisymmetric. The isomorphism of vector spaces ˆ : R3 → skew(3)
satisfies û× v = [û, v̂] for all u, v ∈ R3. This implies that (R3,×) is a Lie
algebra and ˆ is a Lie algebra isomorphism between (R3,×) e (skew(3), [ , ]−)
(see Exercise 1.2.1.ii).

5. The vector fields on a manifold, with the Lie bracket as product. X(M) is
an (infinite dimensional) vector space. The Lie bracket is bilinear and anti-
symmetric. To prove that it satisfies the Jacobi identity we use the fact that
a vector field W ∈ X(M) is zero if and only if the associated Lie derivative
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LW : C∞(M) → C∞(M) is zero. Let Jac := [X, [Y,Z]]+[Y, [Z,X]]+[Z, [X, Y ]].
Since L[X,Y ] = [LX , LY ]− etc, we have

LJac = [LX , [LY , LZ ]−]− + [LY , [LZ , LX ]−]− + [LZ , [LX , LY ]−]−

and this vanishes for any choice of X,Y, Z because the Lie derivatives are linear
operators (see Example 1.).

6. The Poisson bracket. Consider R2n ∋ (q, p) = (q1, . . . , qn, p1, . . . , pn). The
Poisson bracket of two functions f, g is defined as

{f, g} :=
∂f

∂pi

∂g

∂qi
−
∂f

∂qi

∂g

∂pi
.

As is known from courses in Hamiltonian mechanics, it satisfies the Jacobi
identity. Thus (C∞(R2n,R), { , }) is an (infinite dimensional) Lie algebra.

7. Hamiltonian vector fields. Same setting as in Example 6. The Hamiltonian
vector field Xh ∈ X(R2n) of a function h ∈ C∞(R2n) is defined as

Xh =
n∑

i=1

(
∂h

∂pi

∂

∂qi
−
∂h

∂qi

∂

∂pi

)
.

Hamiltonian vector fields form an (infinite dimensional, of course) vector sub-
space XHam(R2n) of X(R2n). It is known that the Lie bracket of two of them
satisfies

[Xf , Xg] = −X{f,g} .

Thus XHam(R2n) is a Lie subalgebra of X(R2n), and is anti-homomorphic (‘anti’:
because of the minus sign) to C∞(R2n) with the Poisson bracket. (Homomorphic,
not isomorphic: why?).

Exercises 1.2.1 (i) Show that a vector subspace B of a Lie algebra (A, [ , ]A) is a Lie
subalgebra of A if and only if [B,B]A ⊆ B.

(ii) Consider a Lie algebra (A, [ , ]A), a vector space B and a linear isomorphism f : A → B.
Define the bilinear map [ , ]B on B through

[f(u), f(v)]B := f([u, v]A) ∀u, v ∈ A .

Show that (B, [ , ]B) is a Lie algebra and that it is isomorphic to (A, [ , ]A).

(iii) In Exercise (ii), under which additional assumptions may we replace ‘linear isomorphism’
with ‘linear map’ so as to get a Lie algebra structure on B (which is then only homomorphic
to A, of course)?

1.2.B Symmetries of a vector field. Consider a vector field X on a
manifold M and a diffeomorphism Ψ of M onto itself. Consider the integral
curve t 7→ ΦXt (m) of X through a point m ∈ M and its image t 7→ Ψ(ΦXt (m))
under Ψ. This latter curve passes through ψ(m) but, in general, need not
coincide with the integral curve of X through ψ(m), namely t 7→ ΦXt (ψ(m)).
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The symmetries of a vector field (or of the associated ODE) are those diffeo-
morphisms that map integral curves into integral curves, preserving their time
parametrization, namely

Ψ ◦ ΦXt = ΦXt ◦Ψ ∀ t ∈ R . (1.2.1)

Since the vector field whose integral curves are the images under Ψ of those of
X is Ψ∗X , this condition is equivalent to

Ψ∗X = X . (1.2.2)

Recall that this condition is TΨ · X = X ◦ Ψ or, using local representatives,
Ψ′X = X ◦ X . The advantage of (1.2.2) over (1.2.1) is obviously due to the
fact that, in general, the flow of a vector field cannot be determined.

Definition 1.2.2 If (1.2.2) is satisfied, then the vector field X is said to be
invariant under the diffeomorphism Ψ, and Ψ is said to be a symmetry, or a
symmetry transformation, of X.

Examples: 1. Consider the vector field X(x, v) = (v,−x) on R2 ∋ (x, v) (a
‘harmonic oscillator’). Let Ψ be the (anticlockwise) rotation of R2 of a certain
angle α: Ψ(z) = Rαz with Rα ∈ SO(2). Since Ψ is linear, Ψ′ = Rα. Note now
that

X(x, v) =

(
v
−x

)
=

(
0 1
−1 0

)(
x
v

)
= R−π/2

(
x
v

)
.

Hence, since planar rotations commute,

(Ψ′X)(x, v) = RαR−π/2

(
x
v

)
= R−π/2Rα

(
x
v

)
= X

(
Ψ(x, v)

)
∀(x, v) ∈ R2

showing that Ψ is a symmetry of X. Since the flow of X consists of (clockwise)
rotations, ΨX

t = R−t, it is immediate to check that 1.2.1 is satisfied as well.
Note that, since the integral curves of X are circles run at constant speed, in
this case the symmetry Ψ maps each orbit (namely, the image of the integral
curve) into itself. This is a special case.

2. Similarly, the planar rotation of any angle α is also a symmetry of the vector
field Y (x, y) = (−x− y, x − y) in R2 ∋ (x, y). In this case, however, the flow of
Y is ΦY

t = e−tRt (verify it) and Ψ maps each orbit of X (except the equilibrium
(0, 0)) into a different orbit of X.

Proposition 1.2.3 The set of all vector fields on a manifold M which are
invariant under a diffeomorphism Ψ : M →M is a Lie subalgebra of X(M).

Proof. Since condition (1.2.2) is linear inX , the set of Ψ-invariant vector fields
is a vector subspace of X(M). Since the Lie bracket is natural with respect to
push-forward, namely Ψ∗[X,Y ] = [Ψ∗X,Ψ∗Y ] for all X,Y ∈ X(M), the Lie
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bracket of two Ψ-invariant vector field is Ψ-invariant. The conclusion follows
from Exercise 1.2.1.i.

The same is true for the set of vector fields which are invariant under all
diffeomorphisms of a given family of diffeomorphisms.

Exercises 1.2.2 (i) Show that the linear map x 7→ Px, where P ∈ GL(n), is a symmetry
of a linear vector field X(x) = Ax on Rn, with A ∈ L(n), if and only if the two matrices A e
P commute.

(ii) Show that the set of all symmetries of a given vector field is a subgroup of the group of
all diffeomorphisms of the manifold, with the composition as product.

(ii) Show that the set of all the equilibria of a vector field X is invariant under any symmetry
of X (if m is an equilibrium, ψ(m) is an equilibrium as well). Show that the same is true
for the set of all periodic orbits of X and, actually, for the set of all periodic orbits of given
period T > 0.

1.2.C Left-invariant vector fields on a Lie group. This is a central
notion in the theory:

Definition 1.2.4 A vector field X on a Lie group G is left-invariant if it is
invariant under all left-translations, namely

(Lg)∗X = X ∀ g ∈ G .

Similarly, X is right-invariant if (Rg)∗X = X for all g ∈ G.

Examples: 1. Rn. Since Lxy = x+ y, (Lx)
′ = I and, if V is a vector field

in Rn,
[(Lx)∗V ](y) = (IV )(y − x) = V (y − x) .

Thus, the left-invariance of V amounts to V (y − x) = V (x) for all x, y ∈ Rn,
namely, to the constancy of V . This shows that left-invariant vector fields on a
Lie group are a generalization of constant vector fields in Rn. Note that constant
vector fields in Rn are determined by their value at 0 ∈ Rn, which may be any
vector in Rn, and therefore form a vector space isomorphic to Rn.

2. GL(n). Since GL(n) is an open submanifold of the vector space L(n), its
tangent spaces may be identified with L(n), and the tangent bundle TGL(n)
may be identified GL(n)× L(n). Neglecting the specification of the base point,
a vector field X on GL(n) can be viewed as a map A 7→ X(A) from GL(n) to
L(n).

Fix A ∈ GL(n). The left translation LA : GL(n) → GL(n) is the restriction
to GL(n) of the linear map B 7→ AB in L(n). Hence, for any B ∈ GL(n), the
tangent map TBLA : L(n) → L(n) is the multiplication by A from the left:
TBLA · V = AV for all V ∈ L(n). Thus

[(LA)∗X](B) = (AX) ◦ LA−1B = AX(A−1B)
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and equating this expression to X(B) we conclude that X is left-invariant if and
only if

X(B) = AX(A−1B) ∀A,B ∈ GL(n) . (1.2.3)

Choosing B = A, this implies that, if X is left-invariant, then necessarily

X(A) = AX(I) ∀A ∈ GL(n) . (1.2.4)

Conversely, for any V ∈ L(n), the vector field XV on GL(n) defined by XV (A) =
AV for all A ∈ GL(n) is left-invariant because TBLA ·X(B) = ABV = X(AB)
∀B ∈ GL(n).

Hence, here too, left-invariant vector fields are determined by their value at the
group identity and form a vector space isomorphic to L(n) = TIGL(n). Moreover,
they are obtained by transporting their value at I to all points of the group with
(the tangent map of) left translations. As we now show, this is the case with
all Lie groups and is at the basis of the construction of the Lie algebra of a Lie
group.

From now on, we denote by XL(G) the vector space of all left-invariant vector
fields on a Lie group G. Clearly, XL(G) is a vector subspace of X(G) and, as
noted at the end of Section 1.2.B, it is also a Lie subalgebra of the Lie algebra
(X(G), [ , ]), where [ , ] is the Lie bracket (or commutator9) of vector fields.

Proposition 1.2.5 Let G be a Lie group. For any ξ ∈ TeG, let Xξ be the
vector field on G defined by

Xξ(g) = TeLg · ξ , g ∈ G .

Then:
i. Xξ ∈ XL(G) for all ξ ∈ TeG.

ii. The map

λ : TeG→ XL(G) , ξ 7→ Xξ (1.2.5)

is an isomorphism of vector spaces.

Proof. (i) First, note that since TeLg · ξ ∈ TgG for all g ∈ G, Xξ is actually
a vector field. It is left-invariant because, for any g, h ∈ G, [(Lg)∗Xξ](h) =
Tg−1hLg ·Xξ(g

−1h) = Tg−1hLg ·TeLg−1hξ = Te(Lg◦Lg−1h)·ξ = TeLh·ξ = Xξ(h).
(ii) The map λ is clearly linear. It is injective because if Xξ = Xη for some

ξ, η ∈ TeG, then ξ = Xξ(e) = Xη(e) = η. In order to show that is surjective
we need showing that any left-invariant vector field X satisfies

X(g) = TeLg ·X(e) , g ∈ G ,

9We will tend to use the term ‘commutator’ for the Le bracket of vector fields,
and ‘Lie bracket’ for the product of a generic Lie algebra.
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namely that X = XX(e). In fact, condition (Lg)∗X = X can be written
TLg ·X = X ◦Lg. Evaluated at e, this gives TeLg ·X(e) = X(Lge) = X(g).

As is known (see the Appendix), vector fields have in a way a double nature:
they act as derivations and generate flows. Both aspects enter Lie groups: the
first in the construction of the Lie algebra of a Lie group, and the second in
the construction of the exponential map of a Lie group. We thus note here
some properties of the flow of left-invariant vector fields. These vector fields
generalize constant vector fields on Rn, and have some of their properties: they
are complete (namely, all solutions exist for all times) and their flow consists
of (right) translations.

Proposition 1.2.6 For any ξ ∈ TeG:

i. Xξ is complete.

ii. Φ
Xξ

t (g) = gΦ
Xξ

t (e) ∀ g ∈ G.

iii. Φ
Xξ

t+s(e) = Φ
Xξ

t (e)Φ
Xξ
s (e) = Φ

Xξ
s (e)Φ

Xξ

t (e) ∀ t, s ∈ R.

Proof. (i) The condition of left-invariance (Lg)∗X = X ∀g ∈ G can be
rewritten as Lg ◦ ΦXt = ΦXt ◦ Lg for all g ∈ G and those t ∈ R for which ΦXt
is defined (see (1.2.1) and (1.2.2) with Ψ = Lg). Therefore, if γ : I → G is an
integral curve of X through e ∈ G, then for any g ∈ G

Lg ◦ γ : I → G , t 7→ Lgγ(t) ,

is an integral curve of X through g. Hence, all the integral curves of X have
the same (maximal) interval of existence. This has two consequences. One is,
of course, that we may consider only one integral curve of X , say that through
e. The other, that the (maximal) existence interval of such (and all other)
integral curve is R.

To prove the latter statement, recall from the elementary theory of ODEs
that ‘concatenating’ solutions produces solutions with larger existence intervals.
Specifically, assume that X has two integral curves γ1 : (−T, T ) → M and
γ2 : (−T, T ) →M (with T > 0) such that

γ2(0) = γ1(T
∗)

for some 0 < T ∗ < T . Then, because of uniqueness and time-translability of
solutions of ODEs,10 γ2(t) = γ1(t+ T ∗) for t ∈ (−T, T − T ∗), or else

γ1(t) = γ2(t− T ∗) ∀ t ∈ (−T + T ∗, T ) .

10t 7→ γ̃1(t) := γ1(t + T ∗) satisfies d
dt
γ̃1(t) = d

dt
γ1(t + T ∗) = X(γ1(t + T ∗)) =

X(γ̃1(t)); hence, since γ̃1(0) = γ2(0), γ̃1 = γ2 in the common interval of existence.
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It follows that the curve γ : (−T, T + T ∗) →M defined by

γ(t) = γ1(t) if t ∈ (−T, T )
γ(t) = γ2(t− T ∗) if t ∈ [T, T + T ∗)

is well defined and smooth. Moreover, it is an integral curve of X with initial
point γ(0) = γ1(0).

11

The existence and uniqueness theorem ensures that there exists an integral
curve γ of X through e which is defined in some interval (−T, T ) with T > 0.
Concatenating it with Lγ(T/2) ◦ γ gives an integral curve through e with exi-
stence interval (−T, 3T/2). Iterating this procedure, for positive and negative
times, gives a sequence of intervals of existence which leave, on the left and on
the right, any compact subset of R. Thus, the maximal integral curve of X
through e is defined for all times.

(ii) As noticed above, since X is left-invariant, ΦXt ◦ Lg = Lg ◦ ΦXt for all
g, t. Evaluating this equality at e gives ΦXt (g) = LgΦ

X
t (e).

(iii) Using the group property of flows and ii., ΦXt+s(e) = ΦXt (ΦXs (e)) =
ΦXs (e)ΦXt (e); and clearly, the order of t and s may be exchanged.

1.2.D The Lie algebra of a Lie group. Since the set XL(G) of left-
invariant vector fields on a Lie group is a Lie algebra, the linear isomorphism
(1.2.5) can be used to give TeG a Lie algebra structure as well. Specifically,
define a map [[ , ]] : TeG× TeG→ TeG through

[[η, ξ]] := [Xη, Xξ](e) ∀η, ξ ∈ TeG . (1.2.6)

This map is bilinear (because ξ 7→ Xξ is linear and the commutator of vector
fields is bilinear) and is antisymmetric and satisfies the Jacobi identity (because
[ , ] has these properties). Hence, it makes TeG into a Lie algebra.

e

Definition 1.2.7 The Lie algebra (TeG, [[ , ]]) is called the Lie algebra of the
Lie group G, and is denoted by lie(G) or g.

Proposition 1.2.8 The map ξ 7→ Xξ defined by (1.2.5) is a Lie algebra
isomorphism between (g, [[ , ]]) and (XL(G), [ , ]), namely

X[[η,ξ]] = [Xη, Xξ] ∀η, ξ ∈ g .

Proof. X[[η,ξ]](g) = TeLg · [[η, ξ]] = TeLg · [Xη, Xξ](e) = (Lg)∗[Xη, Xξ](g) =
[(Lg)∗Xη, (Lg)∗Xξ](g) = [Xη, Xξ](g).

11For t < T this is due to the fact that γ1 is an integral curve. For t ≥ T :
d
dt
γ(t) = d

dt
γ2(t− T ∗) = X(γ2(t− T ∗)) = X(γ(t)).
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Examples:

1. Left-invariant vector fields on G = Rn are constant, and their commutator
vanish. It follows that the Lie bracket [[ , ]] on T0R

n is zero. In other words, the
Lie algebra of Rn is abelian. See also Proposition 1.2.9 below.

2. As a vector space, the Lie algebra gl(n) of GL(n) is TIGL(n) = L(n) and the
left-invariant vector field XV associated to V ∈ L(n) is given by XV (A) = AV
for all A ∈ GL(n). Fix U, V ∈ L(n) and recall that

[XU , XV ](A) = −
d

dt

[
(ΦXU

t )∗XV (A)
]

t=0

= −
d

dt

[
(TΦXU

t ·XV )(ΦXU
−t (A)

]

t=0

= −
d

dt

[
(T

Φ
XU
−t

(A)
ΦXU

t ·XV (ΦXU
−t (A))

]

t=0
.

Clearly, ΦXU
t (B) = B exp(tU) for any B ∈ GL(n) and, for any W ∈ TBGL(n) =

L(n), W = d
ds
(B + sW )|s=0. Thus

TBΦXU
t ·W = d

ds
ΦXU

t (B + sW )|s=0

= d
ds
(B + sW ) exp(tU)|s=0

= W exp(tU)

and so, using also XV (ΦXU
−t (A)) = A exp(−tU)V ,

[XU , XV ](A) = −
d

dt

[
A exp(−tU)V exp(tU)

]

t=0
.

= −[A(−U)V + AV U ]

= A[UV − V U ] .

This shows that the Lie bracket of the Lie algebra of GL(n) is the matrix
commutator. Thus gl(n) = (L(n), [ , ]−).

Proposition 1.2.9 The Lie algebra of an abelian Lie group is abelian.

Proof. We use the fact that the commutator of two vector fields is zero,
[X,Y ] = 0, if and only if their flows commute, ΦXt ◦ ΦYs = ΦYs ◦ ΦXt for all
t, s ∈ R (Proposition A.2.7). If ξ, η ∈ g then, by Proposition 1.2.6, for all
g ∈ G,

Φ
Xξ

t ◦ ΦXη
s (g) = Φ

Xξ

t (gΦXη
s (e)) = gΦXη

s (e)Φ
Xξ

t (e)

and similarly Φ
Xη
s ◦ ΦXξ

t (g) = gΦ
Xξ

t (e)Φ
Xη
s (e). If the group is abelian, then

these two quantities are equal and [Xξ, Xη] = 0 for all ξ, η ∈ g.

Our next goal would naturally be to determine the Lie algebras of some of the
classical groups, namely, the closed Lie subgroups of GL(n). In order to do
so easily, however, we may first establish a result that characterizes the Lie
algebra of a Lie subgroup of a Lie group G as a certain subalgebra of the Lie
algebra of G. In turn, this rests on the introduction of a further notion about
vector fields, which is a weakening of the notion of push-forward and will later
also play a role in the reduction under symmetry groups.
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1.2.E Ψ-related vector fields. It is in general not possible to ‘push-
forward’ a vector field X from a manifold M to another manifold N using
a (smooth) non-invertible map Ψ : M → N as in the push-forward under dif-
feomorphisms, namely, acting on X with the tangent map TΨ. If Ψ is not

M

X
��

Ψ // N

?
���O
�O
�O

TM
TΨ // TN

surjective, it is obviously impossible to define in this way the values of the
‘push-forwarded’ vector field in the complement of Ψ(M) ⊂ N . And if it is not
injective, in which of the preimages of a point of N should TΨ ·X be evaluated?

However, given X ∈ X(M), it may happen that there exists a vector field
M

X
��

Ψ // Ψ(M) ⊆ N

Y|Ψ(M)

�� �O
�O
�O

TM
TΨ // TN

Y ∈ X(N) such that

TΨ ·X = Y ◦Ψ

namely

(TΨ ·X)(m) = Y (Ψ(m)) ∀m ∈M . (1.2.7)

In such a case, X is said to be Ψ-projectable and Y is said to be Ψ–related to
X (it is also common to say that X and Y are Ψ-related).12

Obviously, all vector fields X ∈ X(M) are Ψ-projectable if Ψ is a diffeomor-
phism, and the (unique, in this case) vector field Ψ-related to X is Ψ∗X . If Ψ
is not injective, then (1.2.7) shows that X ∈ X(M) is Ψ-projectable if and only
if TΨ ·X :M → TN is constant on each fiber of Ψ. If Ψ is not surjective, and
X is Ψ-projectable, then the vector field Ψ-related to X is not unique, because
(1.2.7) defines it only in the points of Ψ(M). In fact, this is the only reason of
non-uniqueness (see Proposition 1.2.10).

Examples: 1. We want to determine the vector fields on R2 which are
projectable under the map π : R2 → R, (x, y) 7→ x (the projection onto the first
factor). We may work in coordinates. Thus a vector field X ∈ X(R2) is a map
X = (Xx, Xy) : R

2 → R2, a vector field Y ∈ X(R) is a function Y : R → R and
the tangent map T(x,y)π is the Jacobian matrix π′(x, y) = (1, 0). Thus,

π′(x, y)X(x, y) = (1, 0)

(
Xx(x, y)
Xy(x, y)

)
= Xx(x, y) .

It follows that X is π-projectable if and only if its x-component is independent
of y. In such a case, the vector field Y on R which is π-related to X is

Y (x) = Xx(x) .

12The term ‘projectable’ appears in the literature, but it is not of widespread use.
There are understandable reasons for this. On the one hand, it is convenient to have
a term that says that a vector field has the property that there exist vector field(s)
Ψ-related to it. However, ‘Ψ-projectable’ suggests that Ψ ia a projection, namely a
surjection, or even more a surjective submersion, as in Example 1 below. But it does
not convey the right intuition if Ψ is an immersion, as in Example 2 below; perhaps
‘injectable’ would work better in this case. A name which is good for all cases seems
to be missing.
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Note that there are no conditions on the y-component of X: if Ψ : M → N is
not a diffeomorphism, then a vector field on N may be Ψ-related to different
vector fields on M .

2. Consider the immersion ι : R → R2, t 7→ (cos t, sin t). ι is neither surjective
(its image is the unit circle) nor injective (ι−1(cos t, sin t) = {t + 2kπ : k ∈ Z}).
We work in coordinates, so that X ∈ X(R) is a function R → R etc. Since

ι′(t)X(t) =

(
− sin t
cos t

)
X(t) =

(
−X(t) sin t
X(t) cos t

)

X is ι-projectable if and only if (−X(t) sin t,X(t) cos t) is constant on the fibers
{t + 2kπ : k ∈ Z} of ι, namely, if and only if X : R → R is 2π-periodic. In such
a case, if ∈ X(R2) is ι-related to X, then

Y (cos t, sin t) = (−X(t) sin t,X(t) cos(t)) ∀ t ∈ R .

For instance, if X(t) = cos t, then a vector field Y on R2 which is ι-related to X
is

Y (x, y) = (−xy, x2) .

(But if Z is any vector field in R2 that vanishes on the unit circle, then Y + Z
is ι-related to X as well).

We now see some properties of Ψ-related vector fields that we will need later.

Proposition 1.2.10 Let Ψ : M → N be a (smooth) map between two
manifolds M and N and let X ∈ X(M) be a Ψ-projectable vector field.
i. If Ψ is surjective, then the vector field Ψ-related to X is unique.

ii. Let Y ∈ X(N). Then Y is Ψ-related to X if and only if

ΦYt ◦Ψ = Ψ ◦ ΦXt ∀t .

iii. Consider now another Ψ-projectable vector field X ′ ∈ X(M). Let Y ∈
X(N) be Ψ-related to X and Y ′ ∈ X(N) be Ψ-related to X ′. Then, [X,X ′]
is Ψ-projectable and [Y, Y ′] is Ψ-related to it.

Proof. (i) If Ψ is surjective then for each n ∈ N there is m ∈ M such that
n = Ψ(m) and, by (1.2.7), Y (n) equals (TΨ ·X)(m).

(ii) Suppose that ΦYt ◦ Ψ = Ψ ◦ ΦXt ∀t. Evaluating at m ∈ M and
taking d

dt

∣∣
t=0

yields Y (Ψ(m)) = TmΨX(m) so (1.2.7) holds and X and Y are
Ψ-related.

Now assume that X and Y are Ψ-related. The condition ΦYt ◦ Ψ = Ψ ◦
ΦXt ∀t is equivalent to saying that if t 7→ mt is an integral curve of X ,
then t 7→ nt := Ψ(mt) is an integral curve of Y . In fact, ṅt = d

dtΨ(mt) =
Tmt

Ψ · ṁt = Tmt
Ψ ·X(mt) = (TΨ ·X)(mt) = Y (Ψ(mt)).

(iii) We need the following
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Lemma 1.2.11 Let Ψ :M → N . Y ∈ X(N) is Ψ-related to X ∈ X(M) if and
only if

LX(g ◦Ψ) = (LY g) ◦Ψ ∀ g ∈ C∞(N) . (1.2.8)

Proof of the Lemma. For any m ∈M ,

LX(g ◦Ψ)(m) = Tm(g ◦Ψ) ·X(m) = TΨ(m)g · TmΨ ·X(m)

(LY g)(Ψ(m)) = TΨ(m)g · Y (Ψ(m)) .

If Y is Ψ-related to X then the right hand sides of these expressions are equal
and this proves (1.2.8). Conversely, if (1.2.8) is satisfied, then the previous
equalities imply TΨ(m)g · TmΨ ·X(m) = TΨ(m)g · Y (Ψ(m)) for all g ∈ C∞(M)
and all m ∈M . By the linearity of the tangent map, and the definition (A.1.2)
of the exterior derivative of a real function, this implies

〈dg(Ψ(m)), TmΨ ·X(m)− Y (Ψ(m))〉Ψ(m) = 0 ∀m ∈M , g ∈ C∞(N) .

By the arbitrariness of g, this implies that, for each m ∈M , the vector TmΨ ·
X(m)− Y (Ψ(m)) ∈ TΨ(m)N is zero.

Instead of proving that TΨ · [X,X ′] = [Y, Y ′] ◦ Ψ we may thus prove that
L[X,X′](g ◦ Ψ) = (L[Y,Y ′]g) ◦ Ψ for all g ∈ C∞(N). This is verified with an
algebraic-like computation analogous to that used to prove the naturalness of
the Lie brackets under push-forward in Proposition A.2.6.

Exercises 1.2.3 (i) Let π : R → T1, x 7→ xmod1. Which vector fields on R are π-
projectable to vector fields on T1?

1.2.F Lie algebras of subgroups. We use the following notation: if
G,H, . . . are Lie groups, then g, h, . . . are their Lie algebras with Lie brac-
kets [[ , ]]g, [[ , ]]h, . . . and, when it is necessary to avoid ambiguities, eG, eH , . . .
are their identity elements. Also, XG

ξ , X
H
ξ , . . . denote the left-invariant vector

fields on G,H, . . . associated to an element ξ of their Lie algebra.

Lemma 1.2.12 Assume that Ψ : G → H is a Lie group homomorphism.
Then, for any ξ ∈ g, XG

ξ and XH
TeG

Ψ·ξ are Ψ-related.

Proof. Since Ψ is a group homomorphism, Ψ(Lgg
′) = Ψ(gg′) = LΨ(g)Ψ(g′)

∀g, g′ ∈ G, or
Ψ ◦ Lg = LΨ(g) ◦Ψ ∀g ∈ G .

Computing the tangent map at eG of both quantities, and using the chain rule
and eH = Ψ(eG), gives

TgΨ · TeGLg = TeHLΨ(g) · TeGΨ .
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Now, for any ξ ∈ g,

TgΨ · TeGLg · ξ = TgΨ ·XG
ξ (g)

TeHLΨ(g) · TeGΨ · ξ = XH
TeG

Ψ·ξ(Ψ(g)) .

It follows that
TgΨ ·XG

ξ (g) = XH
TeG

Ψ·ξ(Ψ(g)) ∀g ∈ G

which proves the claim.

Proposition 1.2.13 If Ψ : G→ H is a homomorphism (isomorphism) of Lie
groups, then TeGΨ : g → h is a homomorphism (isomorphism) of Lie algebras.

Proof. TeGΨ is a linear map between TeGG and TeHH and we only need to
check that

TeGΨ · [[η, ξ]]g = [[TeGΨ · η, TeGΨ · ξ]]h ∀ η, ξ ∈ TeGG .

Using the definition of the brackets of g and h, Lemma 1.2.11, Proposition
1.2.10, and Ψ(eG) = eH , we compute

TeGΨ · [[η, ξ]]g = TeGΨ · [XG
η , X

G
ξ ](eG)

= [XH
TeΨ·η, X

H
TeΨ·ξ](eH)

= [[TeGΨ · η, TeGΨ · ξ]]h .

Lastly, the statement concerning isomorphisms is obvious: if Ψ is a diffeomor-
phism, then its tangent map is a linear isomorphism.

Remark: As the proof makes clear, this means that, if Ψ : G → H is a Lie
group homomorphism, then TeGΨ(TeGG), which is a linear subspace of TeHH ,
is a subalgebra of h: namely, the restriction to TeGΨ(TeGG) × TeGΨ(TeGG) of
the Lie product [[ , ]]h on TeHH defines a Lie product on TeGΨ(TeG).

Recall from section 1.1.E that a Lie subgroup H of a Lie group G is a Lie
group which is injectively immersed into G, the immersion being a Lie group
homomorphism. There is no request, in this definition, about the relationship
between the Lie algebra of H (as a Lie group in itself) and that of G. However,
Proposition 1.2.13 implies that:

Proposition 1.2.14 Let G be a Lie group with Lie algebra g =
(
TeG, [[ , ]]g

)

and let S be a Lie subgroup of G. Define

g|Te(S) :=
(
TeS, [[ , ]]g

∣∣
TeS×TeS

)
.

Then:
i. g|Te(S) is a Lie subalgebra of g.
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ii. The Lie algebra of S is isomorphic, as a Lie algebra, to g|Te(S)

Proof. It may be clearer to regard, as in section 1.1.E, S as given by an
injective immersion ι : S̃ → G, which is also a Lie group homomorphism, of a
Lie group S̃ into G. Thus ι(S̃) = S and ι : S̃ → ι(S̃) ⊂ G is a diffeomorphism,
and hence a Lie group isomorphism. Let ẽ be the identity element of S̃ and s̃

the Lie algebra of S̃.

By Proposition 1.2.13 and the Remark following it, Tẽι(TẽS̃) is a Lie subalgebra
of g and

Tẽι : s̃ →
(
Tẽι(TẽS̃) , [[ , ]]

g
∣∣
Tẽι(TẽS̃)×Tẽι(TẽS̃)

)

is a Lie algebra isomorphism. The proof is concluded by observing that, since
ι is an immersion, Tẽι(TẽS̃) = TeG(ι(S̃)).

Thus, in particular, the Lie algebra of a Lie subgroup S of GL(n) is the subspace
TIS of TIGL(n) = L(n), with the matrix commutator as product.

Examples:

1. o(n). A matrix V ∈ L(n) belongs to TIO(n) if and only if there exists a curve
t 7→ At ∈ O(n) such that A0 = I e V = Ȧ0. The matrix t 7→ At ∈ O(n) if and
only if AtA

T
t = I. Therefore, t 7→ At ∈ O(n) for all t if and only if A0 = I and

0 = d
dt
(AtA

T
t ) = AtȦ

T
t + ȦtA

T
t for all t. If A0 = I, this implies Ȧ0 + ȦT

0 = 0.
Thus, any matrix V ∈ TIO(n) is antisymmetric, and TIO(n) is a vector subspace
of skew (n). But skew (n) and O(n) have the same dimension and we conclude
that TIO(n) = skew (n) and

o(n) = (skew (n) , [ , ]−) .

In particular

so(3) = (skew 3 , [ , ]−) .

On account of the isomorphismˆ: R3 → skew (3), so(3) is also isomorphic, as a
Lie algebra, to (R3 , ×).

2. sl(n). SL(n) is the subgroup of GL(n) formed by the matrices with determi-
nant 1, and has dimension n2 − 1. A matrix V ∈ L(n) belongs to TISL(n) if and
only if it equals Ȧ0 for a curve t 7→ At ∈ SL(n), namely a curve in L(n) such
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that A0 = I and d
dt

det(At) = 0 for all t. For small |t|, At = I + tȦ0 + O(t2).
Thus

detAt = det(I+ tȦ0 + O(t2)) = 1 + t tr (Ȧ0) + O(t2)

(see the example of SU(n) in section 1.1.B) and so d
dt
At|t=0 = tr (Ȧ0). This

shows that TISL(n) ⊆ {V ∈ L(n) : tr (V ) = 0} and, since the dimensions are the
same,

sl(n) = (Traceless n× n matrices , [ , ]−) .

3. s3. As in sections 1.1.E and 1.1.G, let us regard the group S3 of unit qua-
ternions, and its tangent spaces, as submanifolds of R4. The identity element
is (1, 0) and T(1,0)S

3 = {(0, v) : v ∈ R3}. Since the Euler parameter map

E : S3 → SO(3) (see (1.1.10)) is a Lie group homomorphism its tangent map
Te

S3E : s3 → skew (3) is a Lie algebra homomorphism—and in fact an isomor-
phism because Te

S3
and skew (3) are both 3-dimensional. This isomorphism was

actually computed as part of the proof of Proposition 1.1.13, and is given by

T(1,0)E · (0, v) = 2v̂ .

Thus, the Lie bracket of s3 satisfies T(1,0)E · [[(0, u), (0, v)]]s
3

= 2[T(1,0)E ·

(0, u), T(1,0)E · (0, v)]− = 8û× v and we conclude that [[(0, u), (0, v)]]s
3

= (0, 4u×
v).

Exercises 1.2.4 (i) Show that u(n) = {U ∈ L(n,C) : U + U∗ = 0}.

(ii) Here is another proof of the fact that the Lie algebra of an abelian Lie group is abelian
(Proposition 1.2.9). Consider the inversion I : G → G, g 7→ g−1. Show that

(a) TeI · [[η, ξ]] = −[[ξ, η]] for all η, ξ ∈ g.

(b) If G is abelian, I is a Lie group isomorphism.

Deduce that, if G is abelian, then [[η, ξ]] = −[[η, ξ]] for all η, ξ ∈ g.

1.3 The exponential map

1.3.A Definition, examples and first properties. Recall that, if ξ ∈ g,
then the left-invariant vector field Xξ is given by Xξ(g) = TeLg · ξ and its flow,

which is defined for all t ∈ R, satisfies Φ
Xξ

t (g) = gΦXt (e) for all g ∈ G. For

each t ∈ R, Φ
Xξ

t is a diffeomorphism of G onto itself.

Definition 1.3.15 The exponential map of a Lie group G is the map

expG : g → G , ξ 7→ expG(ξ) := Φ
Xξ

1 (e) .

If G is fixed, we will routinely write exp instead of expG. Proposition 1.2.6
implies that

exp((t+ s)ξ) = exp(tξ) exp(sξ) = exp(sξ) exp(tξ) ∀ t, s ∈ R , ξ ∈ g

but, unless G is abelian, in general exp(ξ + η) 6= exp(ξ) exp(η) for ξ, η ∈ g.
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Examples: 1. Rn. Since T0R
n = Rn, the exponential map exp

Rn : T0R
n →

Rn of Rn can be regarded as a map of Rn into itself. The left-invariant vector
fields of Rn are constant, Xξ(x) = ξ for all ξ ∈ Rn (the Lie algebra) and x ∈ Rn

(the group). Hence Φ
Xξ

t (x) = x+ tξ and

expRn(ξ) = ξ ∀ξ ∈ Rn

namely
expRn = idRn .

2. GL(n). For any V ∈ TIGL(n) = L(n), XV (A) = AV for all A ∈ GL(n). As
we know (see Example 2. in section 1.2.D) ΦXV

t (A) = A exp(V t), where exp
denotes the matrix exponential. Hence,

expGL(n) : gl(n) = L(n) → GL(n)

is the matrix exponential.

Proposition 1.3.16 The exponential map expG : g → G of a Lie group G:
i. Is a smooth map.

ii. Is a local diffeomorphism at 0 ∈ g.

Proof. (i) If a vector field depends smoothly on parameters, then the maps at
fixed t of its flow are smooth maps of the parameters as well (see the Exercises

below). Xξ is a linear (hence smooth) function of ξ, and ξ 7→ Φ
Xξ

1 (e) is thus
smooth.

(ii) Since exp(0) = e, by the inverse function theorem this is equivalent to

the fact that T0 exp : T0g ≡ g → TeG = g is invertible. Since Φ
Xξ

t = Φ
Xtξ

1 for
all t and ξ (see the Exercises) we compute

T0 exp ·ξ =
d

dt
exp(tξ)|t=0 =

d

dt
Φtξ1 (0)|t=0 =

d

dt
Φξt (0)|t=0 = Xξ(0) = ξ

and so T0 exp = idg.

Thus, the exponential map of a Lie group G is a diffeomorphism between a
neighbourhood of 0 ∈ g and a neighbourhood of e ∈ G. As such, it allows to
model the local structure of the Lie group near its identity element by means
of that of the algebra. However, exp : g → G:
• may be not surjective

• may be not injective

• may be not a local diffeomorphism at a point ξ 6= 0.
Let us say something about the (lack of) surjectivity of exp. Since it is a
continuous map and g is connected, exp(g) is connected. Hence, the exponential
map of a nonconnected group is never surjective. If G is not connected, then,
given that exp(0) = e, the image exp(g) of the exponential map is contained
in the connected component G0 of G that contains the identity. However, exp
need not be surjective even on G0.
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Examples: 1. We will see later that the exponential map of the classical Lie
groups is the (restriction of) the matrix exponential. Thus, Proposition 1.1.11
means that the exponential map of SO(3) is surjective.

2. Consider the connected component of GL(n) that contains I, namely
GL+(n) = {A ∈ L(n) : detA > 0}. Its Lie algebra and exponential map
obviously coincide with those of GL(n). Thus, the exponential map is the ma-
trix exponential exp : L(n) → GL+(n) and its surjectivity amounts to the fact
that for any A ∈ GL+(n,R) there exists a matrix L ∈ L(n,R), called a real loga-

rithm of A, such that A = expL. It is known from linear algebra that a matrix
A ∈ GL(n) has a (possibly non unique) real logarithm if and only if in its Jordan
normal form each block relative to a negative real eigenvalue appears an even
number of times.13 For instance, the matrix diag (−1,−2) belongs to GL+(2)
and has no real logarithm. Thus, for any n ≥ 2, expGL(n) is not surjective.

We quote without proof the following result:

Proposition 1.3.17 The exponential map of a Lie group G is surjective in
the following cases:

i. G is compact and connected.

ii. G is abelian and connected.

However, these are only sufficient conditions.

Exercises 1.3.5 (i) Which is the exponential map of R∗ (non-zero real numbers, with the
real multiplication)?

(ii) The smooth dependence on parameters of the solutions of ODEs is a local question and can
be investigated in coordinates. Consider a smooth map Rn×Rm ∋ (z, c) 7→ X(z, c) = Xc(z).
Assume that, for c in a neighbourhood of c ∈ Rm, all vector fields Xc are complete. Show
that, for each z0 and t, the map Rm ∋ c 7→ ΦXc

t (z0) ∈ Rn is smooth at c. [Hints: consider
the flow of the ODE ż = X(z, c), ċ = 0 in Rn+m ∋ (z, c)].

(iii) Show that, if X is a (complete) vector field and k ∈ R, then ΦX
kt = ΦkX

t for all t. [Hints:

Using the chain rule, verify that t 7→ mt := ΦX
kt(m0) is an integral curve of kX; observe that

it has initial datum m0 at t = 0 and invoke the uniqueness.]

(iv) Verify that exp(tξ) = Φ
Xξ

t (e) for all ξ ∈ g and t ∈ R.

(v) Find a real logarithm of the matrix diag (−1,−1). Is it unique? [Hint: compute

exp

(

0 β
−β 0

)

with β ∈ R].

(vi) Show that if [[ξ, η]] = 0 then exp(ξ + η) = exp(ξ) exp(η).

13More exhaustively: Let B ∈ L(n,C). Then B = exp(L) with a complex matrix
L if and only if B is invertible. And B = exp(L) with a real matrix L if and only if
B is invertible and, for each negative eigenvalue λ of B, each Jordan block relative
to λ is repeated an even number of times.
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1.3.B The exponential map and Lie group homomorphisms.

Proposition 1.3.18 Let G,H be Lie groups and Ψ : G → H a Lie group
homomorphism. Then

Ψ ◦ expG = expH ◦TeGΨ .

G
Ψ // H

g

expG

OO

TeGΨ
// h

expH

OO

Proof. Fix ξ ∈ g. Since Ψ is a Lie group homomorphism XG
ξ and XH

TeG
Ψ·ξ are

Ψ-related (Lemma 1.2.12) and hence Φ
XH

TeΨ·ξ

t ◦Ψ = Ψ◦ΦX
G
ξ

t for all t (Proposition

1.2.10, statement ii). It follows that expH(TeΨ · ξ) = Φ
XH

TeΨ·ξ

1 (eH) = Φ
XH

TeΨ·ξ

1 ◦
Ψ(eG) and Ψ ◦ expG(ξ) = Ψ ◦ ΦX

G
ξ

1 (eG) are equal.

Proposition 1.3.18 has important consequences. First, it implies that the ex-
ponential map of a Lie subgroup S of a Lie group G is the restriction to TeS
of the exponential map of G. Precisely:

Corollary 1.3.19 Let ι : S̃ → G be a Lie subgroup of G. Then, ι ◦ expS̃ =
expG ◦Tẽι.

Proof. The immersion ι is a Lie group homomorphism.

Thus, the exponential map of all Lie subgroups of GL(n) is the matrix
exponential. We see now a few other examples about the exponential maps.

Examples: 1. T1 = R/Z. Since T1 is 1-dimensional, its Lie algebra is
(R,+).14 The covering map

π : R → T1 , x 7→ x mod1 ,

is a Lie group homomorphism (immediate to verify). Hence,

exp
T1 ◦T0π = π ◦ exp

R
.

But T0π : ToR ∼ R → TeT
1 ∼ R is the identity (in suitable coordinates near

0 ∈ R and e = 0mod1 ∈ T1 the projection π is the identity). Thus

exp
T1 = π ◦ exp

R
= π ◦ id = π .

In particular, exp
T1 is surjective but not injective.

2. Consider the direct product of two Lie groups G1 and G2, G = G1 ×G2 with
product is (g1, g2)(h1, h2) = (g1g2, h1h2). Everything factorizes: the tangent
spaces Tg1,g2(G1×G2) are isomorphic to the direct sum Tg1G1⊕Tg2G2 and vector

14This follows from the fact that T1 is abelian, but it is trivial in this case because
every 1-dimensional Lie algebra is abelian.
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fields on G can be identified with pairs (X1, X2) of vector fields X1 ∈ X(G1),
X2 ∈ X(G2). Since left-translations in G factorize as well, (X1, X2) is left-
invariant if and only if X1 and X2 are. Thus, the Lie algebra lie(G1 ×G2) splits
as the direct sum of lie(G1) and lie(G2) and the exponential map factorizes as
well:

expG1×G2
(ξ1, ξ2) = (expG1

(ξ1), expG2
(ξ2)) ∀ξ1 ∈ lieG1, ξ2 ∈ lieG2 .

3. Tn = T1 × · · · × T1 has (abelian) Lie algebra Rn and exponential map
exp

Tn(ξ) = ξmod1. Again, surjective but not injective.

Remark:

Exercises 1.3.6 (i) Show that, if exp denotes the matrix exponential, then

det(exp V ) = etr V ∀ V ∈ L(n) .

[Hints: det : GL(n) → R∗ is a Lie group homomorphism and the exponential maps of GL(n)
and R∗ are .....]

1.3.C One-parameter subgroups.

Definition 1.3.20 A one-parameter subgroup of a Lie group G is a Lie group
homomorphism γ : R → G.

Thus, a one-parameter subgroup of G is a (smooth) curve γ : R → G through
the identity (γ(0) = e) and such that

γ(t+ s) = γ(t)γ(s) ∀t, s ∈ R .

By Proposition 1.2.6, for any ξ ∈ g, the integral curve t 7→ Φ
Xξ

t (e) ofXξ through

the identity e satisfies Φ
Xξ

t+s(e) = Φ
Xξ

t (e)Φ
Xξ
s (e) ∀t, s and is a one-parameter

subgroup. Equivalently, since Φ
Xξ

t (e) = exp(tξ) (see Exercise 1.3.5.iv), for
any ξ ∈ g the curve t 7→ exp(tξ) is a one-parameter subgroup. In fact, all
one-parameter subgroups are of this type:

Proposition 1.3.21 If γ : R → G is a one-parameter subgroup, then

γ(t) = exp(tξ) ∀t ∈ R

with a unique ξ ∈ g.

Proof. Since γ is a group homomorphism, γ(0) = e. Hence

ξ := γ′(0) ∈ TeG .
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Since γ(0) = e, by the definition of flow of a vector field, γ(t) = Φ
Xξ

t (e) is
equivalent to γ′(t) = Xξ(γ(t)) for all t. And in fact

γ′(t) =
d

ds
γ(t+ s)|s=0 =

d

ds

(
γ(t)γ(s)

)
|s=0 =

d

ds
Lγ(t)γ(s)

)
|s=0

= Tγ(s)Lγ(t) · γ′(s)|s=0 = TeLγ(t) · ξ = Xξ(γ(t)) .

If ξ, η ∈ g are such that exp(tξ) = exp(tη) for all t, then ξ = d
dt exp(tξ)|t=0 =

d
dt exp(tη)|t=0 = η.

Definition 1.3.22 The vector ξ ∈ g is the (infinitesimal) generator of the
one-parameter subgroup t 7→ exp(tξ).

One-parameter subgroups are an important tool in the study of Lie group and
of dynamical systems invariant under Lie group actions.

Exercises 1.3.7 (i) Show that the image of the one-parameter subgroup of T2 generated
by a vector ξ = (ξ1, ξ2) ∈ R2 is a circle if ξ1 and ξ2 are linearly dependent over Q and is
dense in T2 otherwise.

(ii) Show on with an example that two one-parameter subgroups with different generators
may intersect at (isolated) points other than e. [Hint: The previous exercise]

1.3.D On the relation between Lie algebras and Lie groups. We give
now a quick look at the correspondence between Lie groups and Lie algebras:
every Lie group determines its Lie algebra, but to which extent does the algebra
determine the group? Obviously, since (as we have already remarked) the
image of the exponential map is connected, this question can be asked only for
connected groups. Furthermore, it should be put between isomorphism classes
of Lie algebras and isomorphism classes of Lie groups.

Proposition 1.2.13 implies that isomorphic Lie groups have isomorphic Lie
algebras. However, simple examples show that there exist non-isomorphic Lie
groups which do have isomorphic Lie algebras. For instance, Rn and Tn are
not isomorphic Lie groups but have the same Lie algebra Rn. One may think
that the problem here is that Rn is not compact and Tn is, but S3 and SO(3),
which are both compact, are not isomorphic as Lie groups and nevertheless have
isomorphic Lie algebras (lie(S3) = (R3, 4×)), see example 3. of section 1.2.A,
and (skew (3), [ , ]−)). The reason is a different one: simply connectedness. Rn

and S3 are simply connected but Tn and SO(3) are not.

Proposition 1.3.23 There is a one-to-one correspondance between isomorphi-
sm classes of (connected15 and) simply connected Lie groups and isomorphism
classes of Lie algebras.

15Usually, path-connectedness and hence connectedness is required in the definition
of simply-connectedness, so specifying ‘connected’ here might not be necessary.
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More generally:

Proposition 1.3.24 Given a Lie Algebra A, the connected Lie groups whose
Lie algebra is isomorphic to A are, up to isomorphisms: a simply connected
Lie group G whose Lie algebra is A and all groups G/Γ, where Γ is a discrete
subgroup of G contained in the center of G.

For further information and proofs see e.g. Chapter 20 of John Lee,
Introduction to smooth manifolds (1st edition).
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Chapter 2

Symmetry

2.1 Lie group actions

2.1.A Definitions.

Definition 2.1.1 A (smooth, left) action of a Lie group G on a manifold M
is a smooth map

Ψ : G×M → M , (g,m) 7→ Ψ(g,m) := Ψg(m)

such that the maps

Ψg : M →M , g ∈ G ,

so defined have the following properties:
i. Ψe = idM

ii. Ψgh = Ψg ◦Ψh for all g, h ∈ G.

Properties i. and ii. imply that, for each g ∈ G, Ψg has the smooth inverse
Ψg−1 . Hence, each of the maps Ψg, g ∈ G, is a diffeomorphism ofM onto itself.

Particularly in applications, there is a tendency to identify the action Ψ
with the group G (even though a given group may act in different ways on
a given manifold). Correspondingly, it is customary to write g.m instead of
Ψg(m). We will use the two notations interchangeably.

We note that, properly, the action defined in Definition 2.1.1 is a “left
action”. A right action is defined similarly, but requiring Ψgh = Ψh ◦Ψg in ii.
As shown in an Exercise below, there is a one-to-one correspondence between
left and right actions and—even if in applications one may need to consider
both of them, for instance because a group acts on the left and on the right on
a given manifold—the theory developed for one case applies also to the other.

35
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We introduce now a few basic notions relative to an action Ψ of a Lie group
G on a manifold M . First we note that, besides the maps Ψg : M → M , it is
useful to consider also the ‘orbit’ maps

Ψm : G → M , g 7→ Ψm(g) := Ψ(g,m) . (2.1.1)

Next:
1. The Ψ-orbit of a point m ∈M is the set

Om := {Ψg(m) : g ∈ G} = Ψm(G) = G.m

2. The action is transitive if there is only one orbit: M = Om for some (and
hence every) pointm ∈M . Equivalently: given any two pointsm,m′ ∈M
there exists g ∈ G such that m′ = Ψg(m).

3. The action is free if

g 6= e =⇒ Ψg(m) 6= m ∀ m ∈M .

4. The isotropy (sub)group (or stabilizer) of a point m ∈ M is the set of all
elements of G that leave m fixed:

Gm := {g ∈ G : Ψg(m) = m} .

An action is free if and only if all its isotropy subgroups are trivial, Gm =
{e} for all m ∈M .

Exercises 2.1.1 (i) Show that an action is free if and only if, for any g, h ∈ G and m ∈ M ,
g.m = h.m implies g = h.

(ii) Verify that the ‘isotropy subgroups’ Gm are actually subgroups of G.

(iii) Show that each isotropy subgroup Gm is a Lie subgroup of G. [Hint: Gm = (Ψm)−1(m).]

(iv) Show that the isotropy subgroups of the points of an orbit are all conjugate to each other
and, if the group is abelian, they are all equal.

(v) Show that a map Ψ : G ×M → M is a (left) action of G on M if and only if the map
Ψ̃ : G×M →M , (g,m) 7→ Ψ̃(g,m) := Ψ(g−1,m), is a right action of G on M .

2.1.B Examples. We give now a number of examples, some for illustrative
purposes and others which will be used later.

Example 1. The flow ΦXt of a complete vector field X ∈ X(M) is an action of
R on M . The fixed points of this action are the zeroes of X (‘equilibria’, in
the dynamical system’s terminology). If m ∈ M is not an equilibrium point
of X (i.e. X(m) 6 0), it can still happen that ΦXT (m) = m for some T ∈ R.
Indeed, this happens if γ(t) = ΦXt (m) is a periodic orbit of X . So the action
is free if and only if X is everywhere 6= 0 and X possesses no periodic orbits.
All R-actions are of this type:
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Proposition 2.1.2 Every action Ψ of R on a manifold M is the flow of a
vector field, its “infinitesimal generator”

X(m) :=
d

dt
Ψt(m)|t=0 , m ∈M .

Proof. Since Ψ0(m) = m, X(m) ∈ TmM for all m. Furthermore, the map
m →M is smooth. Hence, X ∈ X(M). To prove that Ψ = ΦX we must prove
that, for each m ∈ M , t 7→ Ψt(m) is the integral curve of X through m. In
fact, Ψ0(m) = m and, for all t,

d
dtΨt(m) = d

dsΨt+s(m)|s=0 = d
dsΨs ◦Ψt(m)|s=0 = X(Ψt(m)) .

Example 2. The ‘linear action’ Ψ of a Lie subgroup H of GL(n) on Rn is given
by

ΨA(x) = Ax A ∈ H , x ∈ Rn .

For instance, the linear action of SO(3) on R3 rotates in all possible ways each
point of R3: (R, x) 7→ Rx for all R ∈ SO(3), x ∈ R3. The orbit of the origin
0 ∈ R3 is the origin itself, and that of a point x 6= 0 is the sphere of radius ‖x‖.
Hence the action is neither transitive nor free. The isotropy subgroup Gx of a
point x ∈ R3 is the entire SO(3) if x = 0 and, if x 6= 0, it is the subgroup of
SO(3) formed by the rotations of axis x, namely {exp(tx̂) : t ∈ R} (which is
isomorphic to S1).

Example 3. If an action Ψ : G × M → M leaves a submanifold N of M
invariant, namely Ψg(N) ⊆ N for all g ∈ G, then Ψ restricts to an action

Ψ|G×N : G×N → N

of G on N . For instance, the linear action of SO(3) on R3 restricts to an action
of SO(3) on the unit sphere of R3. This restricted action is now transitive, but
still not free.

Example 4. Any Lie group G acts on itself by left-translations: the map

L : G×G→ G , (g, h) 7→ Lg(h) = gh ,

is an action. It is free (Lgh = gh = h implies g = hh−1 = e) and transitive (for
any h, h′ ∈ G there exists g ∈ G such that h′ = gh: g = h′h−1).

Example 5. A Lie group acts on itself also by right-translations. However, the
map R : G×G→ G defined by Rg(h) = hg is a right action. A left action of G
on itself by right-translations is given by (g, h) → Rg−1h = hg−1 (see Exercise
2.1.1.v).
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Example 6. The action of a Lie group G on itself by conjugation is

C : G×G→ G , (g, h) 7→ Cgh = ghg−1 .

Its orbits are called conjugacy classes. This action is not transitive (it has the
fixed point e) and not free (the isotropy subgroup of e is the entire group). The
isotropy subgroup of an element g ∈ G is the subgroup

Gh = {g ∈ G : gh = hg}

and is called the centralizer of h.

Example 7. Consider a vector field X ∈ X(M) with periodic flow, namely,
all its integral curves are periodic (or constant). We ask if its flow defines an
action of T1 = R/Z as well. Define the ‘minimal period function’ T : M → R
of the flow of X as follows: if m is an equilibrium, then T (m) = 0. If not,
T (m) > 0 is defined by ΦXT (m)(m) = m and ΦXt (m) 6= m for 0 < t < T (m).

Obviously T is constant along the orbits of X (it is a ‘first integral’ of X), but
it might not be a smooth function (even though in most cases it is smooth). If
T is smooth, then the map

Ψ : T1 ×M →M , (αmod1,m) 7→ Ψαmod1(m) := ΦXαT (m)(m)

is well defined (ΦXαT (m)(m) does not depend on the choice of α ∈ R in the

equivalence class αmod1 because ΦXkT (m)(m) = m for all k ∈ Z) and, as is

easily checked, is an action of T1.

Example 8. Let ΨG : G ×M → M and ΨH : H ×M → M be two actions of
two Lie groups G and H on a manifold M . We ask if the map

ΨG×H : (G×H)×M →M , ΨG×H
(g,h) (m) := ΨGg ◦ΨHh (m)

obtained by ‘composing’ the two actions is an action of G×H on M . Smooth-
ness is obvious and, since the identity element eG×H of G ×H is (eG, eH), so
is ΨG×H

eG×H
= idM . However,

ΨG×H
(g1,h1)(g2,h2)

= ΨG×H
(g1g2,h1h2)

= ΨGg1g2 ◦ΨHh1h2
= ΨGg1 ◦ΨGg2 ◦ΨHh1

◦ΨHh2

and
ΨG×H

(g1,h1)
◦ΨG×H

(g2,h2)
= ΨGg1 ◦ΨHh1

◦ΨGg2 ◦ΨHh2

coincide for all g1, h1 ∈ G1 and g2, h2 ∈ G2 if and only if the two actions
commute, namely

ΨGg ◦ΨHh = ΨHh ◦ΨGg ∀ g ∈ G , h ∈ H
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(for the ‘only if’ part, take g1 = eG, h2 = eH).

Example 9. By the previous example and Proposition A.2.7, if X1 and X2 are
two commuting vector fields on a manifold M , [X1, X2] = 0, then

ΦX1,X2 : R2 ×M →M , ΦX1,X2

t1,t2 (m) := ΦX1

t1 ◦ ΦX2

t2 (m)

is an action of R2 on M .

Example 10. The adjoint action of a Lie group G on its Lie algebra g is
defined as follows. For any g ∈ G, the conjugation Cg : G → G is a Lie
group isomorphism. Therefore, its tangent map TeCg : g → g is a Lie algebra
isomorphism. The map

Ad : G→ Isom(g) , g 7→ Adg := TeCg

is called the adjoint map of G. The adjoint action, or adjoint representation,
of G is the map

Ad : G× g → g , (g, ξ) 7→ Adgξ .

That it is an action of G on g is verified observing that, since Ce = idG,
Adeξ = Te(idG) · ξ = ξ for all ξ ∈ g and, using the chain rule and Cg′ (e) = e,
Adgg′ = Te(Cgg′ ) = Te(Cg ◦ Cg′) = TCg′ (e)

Cg ◦ TeCg′ = TeCg ◦ TeCg′ = Adg ◦
Adg′ for all g, g

′ ∈ G.

Note that the fact that the adjoint map is a Lie algebra isomorphism implies

Cg ◦ expG = expG ◦Adg ∀g ∈ G (2.1.2)

Adg[[ξ, η]] = [[Adgξ,Adgη]] ∀ g ∈ G , ξ, η ∈ g . (2.1.3)

Example 11. Adjoint representation of GL(n). For A,B ∈ GL(n), CA(B) =
ABA−1. For A ∈ GL(n) and V ∈ TAGL(n) = L(n), t 7→ exp(At) is a curve in
GL(n) through A. Thus

AdAV = TICA · V = d
dtCA(exp(tV ))|t=0 = d

dtA exp(tV )A−1|t=0 = AV A−1 .

We conclude that the adjoint representation of GL(n) is the action of GL(n) on
L(n) given by AdAV := AV A−1. Note that the identities (2.1.2) and (2.1.3) be-
come the familiar identities A exp(V )A−1 = exp(AV A−1) and A[U, V ]−A

−1 =
[AUA−1, AV A−1]−.

Example 12. The coadjoint action, or coadjoint representation, of a Lie group
G is the action Ad∗ of G on the dual g∗ of g obtained by dualizing the adjoint
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action.1 Specifically, it is defined as

Ad∗ : G× g∗ → g∗ , (g, µ) 7→ (Ad∗)gµ := (Adg−1 )∗µ . (2.1.4)

(Note the different meanings of ∗ in these formulas: in Ad∗, it denotes the
name of the coadjoint action, and (Ad∗)g : g → g is the map at g fixed of
this action; instead, (Adg)

∗ is the adjoint of the map Adg). The reason why
(Ad∗)g is defined as the adjoint of Adg−1 and not of Adg is because this gives
a left action instead of a right action. That Ad∗ is an action is easily verified:
(Ad∗)gh = (Ad(gh)−1)∗ = (Adh−1 ◦Adg−1)∗ = (Adg−1)∗ ◦ (Adh−1)∗.

Example 13. The expressions of the adjoint and coadjoint representations of
SO(3) depend, of course, on the identification of the Lie algebra so(3) with
either (skew(3), [ , ]−) or (R3,×). In the first case we may write the matrices
of skew(3) as v̂ with v ∈ R3. Then, from example 11. we know that Ad :
SO(3)× skew(3) → skew(3) is given by

AdRv̂ = Rv̂R−1 .

Given that Rv̂R−1 = R̂v and that the Lie algebra isomorphism between the
two is the hat mapˆ: R3 → skew(3), it follows that, if the identification of so(3)
with R3 is used, then

AdRv = Rv .

In order to express the coadjoint representation of SO(3) we need to choose an
inner product on so(3), so as to identify so(3)∗ and so(3). If we identify so(3)
with R3, then we may use the Euclidean inner product on R3. The matrix of
the adjoint of a linear map is then the transpose of the matrix of the linear
map and so (AdR)

∗ = R∗. Thus

(AdR)
∗v = RT v

and
(Ad∗)Rv = (AdR−1)∗v = Rv .

14. Lifted actions. Each action Ψ of a Lie group G on a manifold M induces
an action of G on the tangent bundle ofM , its tangent lift ΨTM . Lifted actions
play an important role in Lagrangian mechanics, because Lagrange equations
are second order equations: as such, they can be viewed as a vector field on the
tangent bundle TM of the ‘configuration space’ M , and it is natural to ‘lift’ to
TM (namely, to positions and velocities) symmetry transformations defined in
M (namely, acting on positions).

1Recall that the adjoint of a linear map ℓ : E → F between two vector spaces
E and F is the map ℓ∗ : F ∗ → E∗ between their duals defined as follows: for any
α ∈ F ∗, ℓ∗(α) ∈ E∗ is the linear map E → R such that 〈ℓ∗(α), v〉E = 〈α, ℓ(v)〉F for
all v ∈ E.
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Definition 2.1.3 The lifted action (or tangent lift) of an action Ψ of a Lie
group G on a manifold M is the map

ΨTM : G× TM → TM , (g, v) 7→ ΨTMg (v)

with

ΨTMg := TΨg ∀ g ∈ G .

Explicitly,2 ΨTMg (v) = TmΨg · v or ΨTMg (m, v) =
(
Ψg(m), TmΨg · v

)
for all

g ∈ G, m ∈M , v ∈ TmM . In bundle coordinates (x, ẋ) of TM ,

(ΨTMg )loc(x, ẋ) =
(
Ψloc
g (x), (Ψloc

g )′(x)ẋ
)
.

Proposition 2.1.4 If Ψ is an action of G on M , then ΨTM is an action of
G on TM .

Proof. ΨTMe = idTM because Ψe = idM . For any g, h ∈ G, ΨTMgh = TΨgh =

T (Ψg ◦Ψh) = (TΨg) ◦ (TΨh) = ΨTMg ◦ΨTMh .

Examples: 1. For any u ∈ Rn, the lift of the action λ.x = x+λu of R ∋ λ on
Rn ∋ x (translations parallel to u) is the action of R on TRn = Rn ×Rn ∋ (x, v)
given by λ.(x, v) = (x+ λu, v).

2. The lift of the linear action of GL(n) ∋ A on Rn ∋ x, given by A.x = Ax, is
A.(x, v) = (Ax,Av).

Exercises 2.1.2 (i) The computation of d
dt
Ψt(m) in the proof of Proposition 2.1.2 is based

on writing Ψt+s as Ψs ◦ Ψt. However, Ψt+s could also be written as Ψs ◦ Ψt (as is indeed
done for γ(t + s) in the—under other respects equal—proof of Proposition 1.3.18) and this
would lead to a different expression for d

dt
Ψt(m). Determine this expression and then show

that, after it has been proved that Ψ = ΦX , it can be shown that the two expressions are
equal. [Hint: Since [X,X] = 0, (ΦX

t )∗X = X for all t.]

(ii) Why the lift of an action Ψ in not defined as TΨ?

2The points of TM are the vectors tangent to M at its points. To keep track of
the base point, we may denote them

• either as vectors v ∈ TmM , or perhaps better vm ∈ TmM , with m ∈M

• or as pairs (m, v) with m ∈M and v ∈ TmM .
When we write the value of a vector field X : M → TM at a point m ∈ M as
X(m) ∈ TmM we are adopting the first possibility. When useful, we turn to the
second.
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Remark: Since the set Diff(M) of all diffeomorphisms on a manifold forms
a group under composition, an action Ψ of G on M may also be regarded as
a group homomorphism Ψ̂ between G and Diff(M), which to any element g of
G associates the diffeomorphism Ψg of G. An action by linear maps of a Lie
group G on a vector space E is called a representation of G on E and can be
regarded as a Lie group homomorphism Ψ̂ between G and Isom(E), the group

of all linear isomorphisms of E. A representation is faithfully if the map Ψ̂ is
injective. A faithful representation Ψ̂ is thus a Lie group isomorphism between
G and Ψ̂(G) ⊆ Isom(E), and gives a realization of G by means of a group of
linear transformations of a vector space (hence, as a group of matrices; not all Lie
groups admit faithfully representations in GL(n,R), though; a counterexample
is SL(2,R)).

2.1.C Invariance and equivariance.

Definition 2.1.5 Consider a Lie group G and a map F : N → P between two
manifolds N and P .
i. F is invariant under an action Ψ of G on N ifN

Ψg

��

F

  @
@@

@@
@@

@

N
F // P

F ◦Ψg = F ∀g ∈ G . (2.1.5)

ii. F is equivariant with respect to an action ΨN of G on N and to an action
ΨP of G on P ifN

ΨN
g
��

F // P

ΨP
g

��
N

F // P

F ◦ΨNg = ΨPg ◦ F ∀g ∈ G . (2.1.6)

Proposition 2.1.6 Assume that F : N → P is equivariant with respect to two
actions ΨN on N and ΨP on P of a Lie group G. Then, if ΨN is transitive,
F has constant rank.

Proof. Differentiating the left- and right-hand sides of (2.1.6) at a point n ∈ N
gives

TΨN
g (n)F · TnΨNg = TF(n)Ψ

P
g · TnF ∀g ∈ G . (2.1.7)

Since ΨNg and ΨPg are diffeomorphisms, the linear maps TnΨ
N
g and TF(n)Ψ

P
g

are isomorphisms and hence, for any n ∈ N and g ∈ G, TΨN
g (n)F has the same

rank as TnF. This proves that the rank of F is constant on each orbit of ΨN .
The statement now follows from the fact that, if ΨN is transitive, then N is an
orbit.

Exercises 2.1.3 (i) Interpret invariance as a particular case of equivariance.

G

Lg

��

F // H

LF(g)

��
G

F // H

(ii) Show that a Lie group homomorphism F : G → H is equivariant with respect to a
transitive action of G on G and an action of G on H, so as to deduce statement ii of
Proposition 1.1.7 from Proposition 2.1.6. [Hint: ΨH : (g, h) = LF(g)h is an action of G on
H].
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2.1.D Actions of one-parameter subgroups. One-parameter subgroups
of a Lie group G have been introduced in section 1.3.C. Restricting an action of
G to these subgroups give actions of R generated by the vectors in the algebra,
which turn out to play an useful role in investigating some properties of the
action.

Definition 2.1.7 Let Ψ be an action of a Lie group G on a manifold M . The
infinitesimal generator of the action associated to a vector ξ ∈ g is the vector
field ξM on M defined by

ξM (m) := d
dtΨexp(tξ)(m)|t=0 ∀m ∈M . (2.1.8)

Note that (2.1.8) actually defines a vector field on M because exp(tξ)(m) = m
if t = 0.

Note also that (2.1.8) gives

ξM (m) = TeΨ
m · ξ ∀ξ ∈ g,m ∈M . (2.1.9)

Furthermore, ξM is the infinitesimal generator, in the sense of Proposition
2.1.2, of the R-action of the one parameter subgroup {Ψexp(tξ) : t ∈ R} of G.
Therefore, the flow of ξM coincides with this action:

Φξ
M

t = Ψexp(tξ) ∀ t ∈ R .

This has the following consequence:

Proposition 2.1.8 If an action is free, then all its infinitesimal generators
ξM , ξ 6= 0, are everywhere nonzero in M .

Proof. If ξM (m) = 0 for a certain ξ ∈ g \ {0} and a certain m ∈M , then m is
an equilibrium of ξM and therefore Ψexp(tξ)(m) = m for all t. This contradicts
the freeness of Ψ because, since exp is a local diffeomorphism at 0, there is
some t for which exp(tξ) 6= e.

We note two further properties of these vector fields:

Proposition 2.1.9 For all ξ, η ∈ g:

i. (Ψg)∗ξ
M = (Adgξ)

M

ii. [ξM , ηM ] = −[[ξ, η]]
M

Proof. (i) First note that, for any m ∈M and g ∈ G,

((Ψg)∗ξ
M )(Ψg(m)) = (TΨg · ξM )(m) = TmΨg · ddtΨexp(tξ)(m)|t=0

= d
dtΨg ◦Ψexp(tξ)(m)|t=0 = d

dtΨg exp(tξ)(m)|t=0 .
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Evaluating this equality at Ψ−1
g (m) instead of m, and recalling the definitions

2.1.1 of the orbit map Ψm and of the Adjoint map (example 10 in section
2.1.B), gives

((Ψg)∗ξ
M )(m) = d

dtΨg exp(tξ)(Ψg−1(m))|t=0 = d
dtΨg exp(tξ)g−1 (m)|t=0

= d
dtΨCg(exp(tξ))(m)|t=0 = d

dtΨ
m(Cg(exp(tξ))|t=0

= TCg(e)Ψ
m · TeCg · ξ = TeΨ

m · Adg(ξ)
= (Adg(ξ))

M .

(ii) This is omitted.

Exercises 2.1.4 (i) We have associated two different vector fields to a Lie algebra vector
ξ: the left-invariant vector field Xξ on G and the infinitesimal generator of the action ξM on
M . Show that

TgΨ
m ·Xξ(g) = TmΨg · ξM (m) ∀m ∈ M, g ∈ G .

[Hints: First verify that, for any m, Ψm : G→M is equivariant with respect to the action of
G by left-translation on itself and to the action Ψ on M , namely Ψg ◦Ψm(h) = Ψm ◦ Lg(h)
for all g, h ∈ G. Then uses (2.1.7).]

2.1.E Structure of the orbits. Even though in the next section we will
give, under stronger hypotheses, stronger results, it may be useful to say
something about the structure of the orbits in the general case.

Proposition 2.1.10 The orbits of a free action Ψ of a Lie group G on a
manifold M are immersed submanifolds of M diffeomorphic to G.

Proof. The orbit Om = {Ψg(m) : g ∈ G} of a point m is the image of the map
Ψm : G→M , and we show that this map is an injective immersion.

Since Ψm(g) = Ψm(h) is equivalent to Ψg(m) = Ψh(m), injectivity follows
from the freeness of the action.

Ψm is an immersion at e if TeΨ
m : TeG → TmM is injective, namely if

TeΨ
m · ξ 6= 0 for all nonzero ξ ∈ g. By (2.1.9), TeΨ

m · ξ = ξM (m) which,
according to Proposition 2.1.8, is nonzero.

The map Ψm is equivariant with respect to the (transitive) action of G by
left-translation on itself and to the action Ψ on M . Indeed, Ψg ◦ Ψm(h) =
Ψg ◦Ψh(m) = Ψgh(m) = ΨLgh(m) = Ψm(Lg(h)) for all g, h ∈ G.

Thus, by Proposition 2.1.6, the fact that Ψ is immersive at e implies that
it is immersive at all points of G.

Finally, an injective immersion is a diffeomorphism onto its image.

Exercises 2.1.5 (i) Show that, if Ψ is free, then TmOm = {ξM (m) : ξ ∈ g}. [Hint: if
ι : P → Q is an immersion, then Tιf(TpP ) = Tι(p)ι(P ) for all p ∈ P .]
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2.2 Reduction of invariant vector fields

2.2.A Invariant vector fields.

Definition 2.2.1 A vector field X ∈ X(M) is invariant under an action Ψ of
a Lie group G on a manifold M if

(Ψg)∗X = X ∀ g ∈ G . (2.2.1)

In such a case, Ψ is said to be a symmetry action of X and G a symmetry
group of X.

Condition (2.2.1) may be written as

X(Ψg(m)) = TmΨg ·X(m) ∀m ∈M, g ∈ G

(in coordinates, X loc(Ψloc
g (x)) = (Ψloc

g )′(x)X loc(x)) and shows that, for each g
and m, the value of a Ψ-invariant vector field X at the point Ψg(m) is obtained
by transforming with the tangent map TmΨg its values at the point m. Also,
by Proposition A.1.3, condition (2.2.1) is equivalent to

Ψg ◦ ΦXt = ΦXt ◦Ψg ∀t ∈ R, g ∈ G (2.2.2)

Examples: 1. Consider the action of R ∋ t on Rn ∋ x by translations along
a fixed direction, given by a nonzero u ∈ Rn, namely Ψt(x) = x + tu. We may
work in coordinates. Clearly Ψ′

t(x) = I for all x and the condition of invariance
of a vector field X is

X(x+ tv) = X(x) ∀t ∈ R , x ∈ Rn .

Thus, a vector field in Rn is invariant under translations along v if it is constant
along each line parallel to v.

2. Consider now the linear action Ψ of SO(2) on R2, namely

ΨR(x) = Rx , R ∈ SO(2) , x ∈ R2 .

A vector field X on R2 is invariant under this action if, for all R and x, X(Rx) =
Ψ′

R(x)X(x). Since ΨR is a linear map, Ψ′(x) = R for all x and this condition is

X(Rx) = RX(x) ∀R, x .

Thus, for any x 6= 0, its value at each point Rx of the circle of radius ‖x‖, R ∈
SO(2), is obtained by rotating with R its value at the point x. Said differently,
on each circle centered at the origin, X has constant norm and forms a constant
angle with the radius.
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Remark: The condition of invariance of a vector field X ∈ X(M) under an
action ΨM on a manifold M , namely X ◦ ΨM

g = TmΨg ◦ X for all g ∈ G, can
be written X ◦ Ψg = ΨTM

g · X for all g ∈ G (where ΨTM is the lifted action
of ΨM , see Definition 2.1.3). Hence, the invariance of X under an action ΨM

is equivalent to the equivariance of X, regarded as a map X : M → TM , with
respect to the actions ΨM on M and ΨTM on TM . This explains why, in the
literature, invariant vector fields are also called equivariant vector fields.

M

ΨM
g

��

X // TM

ΨTM
g

��
M

X // TM

Exercises 2.2.1 (i) Assume that X ∈ X(M) is invariant under an action Ψ on M and
that X(m∗) = 0 for a certain m∗ ∈ M . Show that the Ψ-orbit of m∗ consists entirely of
equilibria (= zeroes) of X.

(ii) Let F ix(Ψ) := {m ∈ M : Ψg(m) = m ∀, g ∈ G} be the set of fixed points of an action
Ψ of a Lie group G on M . Show that F ix(Ψ) is invariant under the flow of any Ψ-invariant
vector field (namely, if X ∈ X(M) is Ψ-invariant, then ΦX

t (F ix(Ψ)) ⊆ F ix(Ψ) for all t ∈ R).
[Hint: use (2.2.2)].

(iii) Show that, in example 2., if X is SO(2)-invariant then X(0) = 0. [Hints: use either a
continuity argument or the result of the previous exercise].

2.2.B The quotient space. If G acts onM , then there is one and only one
G-orbit through each point of M , and M is decomposed in the union of the
G-orbits. Belonging to a G-orbit is an equivalence relation ∼ on M :

m ∼ m′ ⇔ m′ ∈ Om .

Denote by [m] the equivalence class of m ∈ M (namely, the G-orbit through
m). The set M/G of all equivalence classes is called the quotient space or the
orbit space. We denote by π the quotient map or canonical projection

π :M → M/G , m 7→ [m] .

The quotient space M/G is a topological space with the quotient topology,
which is defined as follows:

U ⊆M/G is open ⇔ π−1(U) ⊆M is open .

If M/G is equipped with the quotient topology, then the canonical projection
π : M → M/G is continuous.3 However, the question of whether M/G is a
smooth manifold is subtler. Before investigating this question, we note that:

Proposition 2.2.2 Assume that M :=M/G has a smooth structure such that
the quotient map π : M → M/G is a submersion. Then, for any Ψ-invariant
vector field X ∈ X(M) there exists a vector field X ∈ X(M) which is π-related
to X and hence

ΦXt ◦ π = π ◦ ΦXt ∀t ∈ R . (2.2.3)

3The quotient topology is the final topology induced by π on M/G: the finest
topology that makes π continuous.
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Proof. First, fix t ∈ R. By (2.2.2), ΦXt maps the entire G-orbit of a point
m ∈M into another G-orbit. Thus, π(ΦXt (m)) ∈M assumes the same value in

all points m belonging to a G-orbit, and for any m ∈M we may define ΦXt (m)
as π(ΦXt (m)) with any m ∈ π−1(m). Since π is surjective, this defines a map

ΦXt :M →M

which by its very construction satisfies ΦXt ◦ π = π ◦ ΦXt for all t.
Putting together all these maps gives a map

ΦX : R×M → M , (t,m) 7→ (ΦX)t(m)

with
(ΦX)t := ΦXt ∀t .

It is not difficult to prove that ΦX is smooth (see the exercises). Moreover, it
inherits from ΦX the property of being an action of R on M : for all m ∈ M
and t, s ∈ R

(ΦX)0(π(m)) = ΦX0 (π(m)) = π ◦ ΦX0 (m) = π(m)

and

(ΦX)t+s(π(m)) = ΦXt+s(π(m)) = π ◦ ΦXt+s(m) = π ◦ ΦXt ◦ ΦXs (m)

= ΦXt ◦ π ◦ ΦXs (m) = ΦXt ◦ ΦXs ◦ π(m)

= (ΦX)t ◦ (ΦX)s(π(m))

(since π is surjective, checking a property at all points π(m) with m ∈ M is
the same as checking it at all points of M).

The proof is concluded by recalling that a smooth R-action is the flow of
a vector field (Proposition 2.1.2). Thus, there exists a vector field X on M

such that ΦX = ΦX . Its flow satisfies (2.2.3) and, by Lemma (1.2.11),4 it is
π-related to X .

Under the hypotheses of Proposition 2.2.2 on the action Ψ, a Ψ-invariant vector
field X on M is π-related to a vector field X on M . Recall that this means
that

X(π(m)) = Tmπ ·X(m) ∀,m ∈M

and that the flows of X and X are related by (2.2.3).
The passage from X ∈ X(M) to X ∈ X(M) is called reduction, and X

is called the reduced vector field of X . If, adopting the Dynamical System

4In fact, statement ii. of that Lemma gives the opposite implication to the one we
need here. But, as its proof shows, that statement could be replaced by the following
one“Y ∈ X(N) is Ψ-related to X ∈ X(M) if and only if ΦY

t ◦Ψ = Ψ ◦ ΦX
t ∀t.”
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terminology, M is called the phase space of X , then M is called the reduced
phase space.

Since the dimension of M is lower of that of M , dimM = dimM − dimG
if π is a submersion, there is the hope of being able to understand something
about the dynamics (= the properties of the flow) of X. The next question is
if it is then possible to “reconstruct” the dynamics of X from that of X. In
order to answer this question we need to understand better the structure of the
G-orbits inside M .

Examples: 1. Consider the action of R ∋ λ on R2 ∋ (x, y) by translations
along the y-axis:

Ψλ(x, y) = (x, y + λ) .

The orbits are the lines parallel to the y-axis. Each of them is determined by its
x-coordinate. The quotient space can thus be identified with the x-axis, in the
precise sense that it is in bijective correspondence with R with quotient map

π : (x, y) 7→ x .

The quotient topology on R2/R = R is the standard topology of R (π−1(U) =
U × R ⊂ R× R is open if and only if U ⊂ R is open). In this case, the quotient
space is a smooth manifold and π is a submersion.

2. If G = S1 acts by rotation of R2 about the origin, then its orbits are the circles
centered at the origin and the origin itself. The peculiarity of the orbit of the
origin is related to the fact that the isotropy subgroup of the origin is nontrivial,
G0 = S1. The quotient space can be identified with the half-line [0,∞), with
canonical projection π : R2 → R2/S1 given by

(x, y) 7→
√
x2 + y2 .

A basis for the quotient topology is formed by the open intervals (a, b) with
b > a > 0, whose preimages are open annuli in R2, and the half-open intervals
[0, b) with b > 0, whose preimages are open disks in R2. The quotient space
has no smooth structure compatible with this topology (it is a manifold with a
boundary).

3. Consider the action of R ∋ λ on T2 ∋ (α1, α2) given by Ψλ(α1, α2) = (α1 +
λω1, α2 + λω2) (mod 1), with ω1/ω2 /∈ Q (the irrational flow on T2). Every
orbit is dense in T2 and the quotient topology on T2/R is the trivial topology, in
which the open sets are the empty set and the entire space. (If U 6= ∅ is an open
subset of T2/R, then π−1(U) is an open subset of T2. As such, it has nonempty
intersection with any orbit. Therefore, being a union of orbits, it is the union of
all orbits, namely it is the entire T2. Thus U = T2/R). No smooth structure is
compatible with this topology.

In the second example, the obstruction to the smoothness of the quotient space
comes from the non-triviality of the isotropy, and is in a way localized where
the isotropy changes. Requiring the freeness of the action avoids this problem.
In the third example the action is free, but the problem arises from the fact
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that the orbits ‘keep coming back’ with the result of self-accumulating on them-
selves. The notion of ‘properness’ of an action is meant precisely to prevent
this behaviour:

Definition 2.2.3 An action Ψ of a Lie group G on a manifold M is proper
if for any compact subset P ⊂ M , the subset {g ∈ G : P ∩ Ψg(P ) 6= ∅} of G
is compact.

It is important to keep in mind that:

Proposition 2.2.4 Any action of a compact Lie group is proper.

Proof. See the exercises below.

The main result, which we do not prove here because the proof is elaborated
and rather technical, is the following:

Proposition 2.2.5 Let Ψ be a free and proper action of a k-dimensional Lie
group on an n-dimensional manifold M (n ≥ k). Then M/G, equipped with
the quotient topology, has a (unique) smooth structure such that π :M →M/G
is smooth and is a submersion.

In the sequel we will consider only free and proper actions. We will write M
to mean M/G with this smooth structure. Note that dimM = n− k and that
the orbits are embedded submanifolds.

Exercises 2.2.2 (i) Determine the quotient space M/G in the following cases: (a) Action
Ψ(t, (α1, α2)) = (α1 + t, α2)mod 2π of S1 on T2. (b) Action Ψ(t, x) 7→ x+ tv, with v 6= 0 a
given vector of R2, of R on R2. (c) Action of S1 on S2 = {x ∈ R3 : ‖x‖ = 1} by rotations
about the x3-axis. (d) Linear action of SO(3) on R3.

(ii) Show that the action of R on Rn by translations along a given direction is a proper action.

(iii) Show that the orbits of a free and proper action are embedded submanifolds. [Hints:
the fibers of a submersion...]

(iv) Show that the map ΦX defined in the proof of Proposition 2.2.2 is smooth. [Hints: Being
a local question, this can be proven using coordinates. Prove that if N ⊆ Rn and P ⊆ Rk are N

ψ
��

f // N

ψ
��

P
g // P

open sets, ψ : N → P is a surjective submersion, f : N → N is a smooth map and g : P → P
is a map such that Ψ ◦ f = g ◦ Ψ, then g is smooth. To do so, use the submersion theorem,
according to which in a neighbourhood of any point of N there is a coordinate system in
which the first k coordinates coincide with the components of ψ.]

(v) Show that the maps ΦX
t :M/G →M/G and ΦX : R×M/G→M/G defined in the proof

of Proposition 2.2.2 (but not X and ΦX) can be defined even if M/G is only a topological
space and π : M →M/G a continuous map, and that they are continuous.

(vi) A map between two topological spaces is said to be proper if the preimages of compact
sets are compact. Show that an action Ψ : G ×M → M is proper if and only if the map
Ψ̃ : G×M → M ×M , (g,m) 7→ (Ψg(m), m) is proper.
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(vii) Prove Proposition 2.2.4. [Hint: Use the previous exercise, together with the facts that
the preimage of a compact set under a continuous map is closed and closed subsets of a
compact space are compact.]

(viii) Prove that no free action of a non-compact Lie group on a compact manifold M is
proper. [Hint: take P =M in the definition.]

2.2.C Fibrations.

Definition 2.2.6 A locally trivial fibration (or fiber bundle) (M,B, π) is
formed by two (smooth) manifolds M and B and a surjective submersion
π :M → B such that, for each b ∈ B there exist
i. a neighbourhood U of b in B

i. a diffeomorphism ϕ : π−1(U) → U × π−1(b)
with the property that

π|U×π−1(U) = p1 ◦ ϕ (2.2.4)

where p1 : U × π−1(b) → π−1(b), (b, y) 7→ b, is the projection onto the first
factor.

M is called the total space, B the base and the maps ϕ the local
trivializations of (M,B, π).

Condition (2.2.4) is equivalent to saying that each local trivialization ϕ maps
each fiber π−1(b) of π over a point b ∈ U to the subset {b} × π−1(b). Thus,
it provides an identification of all the fibers of π over the open set U with the
fiber over b, and the set of all these fibers has a product structure. It follows
that all fibers of π over U are diffeomorphic.

It also follows that, if B is connected, then all the fibers of π are dif-
feomorphic to each other. (Given two points b, b′ ∈ B there is a path that
connects b and b′, and any such path can be covered with a finite number of
local trivializations). In such a case, we may choose one of the fibers of π (or a
manifold diffeomorphic to it) as typical fiber F and, via composition with the
diffeomorphisms between the fibers and F , replace the local trivializations with
maps

ϕ : π−1(U) → U × F

which satisfy ϕ|π−1(U) = p1 ◦ ϕ, and are also called local trivializations. We
will usually do this way.

Examples: 1. Any cartesian product B × F with projection π : B × F → B,
(b, f) 7→ b. In this case there is a global trivialization ϕ : π−1(B) = B × F →
B × F , which is the identity.

2. The tangent bundle of a manifold. The local trivializations are provided by
the ‘lifted coordinates’ (Section A.1.A).

3. The Möbius strip, the Klein bottle, the Hopf fibration π : SO(3) → S2, ....
are examples of ‘non trivial’ locally trivial fibrations, which (globally) are not
cartesian products.
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4. Not all submersions π :M → B are locally trivial fibrations. For instance, the
map π(x, y) = x from M = R2 \ {(0, 0)} ∋ (x, y) to B = R ∋ x is a submersion,
but its fibers are all diffeomorphic to R except π−1(0), which is diffeomorphic to
R \ {0}, or R ∪ R. Thus (M,B, π) is not a locally trivial fibration.

As the last example shows, a difference between a surjective submersion and a
locally trivial fibration is that in the former case the fibers need not all have
the same structure. But there is more than that—particularly when the fibers
are not compact.

Informally, a locally trivial fibration has a product structure which is ‘local
in the base’ but ‘global in the fibers’: (small) ‘packets’ π−1(U) of fibers, over
(sufficiently small) open sets U in the base, can be ‘straightened out’ to the
product U ×F . On the other hand, for a submersion, the submersion theorem
guarantees that this can be done only locally in the base and in the fibers.

There are various sufficient conditions under which a submersion π :M →
B is a locally trivial fibration (Ehresmann’s fibration theorem and extensions):
1. π is a proper map (automatic, if M is compact). 2. The fibers of π are
compact and all have the same number of connected components (in particular,
they are connected). 3. The fibers of π are diffeomorphic to Rp, p ≥ 1.

Locally trivial fibrations may have additional structures. One way to define
them is in terms of the transition functions between local trivializations.

Definition 2.2.7 An atlas by local trivializations of a locally trivial fibra-
tion (M,B, π) with typical fiber F is a collection of local trivializations ϕλ :
π−1(Bλ) → Bλ × F , λ ∈ Λ (some index set) whose domains cover M , namely

B = ∪λBλ .

The transition function between two local trivializations ϕλ : π−1(Bλ) → Bλ ×
F and ϕµ : π−1(Bµ) → Bµ × F whose domain have nonempty intersection
(Bλ ∩Bµ 6= ∅) is the map

ϕµ ◦ ϕ−1
λ : (Bλ ∩Bµ)× F → (Bλ ∩Bµ)× F . (2.2.5)

Each transition function is a diffeomorphism, and has the form

ϕµ ◦ ϕ−1
λ (b, y) = (b,Fµλ(b, y))

with a certain map Fµλ : (Bλ ∩ Bµ) × F → F which, for any fixed b, is a
diffeomorphism Fµλ(b, ·) : F → F .

Definition 2.2.8 A locally trivial fibration is said to be a G-principal bundle
if
i. its typical fiber is a Lie group G, and
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ii. it has an atlas by local trivializations in which all maps Fµλ as in (2.2.5)
act by right-translations on G: for each λ, µ ∈ Λ there exist a map

sµλ : Bλ ∩Bµ → G

such that Fµλ(b, g) = gsµλ(b).

Example: A vector bundle is a particular case of principal bundle, with typical
fiber a vector space on which the transition maps act linearly. The tangent and
cotangent bundles of a manifold are examples of this situation.

2.2.D Lie group actions and principal bundles. The orbits of free and
proper Lie group actions are the fibers of principal bundles:

Proposition 2.2.9 Consider a free and proper action Ψ of a Lie group G on
a manifold M . Let π :M →M/G be the quotient map. Then, (M,M/G, π) is
a G-principal bundle.

Proof. Let us write B forM/G. Choose a point b∗ ∈ B, a point m∗ ∈ π−1(b∗)
and a local section

σ : U →M , b→ σ(b) ,

of π : M → B through m∗, namely a (smooth) map from a neighbourhood
U ⊆ B of b∗ into M , such that π ◦ σ = idU and m∗ = σ(b∗). (Its existence is
granted by the submersion theorem, see the Exercises).

For any b ∈ B, the orbit map Ψσ(b) : G → π−1(b), which to each g ∈ G
associates the point Ψσ(b)(g) = Ψg(σ(b)) is a diffeomorphism (see the proof of
Proposition 2.1.10). It follows that the map

ρ : U ×G→ π−1(U) , (b, g) 7→ Ψg(σ(b)) ,

is bijective and, being a composition of smooth maps, is smooth. Its inverse is
smooth as well, being given by ρ−1(m) =

(
π(m), (Ψσ(π(m)))−1(m)

)
. Hence, ρ

is a diffeomorphism. Moreover, ρ maps each set {b}×G onto the fiber π−1(b).
Thus, its inverse ϕ := ρ−1

ϕ : π−1(U) → U ×G

is a local trivialization for π : M → B. By the arbitrariness of b∗, this shows
that (M,B, π) is a locally trivial fibration. Note that

ϕ
(
Ψg(σ(b)

)
= (b, g) ∀b, g .

Consider two local trivializations ϕλ : π−1(Bλ) → Bλ × G and ϕµ :
π−1(Bµ) → Bµ × G with local sections σλ : Bλ → M and σµ : Bµ → M .
Assume Bλ ∩ Bµ 6= ∅. For any b ∈ Bλ ∩ Bµ, the points σλ(b) and σµ(b)
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belong to the same orbit and—since the action is free—there exists a unique
sµλ(b) ∈ G such that

σλ(b) = Ψsµλ(b)(σµ(b)) .

This defines a map sµλ : Bλ ∩Bµ → G which is clearly smooth. Thus

ϕµ ◦ ϕ−1
λ (b, g) = ϕµ

(
Ψg(σλ(b)

)
= ϕµ

(
Ψg ◦Ψsµλ(b)(σµ(b)

)

= ϕλ
(
Ψgsµλ(b)(σµ(b)

)
=

(
b, gsµλ(b)

)
.

This proves that (M,B, π) is a G-principal bundle.

Exercises 2.2.3 (i) Show that if π :M → B is a surjective submersion, then any point of
M belongs to a local section of π :M → B. [Hints: This is a local question and can be dealt
with in coordinates. The submersion theorem ensures that if F = (F1, . . . ,Fk) : M → Rk

is a submersion, then for any m ∈ M there exist neighbourhoods U of m in M and V of
F(m) in Rk, an open set W in Rn−k and a map G = (G1, . . . ,Gn−k) : U → W such that
(F|V , G) : U → V ×W is a diffeomorphism. Verify that σ : V → U , σ(x) = (x,G(m)), is a
local section.]

2.2.E The reconstruction equation. If π : M → M/G =: B is the
quotient map associated to a free and proper action Ψ of a Lie group G on
M , then the local trivializations of the G-principal bundle (M,B, π) provide
‘semi-global’ models for M , which are very useful to study the dynamics of Ψ.

M

Ψg

��

ϕ // N

Ψϕ
g

��
M

ϕ // N

First, we note how actions change under diffeomorphisms. If Ψ : G ×
M → M is an action and ϕ : M → N is a diffeomorphism, then the map
Ψϕ : G×N → N defined by

Ψϕg := ϕ ◦Ψg ◦ ϕ−1 ∀g ∈ G

is an action on N , and ϕ is said to intertwine Ψ and Ψϕ. If X ∈ X(M) is
Ψ-invariant then ϕ∗X ∈ X(N) is Ψϕ-invariant (see the exercises).

Example: A local trivialization ϕ : π−1(U) → U ×G of the principal bundle
(M,B, π) defined by a free and proper action Ψ : G×M →M intertwines Ψ to
the action Ψϕ of G on U ×G given by

Ψϕ
g (b, h) = (b,Lgh) , (2.2.6)

namely, the factor U is left fixed and G acts by left-translation on itself. Indeed,
if ϕ is built with reference to a local section σ of (M,B, π), then Ψϕ

g (b, h) =
ϕ ◦Ψg ◦ ϕ−1(b, h) = ϕ ◦Ψg ◦Ψh(σ(b)) = ϕ ◦Ψgh(σ(b)) = (b, gh).

Proposition 2.2.10 Assume that X ∈ X(M) is invariant under a free and
proper action Ψ : G×M →M . Let ϕ : π−1(U) → U×G be a local trivialization
of the principal bundle (M,B, π). Then, there exist a map

ξ : U → g
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and a vector field X ∈ X(U) such that

(ϕ∗X)(b, g) =
(
X(b) , TeLg · ξ(b)

)
∀ b ∈ U, g ∈ G . (2.2.7)

Proof. We may identify T(b,g)(U ×G) and TbU × TgG. Accordingly, we write
ϕ∗X = (Y, Z) with maps Y : U × G → TU and Z : U × G → TG such that
Y (b, h) ∈ TbB and Z(b, h) ∈ ThG for all b, h.

As seen above, ϕ∗X is invariant under the action Ψϕ of G on U ×G given
by (2.2.6). For any y ∈ TbU and z ∈ TgG,

T(b,h)Ψ
ϕ
g · (y, z) = (y, ThLg · z)

and

ϕ∗X ◦Ψϕg (b, h) = (ϕ∗X)(b, gh) =
(
Y (b, gh), Z(b, gh)

)

T(b,h)Ψ
ϕ
g ·

(
ϕ∗X(b, h)

)
=

(
Y (b, h), ThLg · Z(b, h)

)
.

Thus, Y and Z satisfy, for all b, h, g,

Y (b, gh) = Y (b, h) , Z(b, gh) = ThLg · Z(b, h) .

Since the action by left translations is transitive, the first equality shows that
Y is independent of g. Thus Y can be regarded as a vector field X : U → TU .
For h = e, the second equality gives Z(b, g) = TeLg · Z(b, e) = TeLg · ξ(b) with

ξ(b) := Z(b, e) ∈ TeG .

The proof is concluded by observing that there are no other conditions on X
and ξ: for any choice of them, the vector field (2.2.7) is Ψϕ-invariant.

Proposition 2.2.10 provides a semiglobal model for invariant dynamics. If a
vector field X on a manifold M is invariant under a (free and proper) action of
a Lie group G, then in a neighbourhood π−1(U) of any G-orbit the differential
equation ṁ = X(m) can be written as the system

ḃ = X(b) , ġ = TeLg · ξ(b) (2.2.8)

on B ×G, with a vector field X on B =M/G and a map ξ : U → g. The first
equation is the reduced equation and the second is the reconstruction equation.
The integral curves of the reduced equation describe how the integral curves
of X move from G-orbit to G-orbit. The motion ‘along’ the G-orbits of each
integral curve of X is described the reconstruction equation.

The (geometric) fact that the reduced equation is given by a vector field
on the quotient space corresponds to the (analytic) fact that such an equation
is decoupled from the reconstruction equation and implies that its integral cur-
ves can be determined without knowing those of the reconstruction equation.
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This results in a ‘reduction-reconstruction’ strategy to integrate—or at least
to study, given that differential equations usually cannot be integrated—a G-
invariant differential equation. Given an initial datum (b0, g0) ∈ U × G, the
ensuing solution t 7→ (b(t), g(t)) of system (2.2.8) can (in principle) be deter-
mined in two steps: (1) t 7→ b(t) is the solution of the reduced equation with
initial datum b(0) = b0. (2) t 7→ g(t) is the solution of the time-dependent
equation

ġ = TeLg · ξ(b(t)) (2.2.9)

on G with initial datum g(0) = g0.

(b0, g0)

��

// t 7→ (b(t), g(t))

b0
Reduced equation // t 7→ b(t)

Reconstruction equation

OO

Equation (2.2.9) can also be written

ġ = Xξ(b(t))(g)

where Xξ is the left-invariant vector field on G determined by the Lie algebra
element ξ. Thus, along a solution of the reduced equation, the reconstruction
equation is the simplest possible differential equation on a Lie group—that
given by a left-invariant vector field, only time-dependent. In particular, it
depends only on the group G, not on the particular G-invariant system under
consideration. What depends on the details of the considered system are the
reduced vector field and the map ξ : U → g, while the properties of the motion
along the orbit do to a large extent depend only on the group.

We warn that, in practice, due to its time-dependency, integrating the
reconstruction equation for a generic reduced motion t 7→ b(t) may be prohibi-
tive. However, it is the qualitative properties of the reconstructed motions that
matter more, and in certain cases they may be determined.

Examples: We write the reconstruction equation for an abelian group and for
the Lie subgroups of GL(n). We assume that the reduced motion t 7→ b(t) is
known and write

ξ̃(t) := ξ(b(t)) .

1. G = Rn ∋ x. For any t, ξ̃(t) ∈ Rn. The left-invariant vector fields are the
constant vector fields and the reconstruction equation has the form

ẋ = ξ̃(t) .

Its integration is straightforward:

x(t) = x(0) +

∫ t

0

ξ̃(s)ds .
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If G = Tn ∋ α (mod1), then α(t) = α(0) +
∫ t

0
ξ̃(s)ds (mod1).

2. Let now G be a Lie subgroup of GL(n). The Lie algebra g is a subspace of
L(n). Let us write ξ(t) =: V (t) ∈ g ⊆ L(n). Then XV (t)(A) = AV (t) for all
A ∈ G and the reconstruction equation is

Ȧ = AV (t) , A ∈ G ⊆ GL(n) .

This is a matrix linear time-dependent equation. Notwithstanding its linea-
rity, the time-dependency can make it difficult or even impossible to solve it
analytically. Specifically, its solutions are known in two cases:

i. t 7→ V (t) =: V is constant. Then, A(t) = A(0) exp(V t).

ii. t 7→ V (t) is T -periodic (T > 0). Floquet theory ensures that there exists a
time-dependent periodic (of period T or 2T ) linear isomorphism t 7→ S(t) ∈
GL(n) such that A 7→ B = S(t)A conjugates Ȧ = AV (t) to a constant
coefficient linear differential equation Ḃ = BW , W ∈ L(n).

These two cases correspond to the general cases of relative equilibria and relative
periodic orbits.

Exercises 2.2.4 (i) In elementary physics courses, the free fall equation z̈ = −g, z ∈ R
(and g a constant) is integrated with two consecutive integrations to obtain first ż(t) = v0−gt
and then z(t) = z0 + v0t −

1
2
gt2. Write this second order equation as a first order equation

in TR and, exploiting an R-invariance of it, interpret the above integration procedure as an
instance of the reduction-reconstruction procedure.

(ii) A map ϕ :M → N (not necessarily a diffeomorphism) is said to intertwine an action ΨM

of G on M and an action ΨN of G on N if

ϕ ◦ΨM
g = ΨN

g ◦ ϕ ∀g ∈ G .

Show that if XM ∈ X(M) is ΨM -invariant, XN ∈ X(N) is ϕ-related to XM and ϕ is
surjective, then XN is ΨN -invariant. [Hints: you know that ϕ ◦ΨM

g = ΨN
g ◦ ϕ, Tϕ ◦XM =

XN ◦ϕ and TΨg ◦XM = XM ◦Ψg. Compute [(ΨN
g )∗XN ] ◦ΨN

g ◦ϕ and show that it equals

XN ◦ΨN
g ◦ ϕ. Then use the surjectivity of ϕ and of ΨN

g ].

(iii) Show that, within the proof of Proposition 2.2.10, the fact that Y is independent of b
could also be deduced from the fact that, by Proposition 2.2.2, X is π-related to a vector
field on M/G.

2.3 The dynamics in relative equilibria

2.3.A Relative equilibria

Definition 2.3.1 A relative equilibrium of a G-invariant vector field X ∈
X(M) is a G-orbit that projects over an equilibrium of the reduced vector field.

Relative equilibria are important for two reasons: they are often the starting
point of the analysis of a system, and they shed some light on the integrability
of the ODEs. The dynamics in relative equilibria of compact groups is known
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from the 1980’s, thanks to the work of Krupa, Fields and others. The case of
non-compact group is less completely understood.

We restrict to the case of a free and proper action Ψ : G×M → M . Assume
that X ∈ X(M) is Ψ-invariant and that the reduced vector field X vanishes
at a point b∗ of the reduced space B = M/G. Then the G-orbit π−1(b∗) is a
relative equilibrium. We work in a local trivialization whose domain contains
the relative equilibrium. The integral curves of X with initial data in π−1(b∗)
belong to it and, in the local trivialization, are described by the reconstruction
equation

ġ = Xξ(g) (2.3.1)

with a (fixed, constant) vector ξ ∈ g which depends on b∗ and will be called
the generator of the dynamics in the relative equilibrium. The flow of such a
vector field is given by the exponential map of G,

Φ
Xξ

t (g) = g expG(tξ) , ∀ t, g . (2.3.2)

Thus, determining the dynamics in relative equilibria amounts to deter-
mine the properties of the group exponential. The consideration of R (where
exp is the real exponential and t 7→ exp(ξt) goes to infinity) and of SO(2) or
SO(3), where t 7→ exp(ξt) is trigonometric and is a rotation, shows that these
properties depend on the group. The basic distinction is if G is compact or
not. We will consider only the compact case.

Clearly, in order to determine the dynamics in a relative equilibrium we
may consider only the integral curve of the identity, g = e in (2.3.2), since the
integral curves of others g are obtained by translations of this one.

Example: Dynamics in relative equilibria of G = Tn. The exponential map
of Tn ∋ 〈α〉 := αmod1 is

exp : Rn → Tn , ξ 7→ exp(ξ) = 〈ξ〉 .

We write ω = (ω1, . . . , ωn) for ξ ∈ Rn = lie(Tn) and consider the curve

t 7→ 〈ωt〉 . (2.3.3)

The topological properties of this curve are described by Krönecker theorem
(that we have already met for n = 2 in section 1.1.D), according to which:

i. The image of the curve (2.3.3) is dense in Tn if and only if ω is ‘nonresonant’,
namely ν · ω 6= 0 for all ν ∈ Zn \ {0}.

ii. If ω is ‘resonant’, namely ω · ν = 0 for some nonzero integer vector ν, then
the topological closure

{〈ωt〉 : t ∈ R}

of the image of the curve (2.3.3) is a subtorus of Tn of a certain dimension
0 ≤ p ≤ n.
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The dimension p of the subtorus in the resonant case depends on the arithmetic
properties of ω. If ω is resonant, then the set Rω := {ν ∈ Zn : ν · ω = 0} is a
nontrivial subgroup of Zn, hence a lattice of some rank 1 ≤ r ≤ n,5 and it is not
difficult to show that p = n− r.

2.3.B Tori of compact Lie groups.

Definition 2.3.2 i. A torus is a compact, connected and abelian Lie group
of dimension ≥ 1.

ii. A torus of a Lie group G is a torus subgroup of G.

Examples: 1. For any nonzero ξ ∈ R3, {exp(tξ̂) : t ∈ R} is a one-dimensional
torus of SO(3).

2. The abelian group Rn, n ≥ 1, does not possess any torus.

Proposition 2.3.3 If G is compact and connected, then any point of G belongs
to a torus of G.

Proof. Fix g ∈ G, g 6= e. Since expG : g → G is surjective, there exists a
nonzero ξ ∈ g such that g = exp ξ. The one-parameter subgroup {exp(tξ) :
t ∈ R} is abelian and (since exp is continuous) connected, but not necessarily
closed. Its closure

Tξ := {exp(tξ) : t ∈ R} (2.3.4)

is an abelian subgroup as well. Indeed, if h, k ∈ Tξ there exist sequences ti, si ∈
R such that h = limi→+∞ exp(tiξ) and k = limi→+∞ exp(siξ). Therefore hk =(
limi exp(siξ)

)(
limi exp(tiξ)

)
= limi

(
exp(tiξ) exp(siξ)

)
= limi exp((ti + si)ξ)

which implies that hk ∈ Tξ and that hk = kh. Moreover, Tξ is connected
because the closure of a connected set is connected. Hence, Tξ is a torus and
g ∈ Tξ. Since ξ 6= 0, dimTξ > 0. The proof is concluded by observing that e
belongs to Tξ.

Non-compact groups may or may not have tori. A given element of a compact
group may belong to different tori. A maximal torus of a Lie group G is a torus
of G which is not properly contained in any other torus.

Proposition 2.3.4 All maximal tori of a compact and connected Lie group G
are conjugate to each other. (If T and T ′ are two maximal tori of G, then
T ′ = gTg−1 for some g ∈ G).

5 A lattice of rank r ≥ 1 of Rn is a subset of Rn formed by the linear combinations
with integers coefficients of r linearly independent vectors of Rn, which are said to
be a set of generators of the lattice. The fact that any subgroup of Zn is a lattice
follows, for instance, from the elementary divisor theorem.
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We do not prove this (non trivial, and not easy to prove) result. It makes
the following definition meaningful:

Definition 2.3.5 The rank of a compact and connected Lie group is the
dimension of its maximal tori.

For instance, SO(3) has rank one.

Proposition 2.3.6 Every k-dimensional torus (k ≥ 1) is isomorphic, as a Lie
group, to Tk.

Proof. Let T be a torus of dimension n ≥ 1. The exponential map
expT : lie(T ) = R → T is surjective and, since T is abelian, is a Lie group
homomorphism. This implies that its kernel

Λ := ker(expT ) = {λ ∈ lie(T ) : expT (λ) = e}

is a subgroup of lie(T ) = Rn. Moreover, this also implies that expT is a local
diffeomorphism (by Proposition 1.3.16 it is a local diffeomorphism at 0 and by
Proposition 1.1.7 it has constant rank). In turn, this implies that Λ is a discrete
subgroup of Rn, namely, every point of Λ has a neighbourhood in which there
are no other points of Λ. Indeed, for any λ ∈ Λ there exist neighbourhoods
U ⊂ Rn of λ and V ⊂ T of e such that expT |U : U → V is a diffeomorphism;
thus, since expT (λ) = e, U ∩ Λ = {λ}.

We use now the algebraic fact that any nontrivial discrete subgroup of Rn

is a lattice of some rank r, 1 ≤ r ≤ n (see footnote 5 on page 58). Thus, there
exist r linearly independent vectors λ1, . . . , λr ∈ Rn such that

Λ =
{∑r

j=1νjλj ∈ Rn : ν1, . . . , νr ∈ Z
}
.

Complete λ1, . . . , λr to a basis λ1, . . . , λn of Rn. Then, there is a matrix L ∈
GL(n) such that

λi = Lei , i = 1, . . . , n ,

where e1, . . . , en are the vectors of the standard basis of Rn. Consider now the
group homomorphism

Θ : Tr × Rn−r → T , (〈α〉, y) 7→ expT
(∑r

j=1αjλj +
∑n
j=r+1yjλj

)
.

This map is well defined, namely, its value does not depend on the choice of
α ∈ Rr in the equivalence class 〈α〉 = α mod1. In fact, for any ν ∈ Zr, since T
is abelian,

expT
(∑r

j=1(αj + νj)λj +
∑n
j=r+1yjλj

)

= expT
(∑r

j=1αjλj +
∑n

j=r+1yjλj
)
expT

(∑r
j=1νjλj

)

= expT
(∑r

j=1αjλj +
∑n

j=r+1yjλj
)

given that all νjλj ∈ Λ. Moreover:
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• Θ is surjective. Since expT is surjective and λ1, . . . , λn is a basis of lie(T ),
every g ∈ T can be written as expT (

∑
j zjλj) with z1, . . . , zn ∈ R. And

expT (
∑

j zjλj) = Θ(〈z1〉, . . . , 〈zr〉, zr+1, . . . , zn).

• Θ is injective. If Θ(〈α〉, y) = Θ(〈α′〉, y′) then Θ(〈α − α′〉, y − y′) = e and∑r
j=1(αj −α′

j)λj +
∑n

j=r+1(yj − y′j)λj ∈ Λ. Thus y = y′ and α−α′ ∈ Zr,
hence 〈α〉 = 〈α′〉.

• Θ is a local diffeomorphism. Fix a point 〈α〉 ∈ Tr and an open set U in Rr

which is such that α ∈ 〈U〉 := {〈x〉 : x ∈ U} and is sufficiently small so that

〈U〉 × Rn−r
Θ //

π−1
U ×id

��

T

Rn
j // Rn

expT

OO

the quotient map πU : U → 〈U〉, x 7→ 〈x〉, is a diffeomorphism. Thus, ϕ :=
π−1
U × idRn−r : 〈U〉 ×Rn−r → U ×Rn−r is a diffeomorphism (it is actually

a coordinate system) and if we consider the linear isomorphism j : Rn →
Rn = lie(T ), j(z) =

∑n
j=1 zjλj , we can write Θ|〈U〉×Rn−r = expT ◦j ◦ ϕ.

Thus, restricted to a neighbourhood of each point of its domain, Θ is the
composition of two diffeomorphisms and of a local diffeomorphism. This
shows that it is a local diffeomorphism.

Being bijective and a local diffeomorphism, Θ : Tr ×Rn−r → T is a diffeomor-
phism, and hence a Lie group isomorphism. Since T is compact, this implies
that r = n and Θ : Tn → T .

Note that the proof of this Proposition shows that, if T is a torus, then

i. ker(expT ) is a lattice of Rn = lie(T ) of rank n.

ii. If λ1, . . . , λn is a set of generators of ker(expT ), then

Θ : Tn → T , 〈α〉 7→ expT
(∑n

j=1αjλj
)

(2.3.5)

is a Lie group isomorphism.

If T is a torus of a Lie group G, then this remains true with expT replaced by
expG, given that the restriction of expG to T equals expT (Corollary 1.3.19).

2.3.C The dynamics in relative equilibria of compact groups. We
may describe now the dynamics in a relative equilibrium of a G-invariant vector
field X ∈ X(M), when G is compact and connected. We identify the relative
equilibrium with G via a local trivialization. The restriction ofX to the relative
equilibrium is conjugate to a left-invariant vector field Xξ ∈ X(G) on G, for
some ξ ∈ g, with flow given by (2.3.2).

Proposition 2.3.7 Assume that G is compact and connected. Fix ξ ∈ g and
let Tξ be the torus (2.3.4) generated by ξ. Then, for any g ∈ G:

i. gTξ is invariant under the flow of Xξ.

ii. The restriction of the flow of Xξ to gTξ is conjugate to a linear flow

(t, 〈α〉) 7→ 〈α+ ωt〉
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on Tk, k = dimTξ, with a frequency vector ω ∈ Rk that depends only on ξ
(not on g ∈ G).

Proof. (i) Φ
Xξ

t (g) = g expG(tξ) = g expTξ
(tξ) ∈ gTξ for all t ∈ R.

(ii) Consider a set of generators λ1, . . . , λk of ker(expTξ
) and the associated

Lie group isomorphism Θ : Tk → Tξ as in (2.3.5). Write

ξ =
∑k

j=1ωjλj

with ω = (ω1, . . . , ωk) ∈ Rk. For any g ∈ Tξ, g = expT (
∑

j αjλj) and thus,
given that Tξ is abelian,

Θ
(
〈α+ tω〉

)
= exp

(∑
j(αj + tωj)λj

)
= exp(α) exp(tξ) = g exp(tξ) .

Consider now a Tξ-orbit g0Tξ different from Tξ. The map Θg0 := Lg0 ◦Θ : Tk →
g0Tξ is a diffeomorphism. If g ∈ g0Tξ then g−1

0 g ∈ Tξ and so g−1
0 g = Θ(〈α〉)

for some 〈α〉 ∈ Tk. Thus, Θg0(〈α+ ωt〉) = Lg0(g
−1
0 g exp(tξ)) = g exp(tξ)).

The torus Tξ, its dimension k, and the frequencies ω ∈ Rk are determined
by the generator ξ ∈ g, and the motion in the torus is either nonresonant or
resonant depending on ξ. Of course, dimTξ ≤ rankT .

Thus, in a relative equilibrium of a compact group, motions take place on
submanifolds diffeomorphic to tori, whose dimension does not exceed the rank
of the group. These submanifolds are called ‘invariant tori’ of X and give a
partition of the relative equilibrium into disjoint submanifolds (each point of
the relative equilibrium belongs to one of them and any two of them either
coincide or are disjoint). This partition into invariant submanifolds is in fact a
Tξ-principal fibration, see next section.

Courses in Mechanics are a source of examples of relative equilibria (circular
motion in the Kepler problem, horizontal motions of a spherical pendulum, the
rotations of a vertically standing top, ....).

2.3.D Structure of relative equilibria of compact groups. If H is a
subgroup of a groupG, then the left cosets ofH are the sets gH , g ∈ G, namely,
the orbits of the (right) action by right-translations of H on G, which is a free
action. Denote by G/rH the quotient space under this right action. It is well
known from the algebra courses that if H is a normal subgroup then G/rH is
a group, with the quotient map p : G→ G/rH being a group homomorphism,
but this is not true otherwise. However, the structure which interests us is
that, by Proposition 2.2.9,6 if H is compact then G/rH is a manifold and
(G,G/rH, p) is an H-principal bundle.

6which is valid for right actions as well
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This implies that, if T is a k-dimensional torus of G, then

p : G→ G/rT

is a T -principal bundle (and hence a Tk-principal bundle). In particular, G is
foliated by the submanifolds gT , g ∈ G, which are diffeomorphic to T . Thus,
Proposition 2.3.7 implies that:

Proposition 2.3.8 Assume that X ∈ X(M) is invariant under a free action
of a compact and connected Lie group G. Then, for every relative equilibrium
R = π−1(b∗) of X, there exists a torus T of G and a locally trivial fibration

p : R → G/rT

whose fibers are invariant and diffeomorphic to T , and the restriction of the flow
of X to each of them is conjugate to a linear flow on TdimT whose frequencies
depend only on T .

Proof. If ξ ∈ g is the generator of the dynamics in the relative equilibrium,
this follows from Proposition 2.3.7 with T = Tξ (or, in fact, any other larger
torus of G that contains Tξ).

Remarks: (i) Proposition 2.3.8 implies that the ‘invariant tori’ g T in a
relative equilibrium R are the fibers of a submersion. If we coordinatize an open
set U of the base G/rT we obtain dimG − dimT functions fi : p−1(U) → R
which are independent and of whom the invariant tori in p−1(U) are the level
sets. Thus, these functions are first integrals of the restriction ofX to the relative
equilibrium. In this situation, therefore, a group action produces first integrals

(a number dimG− dimT ≥ dimG− rankG of them).

(ii) Proposition 2.3.8 follows from Proposition 2.3.7 with the torus T = Tξ, wi-
th ξ a generator of the dynamics in the relative equilibrium. However, if Tξ

is not a maximal torus, then such a Proposition is true also with any torus T
that contains Tξ, in particular with a maximal torus that contains Tξ. Repla-
cing Tξ with a larger torus T means, geometrically, to put together the fibers
of p : G → G/rTξ to form a fibration with larger fibers (and smaller base).
Dynamically, of course, a number of frequencies on the larger torus will be zero.
Thus, this possibility is dynamically unjustified; however, it will be convenient
in the integrability scenario of next section.

(iii) A subtler question is if, in case ξ is resonant, it is possible to replace Tξ with
a smaller torus of G, so as to obtain a dense flow. The answer is essentially (but
not quite: it might be necessary to pass to a cover) affirmative.

2.4 Integrability

2.4.A The role of first integrals. Integrability of a dynamical system
may have different signatures and characterizations, both for its dynamical
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features and the mechanisms that lead to it. The situation is particularly
well understood in classical mechanics, where, from a dynamical point of view,
integrability is identified with the fact that all motions are quasi-periodic, and
the origin of this situation is identified in the presence of symmetries.

The discussion of the previous section suggests a possible integrability ‘sce-
nario’: a G-invariant vector field X ∈ X(M) whose reduced vector field X is
zero has all its integral curves belonging to relative equilibria and thus, if G is
compact, quasi-periodic (= conjugate to linear motions on tori). As simple as
it may be, this is not far from the most general situation. However, we are
so far missing any understanding of mechanisms that force the reduced vector
field to vanish. This is the existence of first integrals.

Let us assume, as usual, that a connected Lie group G acts freely and
properly on a manifoldM . Then, B =M/G has dimension p = dimM−dimG
and, if X has p independent first integrals, then X = 0 (see the exercises). The
question is, where do first integrals of the reduced system come from?

First, we note that they are the same as G-invariant first integrals of the
unreduced vector field on M . Recall from Definition 2.1.5 that a function
f :M → R is G-invariant if f ◦Ψg = f for all g ∈ G.

Proposition 2.4.1 Assume that a connected Lie group G acts freely and
properly on a manifold M , with quotient map π :M →M/G. Then:
i. If a function f : M → R is G-invariant then there exists a (smooth)

function f :M/G→ R such that f = f ◦ π.
ii. If k ≤ dimM − dimG functions f1, . . . , fk : M → R are G-invariant and

independent, then the functions f1, . . . , fk :M/G→ R such that fi = f i◦π
are independent.

iii. If a G-invariant function f : M → R is a first integral of a G-invariant
vector field X on M then f is a first integral of the reduced vector field X.

Proof. (i) The existence of f follows from the fact that, being G-invariant,
f is constant on the fibers of π. Concerning smoothness, consider a point
m ∈ M . Since the quotient map π is a submersion, there are coordinates
(x, y) : U → Rp × Rn−p (n = dimM , p = dimM/G) in a neighbourhood
U of m and coordinates x : π(U) → Rp in the neighbourhood π(U) of π(m)
such that πloc(x, y) = x. The representative f loc of f is independent of the y

coordinates. Thus f
loc

= f loc, and the smoothness of f
loc

follows from that of
f loc.

(ii) In local coordinates as in (i), the representatives of f1, . . . , fk equal
those of f1, . . . , fk.

(iii) f ◦ ΦXt ◦ π = f ◦ π ◦ ΦXt = f ◦ ΦXt = f = f ◦ π for all t. Since π is
surjective, this proves that f is a first integral of X.

Exercises 2.4.1 (i) Show that if a vector field on a p-dimensional manifold has p eve-
rywhere functionally independent vector fields then it is identically zero. [Hints: Different
ways. (1) The dimension of the level sets of a submersion ..... (2) LX = 0 because ....]
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(ii) Prove a local converse of the previous statement: if X ∈ X(M) is zero, then any point
m ∈M has a neighbourhood V such that X|V has dimM independent first integrals. [Hint:
use local coordinates].

2.4.B An integrability result. An immediate consequence of the analysis
so far is that if a vector field X ∈ X(M) is invariant under a free action of a
compact Lie group G and possesses dimM − dimG independent G-invariant
first integrals, then its flow is quasi-periodic. More precisely, each G-orbit is
fibered by X-invariant submanifolds diffeomorphic to tori, and the restriction
of the flow of X to each of these submanifolds is conjugate to a linear flow on
a torus.

However, the construction we have done so far of this structure applies
to each G-orbit separately. For instance, the dimension of the invariant tori
built in the proof of Proposition 2.3.8 depend on the G-orbit (the generator
ξ ∈ g depends on G, and the dimension of Tξ is sensitive to changes in ξ).
With a little bit of work it is possible to show that, as hinted in Remark ii in
section 2.3.D, the construction of these tori can be done uniformly through the
G-orbits, by taking all of them of dimension = rankG. We limit ourselves to
state this result in the simplest—and probably most important—case:

Proposition 2.4.2 Assume that Tk acts freely on an n-dimensional manifold
M . Assume that a vector field X ∈ X(M)

i. Is Tk-invariant

ii. Possesses n− k independent Tk-invariant first integrals.

Then, in any local trivialization ϕ : π−1(U) → U × Tk ∋ (b, α) of the principal
bundle π :M →M/Tk induced by the action of Tk, the flow of X is given by

ḃ = 0 , α̇ = ω(b)

with a smooth map ω : U → Rk.

Proof. This follows at once from (2.2.8).

Remark: In applications, it is rare that the group acts freely and the first
integrals are independent in the entire phase space of the system; often, the-
se conditions are satisfied in a typically ‘large’ (e.g., dense) open X-invariant
submanifold M∗ of M , and the statement applies to the restriction of X to M∗.

2.4.C An integrability criterion. Proposition 2.4.2 catches a good part
of the current interpretation of integrability, but has the limit that, in ap-
plications, it is rare that a Tk-action is manifest. Often, an Rk-action (or a
Th × Rk−h-action for some 0 ≤ h ≤ k) is given, together some conditions on
it and on the first integrals that imply that its orbits coincide with those of
a Tk-action. This situation is particularly frequent in Hamiltonian mechanics,
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where there are more peculiarities because even the Rk-action is produced by
the first integrals (see section 2.5.C), but is not restricted to the Hamiltonian
setting. A clear statement of it outside the Hamiltonian setting seems to have
been given for the first time around 1995 by O. Bogoyavlenskij. We give the
standard statement of this result, where the symmetry is induced via the flows
of commuting vector fields (see Example 9, section 2.1.B).

Definition 2.4.3 A vector field Y is a dynamical symmetry of a vector field
X if [X,Y ] = 0.

Proposition 2.4.4 Assume that a vector field X on a manifold M of
dimension n has, for some 0 < k < n,
(B1) n − k independent first integrals f1, . . . , fn−k) (LXfh = 0 for all h =

1, . . . , n− k) whose common level sets are compact and connected.

(B2) k dynamical symmetries Y1, . . . , Yk ([Yi, X ] = 0 for all i = 1, . . . , k)
which are everywhere linearly independent, pairwise commuting,

[Yi, Yj ] = 0 ∀i, j = 1, . . . , k ,

and preserve the first integrals, namely

LYi
fh = 0 ∀i = 1, . . . , k , ∀h = 1, . . . , n− k .

Then:
i. Every level set of f = (f1, . . . , fn−k) is diffeomorphic to Tk.

ii. The restriction of the flow of X to each level set of f is conjugate to a
linear flow on Tk.

Proof. (i) Fix a level set N of f . N is a compact and connected k-dimensional
submanifold of M (because f is a submersion) and is invariant under the flow
of X (because f1, . . . , fk are first integrals of X). Moreover, the vector fields
Y1, . . . , Yk are tangent to N (LYi

fj = 0 means that Yi is tangent to the level sets
of fj) and, since N is compact, their restrictions to N are complete vector fields
and define flows ΦY1 , . . . ,ΦYk on N . Given that Y1, . . . , Yk pairwise commute,
their flows pairwise commute and define the action

Ψ : Rk ×N → N , Ψτ (m) = ΦY1
τ1 ◦ · · · ◦ ΦYk

τk

of Rk on N .
We now show that, for each m ∈ N , the orbit map

Ψm : Rk → N , Ψm(τ) := Ψτ (m) ,

is a local diffeomorphism and is surjective:
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• The tangent map T0Ψ
m : Rk → TmN satisfies

T0Ψ
m · e1 =

d

dt

(
ΦY1

t ◦ ΦY2

0 · · · ◦ ΦYk

0

)∣∣
t=0

= Y1(m)

and, since the flows of Y1, . . . , Yk commute, T0Ψ
m · ei = Yi(m) for all

i = 1, . . . , k. Thus, by the linear independence of Y1(m), . . . , Yk(m), T0Ψ
m

has rank k and is an isomorphism. By the inverse function theorem, Ψm

is a local diffeomorphism at 0 ∈ Rk. Being equivariant with respect to
the (transitive) action of Rk on itself by translation and to the action Ψ
on N (see the proof of Proposition 2.1.10), Ψm has constant rank. Thus
Ψm : Rk → N is a local diffeomorphism.

• Being a local diffeomorphism, Ψm is an open map (maps open sets into
open sets) and so the orbits Om = Ψm(Rk), m ∈ N , are open subsets
of N . Choose an m ∈ N and assume, by contradiction, that Ψm is not
surjective. Then, N \Om is nonempty. But N \Om is a union of Ψ-orbits,
and hence is an open set (any union of open sets is open). Thus, N is the
union of two disjoint open sets, Om and N \Om. But this is impossible if
N is connected.

Note that the surjectivity of the orbit map means that the action Ψ is transitive.
Fix now a point m ∈ N . The orbit map Ψm is not injective (if it was, then,

being a surjective local diffeomorphism it would be a diffeomorphism, which is
impossible because N is compact and Rk is not). Consequently, the action Ψ
is not free and the isotropy subgroup Λ ⊆ Rk of m is non trivial. Since Ψm

is a local diffeomorphism, Λ is a discrete subgroup of Rk and thus a lattice of
Rk of rank 1 ≤ r ≤ k (see the proof of Proposition 2.3.67). Choose generators
λ1, . . . , λr of Λ and complete them to a basis λ1, . . . , λk of Rk.

Proceeding as in the proof of Proposition 2.3.6, it is easy to check that the
map

Ψ̂m : Tr × Rk−r → N , Ψ̂m(〈τ ′〉, τ ′′) = Ψm
(∑r

j=1τ
′
jλj +

∑k
j=r+1τ

′′
j λj

)

is well defined and smooth, that it inherits from Ψm the properties of being su-
rjective and a local diffeomorphism, and that in addition it is injective. Hence,
it is a diffeomorphism. This implies that k = r and N is diffeomorphic to Tk.

(ii) Let now L be the matrix such that

LT ei = λi , i = 1, . . . , k ,

7In fact, the core of the arguments at the base of Proposition 2.3.6 and of the
present one could be unified. An action Ψ : G ×M → M is said locally free if there
is a neighbourhood U of e in G such that Ψg(m) 6= m for all g ∈ U , g 6= e. Thus,
one can prove the following: Let Ψ be a transitive and locally free action of Rk on

a compact, connected k-dimensional manifold N . Then, there exists a transitive and

free action Ψ̃ of Tk on N such that Ψτ = Ψ̃〈τ〉 for all τ ∈ Rk. In particular, N is
diffeomorphic to Tk.
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and consider the map

Ψ̂ : Tk ×N → N , (〈τ〉,m) 7→ Ψ̂〈τ〉(m) := ΨLτ(m) .

Since Lτ =
∑k

j=1 τjλj for all τ ∈ Rk, Ψ̂〈τ〉(m) = Ψ̂m(〈τ〉) and Ψ̂ is well defined.

Moreover, it is an action of Tk on N which is transitive and free (because its

orbit map Ψ̂m is surjective and injective. The vector field X is Ψ̂-invariant
because it is Ψ-invariant ((Ψ̂〈τ〉)∗X = (ΨLτ )∗X = X). The statement now
follows from Proposition 2.4.2.

There is also a ‘semi-global’ version of this result, which describes the struc-
ture of X not just on a single level set of the first integrals, but in an open
neighbourhood of one of them—hence in a ‘packet’ of level sets. This ensures,
in particular, that the frequencies ω = (ω1, . . . , ωn) change smoothly from level
set to level set of f :

Proposition 2.4.5 Under the hypotheses of Proposition 2.4.4, (M, f(M), f)
is a locally trivial fibration with typical fiber Tk. In each local trivialization
ϕ : f−1(U) → U × Tk ∋ (b, α), the flow of X is given by the equations

ḃ = 0 , α̇ = ω(b)

with a smooth map ω : U → Rk.

Remarks: 1. In examples, it often happens that not all of the phase space of
an integrable systems is filled by invariant tori. In such situations, the set M of
Propositions 2.4.4 and 2.4.5 is a (typically ‘large’) subset of the phase space. At
the boundary of M , the foliation by the invariant tori may have various types of
singularities (in particular, invariant tori of smaller dimensions).

2. The hypothesis of connectedness of the level sets of the first integrals is not es-
sential: Propositions 2.4.4 and 2.4.5 apply with M replaced by a neighbourhood
of each connected component (however, the global structure of the foliation by
the invariant tori might be more complicated than a locally trivial fibration).

2.5 The Hamiltonian case

2.5.A Hamiltonian systems. First, we recall a few facts about Hamil-
tonian systems, some of which were already seen in Examples 6 and 7 of
section 1.2.A. As in that section, we consider the simple case in which the
phase space is an open set M of R2d. Denote the coordinates in R2d as
(q, p) = (q1, . . . , qd, p1, . . . , pd). The Hamiltonian vector field of a function
f :M → R is the vector field on M

Xf := J∇f ∈ X(R2d) (2.5.1)
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where

J =

(
Od Id
−Id Od

)

with Od and Id are the d× d zero and unit matrices. The function f is called
the Hamiltonian of Xf . The matrix J is the so called symplectic unit and
satisfies J−1 = JT = −J and J2 = −I. In coordinates,

Xf =
∑

i

(
∂f

∂pi
∂qi −

∂f

∂qi
∂pi

)
.

Geometrically, R2d is equipped with the bilinear anti-symmetric map σJ :
R2d × R2d → R, (u, v) 7→ σJ(u, v) := u · Jv. Since det J = +1, this map is
nondegenerate (in the sense that σJ(u, v) = 0 for all u ∈ R2d implies v = 0).
Any bilinear anti-symmetric nondegenerate form σ on R2d is called a symplectic
form and (R2d, σ) is called a symplectic vector space. Linear algebra shows that,
if σ is a symplectic form on R2d, then there is a linear change of coordinates on
R2d under which σ takes the form σJ. It is therefore not restrictive to assume
that this is the case, and from now on we write σ for σJ.

A symplectic structure on R2d allows to associate vector fields to functions
defined on (open subsets) of R2d. This is a specificity of the symplectic world
and, as we now discuss, produces a link between first integrals and symmetries.

Remark: (M ⊆ R2d, σJ) is a special case of a symplectic manifold. A symplec-

tic form on a 2d-dimensional manifold M is a closed and nondegenerate diffe-
rential 2-form σ on M . The Hamiltonian vector field of a function h :M → R is
the vector field Xσ

h defined by σ(Xσ
h , ·) = −dh. Darboux theorem ensures that,

locally in M , there exist charts with coordinates (q, p) = (q1, . . . , qd, p1, . . . , pd)
such that the local representative of σ is σloc =

∑d
i=1 dpi ∧ dqi. In Darboux

coordinates, the matrix of the bilinear form σloc is J and the representative of
Xσ

h is J∇hloc.

2.5.B The algebras of first integrals and of Hamiltonian dynamical
symmetries. The symplectic structure σ gives the set of functions on R2d a
Lie algebra structure. The Poisson bracket induced by σ is the bilinear map
{ , } : C∞(R2d)× C∞(R2d) → C∞(R2d) defined by

{f, g} := −LXf
g = ∇f · J∇g . (2.5.2)

Its coordinate expression was given in section 1.2.A. As there seen, the Poisson
bracket satisfies the Jacobi identity and (C∞(R2d), { , }) is a Lie algebra.

By (2.5.2), a function f is a first integral of a Hamiltonian vector field Xh if
and only if the Poisson bracket {f, h} is zero. In particular, every Hamiltonian
vector field Xh has its own Hamiltonian h as a first integral.
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A consequence of the Jacobi identity is that the Poisson bracket of two
first integrals of a given Hamiltonian vector field is still a first integrals of that
vector field: if {f, h} = {g, h} = 0 then

{{f, g}, h} = −{{g, h}, f}− {{h, f}, g} = 0 .

The interest of this fact is not that much that it allows producing new first
integrals from known ones (because the new ones are likely not independent
of the latter), but in that it shows that the set of all first integrals of a given
Hamiltonian vector field is a Lie subalgebra of (C∞(R2d), { , }).

Let now XH(R2d) be the set of all Hamiltonian vector fields, which is a
subspace of X(R2d).

Proposition 2.5.1 For any two functions f1, f2 ∈ C∞(R2d),

[Xf1 , Xf2 ] = −X{f1,f2} . (2.5.3)

Proof. We use the fact that two vector fields are equal if they are equal as Lie
derivative of functions (Proposition A.2.2). For any function f3: L[Xf1

,Xf2
]f3 =

LXf1
LXf2

f3 − LXf2
LXf1

f3 = −LXf1
{f2, f3}+ LXf2

{f1, f3} = {f1, {f2, f3}}+
{f2, {f3, f1}} = −{f3, {f1, f2}} = −LX{f1,f2}

f3.

This has several consequences:
i. The set of all Hamiltonian vector fields is a Lie subalgebra of (X(R2d), [ , ]).

ii. The map f 7→ Xf is a Lie algebra anti-homomorphism from (C∞(M), { , })
to (XH(R2d), [ , ]).

And moreover:
i. If a function f is a first integral of a Hamiltonian vector field Xh ({f, h} =

0), then Xf is a dynamical symmetry of Xh ([Xf , Xh] = 0).

ii. The sets of all first integrals and of all Hamiltonian dynamical symme-
tries of a given Hamiltonian vector field Xh are anti-homomorphic Lie
subalgebras of (C∞(R2d), { , }) and of (XH(R2d), [ , ]), respectively.

2.5.C The Liouville-Arnold theorem. At first sight, the characterization
of integrability in the Hamiltonian case differs from that of generic systems be-
cause it is done in terms of first integrals alone, while dynamical symmetries
are (apparently) absent. This is in fact due to the link between the two sets of
objects in the symplectic setting. We illustrate this situation on the simplest
Hamiltonian integrability result, which is known as the Liouville-Arnold theo-
rem. Historically, this theorem predates—and is a predecessor of—Propositions
2.4.4 and 2.4.5.

Definition 2.5.2 Two functions f, g ∈ C∞(R2d) are in involution if {f, g} =
0.
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By Proposition 2.5.1, the Hamiltonian vector fields of two functions in involu-
tion commute. Said differently, two functions are in involution if each one is a
first integral of the Hamiltonian vector field of the other, and thus the Hamil-
tonian vector field of each of them is a dynamical symmetry of the Hamiltonian
vector field of the other.

Proposition 2.5.3 (Liouville-Arnold theorem) Assume that a Hamiltonian
vector field Xh on an open set M ⊆ R2d possesses d first integrals f1, . . . , fd
which are everywhere independent in M and pairwise in involution. Assume,
moreover, that the map f = (f1, . . . , fd) has compact and connected fibers.
Then:
i. The fibers of f are diffeomorphic to Td and the restriction of the flow of
Xh to each of them is conjugate to a linear flow on Td.

ii. (M, f(M), f) is a locally trivial fibration with typical fiber Td, and for
each b ∈ f(M) there exist a neighbourhood U and a diffeomorphism ψ :
f−1(U) → V × Td ∋ (a, α), with V ⊆ Rd, such that

ψ∗σ =
d∑

i=1

dai ∧ dαi

and ψ∗f = a (namely, f |f−1(U) = a ◦ ψ).

Our interest is to interpret statement i. in the light of Proposition 2.4.4. In
the stated hypotheses, the Hamiltonian vector fields Xf1 , . . . , Xfd :
• Are everywhere linearly independent, because ∇f1, . . . ,∇fd are everywhe-
re linearly independent (in view of the independence of f1, . . . , fd) and
Xfi = J∇fi with an invertible matrix J.

• Pairwise commute, because f1, . . . , fd are pairwise in involution.

• Preserve the first integrals f1, . . . , fd, because LXfi
fj = {fi, fj} = 0 for

all i, j.
Statement i. thus follows from Proposition 2.4.4 with n = 2d, k = d, the
n − k = d first integrals f1, . . . , fd, and the k = d dynamical symmetries
Y1 = Xf1 , . . . , Yd = Xfd . Thanks to the symplectic structure, and under the
hypothesis of involutivity, the first integrals produce the commuting symmetries
needed to produce the integrability.

We add a few comments:
First, seen from this point of view, it might appear that symmetry does not

play any role in the integrability of Hamiltonian systems, which might seem to
be entirely due to the existence of first integrals. That this is not the case is the
content of the next chapter, where we will see that, in the Hamiltonian world
(and more generally, in the variational world), it is symmetry that produces
first integrals.
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Second, it might appear that in a Hamiltonian system with d “degrees of
freedom” (namely, with phase space of dimension 2d), integrability always ma-
nifests itself through the existence of d integrals in involution and a fibration of
invariant tori of dimension d. This is not the case, however, because a d-degrees
of freedom Hamiltonian system may have more than d first integrals, and hence
invariant tori of dimension < d. In the simplest case, assume that, in the situa-
tion of Proposition 2.5.3, there are additional first integrals g = (g1, . . . , gd−k)
for some 0 < k < d, such that (f, g) : R2d → R2d−k is a submersion. The
intersections of the d-dimensional tori f = const with the level sets of g are
k-dimensional closed (hence compact) subsets of the d-dimensional invariant
tori f = const. Therefore, their connected components are diffeomorphic to
Tk. There are extensions of the Liouville-Arnold theorem (“non-commutative
integrability”) that generalize this situation to less obvious ones, and allow for
invariant tori of any dimension n between n = 1 (periodic flow) and n = d.

Third, we stress again that the involutivity of the first integrals (which co-
difies the commutativity of the associated dynamical symmetries) plays a key
role. As such, it has a name, even though used with slightly different declina-
tions: A Hamiltonian system with d degrees of freedom is said to be completely
integrable if it has d first integrals in involution which are independent in a
significantly large (typically, either open and dense or of full measure) sub-
set of the phase space. The Liouville-Arnold theorem describes the structure
of completely integrable Hamiltonian systems under the additional hypothesis
of compactness (and, but less important, connectedness) of the level sets of
the first integrals. (The non-compact case is more complicated and has non
quasi-periodic dynamics).

Examples: 1. Any Hamiltonian system with d = 2 degrees of freedom which
has one first integral independent of the Hamiltonian is completely integrable.
An example is the Hamiltonian

h(q, p) =
1

2
|p|2 − V (|q|) , (q, p) ∈ R2 × R2 (2.5.4)

which describes a point particle in a plane subject to a central force field. The
additional first integral is the angular momentum L = q1p2−q2p1. Independence
and compactness of (h,L) depend on the properties of V . If they are satisfied,
then motions are quasi-periodic on two-dimensional tori. There are however
two special cases in which there is a third independent first integral and all
motions are periodic: these are V (|q| = k

2
|q|2 (k > 0, the harmonic oscillator)

and V (|q|) = −k|q|−1 (k > 0, Kepler system).

2. A point in a central force field in three-dimensional space, namely Hamiltonian
(2.5.4) but in R3 × R3 ∋ (q, p). There are four first integrals: h and the three
components (K1,K2,K3) of the angular momentum vector K = q × p. K1,
K2 and K3 are not pairwise in involution, given that {K1,K2} = K3 etc, but
|K|2 is in involution with each of them. Thus, the three functions h, |K|2,K1

(or h, |K|2,K2 or h, |K|2,K3) are in involution. Under the usual conditions
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of independence and compactness, the Liouville-Arnold theorem describes in
this case a fibration by invariant tori of dimension three, but the existence of
four integrals implies that in fact there is a (finer) fibration by two-dimensional
invariant tori, and motions are linear on them. Here too, for the harmonic and
Keplerian potentials there is a fifth independent first integral and the dynamics
is periodic.

Remark: The semi-global statement ii. is an analogue of Proposition 2.4.5,
which however gives information on the symplectic structure that the fibration
by the ‘invariant tori’ f = const has in this case. The maps (a, α) are called
action-angle variables and play an important role in Hamiltonian mechanics
(in the study of small perturbations of integrable systems). The ‘actions’ a =
(a1, . . . , ad) are a (semi-global) reparametrization of the first integrals (and the
map ψ is a reparametrization of a local trivialization of the fibration f : M →
f(M)). It is easy to see that the local representative hloc = h ◦ ψ−1 of the
Hamiltonian h is independent of the angles α and Xh becomes ȧ = 0, α̇ = ∂h

∂a
(a).

The expression of σ in the action-angle variables implies that the restriction of
σ to the sets a = const, namely to the invariant tori, vanishes: this means that
the invariant tori are ‘Lagrangian submanifolds’.
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Chapter 3

Symmetry and conservation

laws

In classical mechanics, and in theoretical physics, symmetries play a role that
goes beyond the one they have for generic differential equations: besides al-
lowing reduction, they produce first integrals (“Noether theorem”). This is a
very special situation, which is due to the variational nature of the equations of
motion (Lagrange, or Hamilton, equations). A full comprehension of this topic
would require the Hamiltonian formulation, but here we will limit ourselves to
a first look in the Lagrangian context.

3.1 Variational systems and Noether theorem

3.1.A The variational principle and the Euler-Lagrange equations
Let Q ⊂ Rd be an open set. Fix two points q0, q1 ∈ Q and two ‘times’ t0 <
t1 ∈ R. Consider the set of all (smooth) parametrized curves

Γ :=
{
γ : [t0, t1] → Q : γ(t0) = q0 , γ(t1) = q1

}
.

This is an infinite dimensional affine space, with associated vector space

Γ0 :=
{
η : [t0, t1] → Q : η(t0) = η(t1) = 0

}
.

Indeed, if γ1, γ2 ∈ Γ then γ1 − γ2 ∈ Γ0.
Traditionally, any function F : Γ → R is called a functional and its value on

a curve γ ∈ Γ is denoted F [γ]. For instance, the action functional AL : Γ → R
associated to a function L : TQ→ R is defined as

AL[γ] :=

∫ t1

t0

L
(
γ(t), γ̇(t)

)
dt .

73
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Definition 3.1.1 Let F : Γ → R be a functional.

(i) F is Gateaux differentiable at γ ∈ Γ if, for any η ∈ Γ0, the composed
function λ→ F (γ + λη), which is a map from a real interval containing 0
to R, is differentiable at 0.

(ii) If F is Gateaux differentiable at γ, then the linear map

DG
γ F : Γ0 → R , η 7→ (DG

γ F )(η) :=
d

dλ
F [γ + λ η]

∣∣
λ=0

,

is the Gateaux differential of F at γ.

(ii) F is Gateaux differentiable if it is Gateaux differentiable at each γ ∈ Γ.

Example: The action functional AL associated to any smooth function L :
TQ→ R is Gauteaux differentiable and, for all γ ∈ Γ and η ∈ Γ0,

(DG
γ AL)(η) = −

n∑

i=1

∫ t1

t0

ηi(t)

[
d

dt

(
∂L

∂q̇i

(
γ(t), γ̇(t), t

))
−
∂L

∂qi

(
γ(t), γ̇(t), t

)]
dt .

The proof is a computation.

Definition 3.1.2 Let F : Γ → R be a Gateaux differentiable functional. A
curve γ ∈ Γ stationarizes F if DG

γ F = 0.

Note that DG
γ F = 0 means (DG

γ F )(η) = 0 for all η ∈ Γ0. The following result
is classical:

Proposition 3.1.3 (Hamilton’s principle) Consider a smooth function L :
TQ → R. A curve γ ∈ Γ stationarizes the action functional AL if and only if
it satisfies the equations

d

dt

(
∂L

∂q̇i

(
γ(t), γ̇(t)

))
− ∂L

∂qi

(
γ(t), γ̇(t)

)
= 0 , i = 1, . . . , n . (3.1.1)

The proof can be found in textbooks in analysis and classical mechanics.

The function L is called the Lagrangian of the variational problem. De-
pending on the context, equations (3.1.1) are called either Euler-Lagrange
equations or Lagrange equations for the Lagrangian L.

This type of variational problems, and hence the Euler-Lagrange equations,
emerge in classical mechanics (where the Lagrangian is often the difference bet-
ween the kinetic energy and the potential energy of the system), in differential
geometry (geodesics stationarize the length functional), in innumerable areas
of theoretical physics, in control theory for ODEs, in optimization, etc.
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Remarks: (i) The Euler-Lagrange equations are second order equations
on Q. Writing them down explicitly, one sees that they can be put in normal

form (q̈ = ....) if the Lagrangian is such that, for all (q, q̇), the matrix ∂2L
∂q̇∂q̇

(q, q̇)
is invertible. In such a case the Lagrangian is said to ben regular and the Euler-
Lagrange equations can be written as a first order system (q̇ = v, v̇ = ....) on
TQ, namely, as a vector field on TQ, that we will denote here XL.

(ii) DG
γ F (η) is also called the variation of F at γ along η, hence the term ‘calculus

of variations’.

(iii) Formulations of the calculus of variations on manifolds are also possible.

(iv) A curve that stationarizes a functional might not be a minimum.

3.1.B Noether theorem. Consider now an action Ψ of a Lie group G on Q.
Let ξQ = d

dλΨexp(λξ)|λ=0 be the infinitesimal generator of the action associated
to a vector ξ ∈ g (Definition 2.1.7) and ΨTQ be the tangent lift of Ψ to TQ
(section 2.1.B, example 14). Recall that, for all g ∈ G,

ΨTQg = TΨg

and ΨTQg (q, q̇) = (Ψg(q),Ψ
′
g(q)q̇)) for all (q, q̇) ∈ TQ.

Proposition 3.1.4 (Noether theorem) If L : TQ→ R is ΨTQ-invariant, then
for any ξ ∈ g the function

JLξ :=
∂L

∂q̇
ξQ (3.1.2)

(=
∑d

i=1
∂L
∂q̇i
ξQi ) is a first integral of the Euler-Lagrange equations for the

Lagrangian L.

Proof. Let t 7→ qt be a solution of Lagrange equations for the Lagrangian L.
Note that d

dtΨexp(λξ)(qt) = Ψ′
exp(λξ)(qt)q̇t for all t, λ ∈ R. Thus, the invariance

of L implies

L
(
Ψexp(λξ)(qt),

d

dt
Ψexp(λξ)(qt)

)
= L(qt, q̇t) ∀t, λ

and so

0 =
d

dλ
L
(
Ψexp(λξ)(qt),

d

dt
Ψexp(λξ)(qt)

)
=

∂L

∂q

d

dλ
Ψexp(λξ) +

∂L

∂q̇

d

dλ

d

dt
Ψexp(λξ)

where, in the last expression, the derivates of L are evaluated in
(
Ψexp(λξ)(qt),

Ψ′
exp(λξ)(qt)q̇t

)
and those of Ψexp(λξ) in qt. Switching the order of the derivatives

with respect to t and λ, evaluating everything at λ = 0 and noticing that for
λ = 0 it is Ψexp(λξ) = id and Ψ′

exp(λξ) = I gives

∂L

∂q
(qt, q̇t) ξ(qt) +

∂L

∂q̇
(qt, q̇t)

d

dt
ξ(qt) = 0 .
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Since t 7→ qt satisfies the Euler-Lagrange equations, here ∂L
∂q = d

dt
∂L
∂q̇ and

d
dt

(
∂L
∂q̇ (qt, q̇t)ξ(qt)

)
= 0.

The first integral (3.1.2) is called the (Noetherian) momentum of the action of
the one-parameter subgroup generated by ξ. Note that every one-parameter
subgroup produces a conserved momentum.

We recall that, in Lagrangian mechanics, the function pi :=
∂L
∂q̇i

is called the

conjugate momentum to the coordinate qi. The momenta (p1, . . . , pd) are the
components of the differential 1-form

∑
i pidqi on Q, and for each q, q̇, p(q, q̇) =

(p1(q, q̇), . . . , pd(q, q̇)) should accordingly be thought of not as a tangent vector
but as a tangent covector, namely an element of T ∗

qQ. To stress this fact, we
shall write 〈p,X〉 for the pairing p ·X =

∑
i piXi with a vector field X on Q.

Thus, the Noetherian momentum JLξ associated to a Lie algebra vector ξ is the
function

JLξ =
〈
p, ξQ

〉
: TQ→ R .

Examples: 1. The Lagrangian of a mechanical system has often the form

L(q, q̇) = 1
2
q̇ ·A(q)q̇ − V (q) , q ∈ Rd , (3.1.3)

with a symmetric, positive definite matrix A which depends on q. Note that all
these Lagrangians are regular (in the sense of Remark (i) at the end of section
3.1.A). The conjugate momentum is p(q, q̇) = A(q)q̇. Given an action Ψ on
Q = Rd,

(L ◦ TΨg)(q, q̇) =
1

2
Ψ′

g(q)q̇ ·A(q)Ψ
′
g(q)q̇ − V (Ψg(q))

and this equals L(q, q̇) for all g, q, q̇ if and only if

V (Ψg(q)) = V (q) ∀g, q (3.1.4)

and
A(Ψg(q)) = Ψ′

g(q)
TA(q)Ψ′

g(q) ∀g, q . (3.1.5)

(These are clearly sufficient conditions. Their necessity is proven by observing
that for q̇ = 0 condition L◦ΨTQ

g = L gives (3.1.5), and (3.1.4) then follows from
the fact that the matrix (Ψ′

g)
TAΨ′

g − A is symmetric.) Thus, the invariance of
the Lagrangian L under ΨTQ is equivalent to the invariance of the kinetic energy
1
2
q̇ ·A(q)q̇ under ΨTQ (equation (3.1.5)) and of the potential energy V under Ψ

(equation (3.1.4)).

2. For an unconstrained particle in cartesian coordinates, the Lagrangian is of
the form (3.1.3) with Q = R3 (or Q = R3 \ {0} if the potential energy is not
defined at the origin) and A(q) = mI with m > 0 the mass of the particle. The
momentum covector is p = mq̇. Consider the action Ψ of R3 on Q = R3 by
translations: Ψξ(q) = q + ξ, Ψ′

ξ = I and ΨTQ
ξ (q, q̇) = (q + ξ, q̇) (we write ξ for

the group element, given that the group and the algebra can be identified). The
kinetic energy is invariant under Ψ, while V is invariant if and only it is constant
(no force acts on the system). The infinitesimal generator ξQ associated to a
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vector ξ is the constant vector field ξQ(q) = ξ. The Noetherian momentum
associated to a vector ξ ∈ R3 is JL

ξ = p · ξ. Note that the arbitrariness of ξ
implies the constancy of the (co)vector p = mq̇ ∈ R3.

3. Same Lagrangian as in 2., but with the linear action of the rotation group
SO(3) on Q = R3: ΨR(q) = Rq, ΨTQ(q, q̇) = (Rq,Rq̇). The kinetic energy is
invariant under rotations, while the potential energy V is invariant if and only
if it is a function of the distance from the origin, namely

V (q) = Ṽ (|q|)

with a function Ṽ : R → R. If we identify so(3) with R3, then the one-parameter
subgroup associated to a Lie algebra vector ξ ∈ R3 is λ 7→ Ψexp(λξ̂) and the
associated infinitesimal generator is

ξQ(q) =
d

dλ
exp(λξ̂ )q

∣∣∣
λ=0

= ξ̂ q = ξ × q .

Thus, for each ξ ∈ R3, there is the conserved Noetherian momentum

JL
ξ (q, q̇) = ξQ · p = (ξ × q)mq̇ = ξ · (mq × q̇) .

Mechanically, this is (up to a factor) the component along the direction of ξ
of the angular momentum of the system. By the arbitrariness of ξ, the vector
mq × q̇ is conserved.

4. We consider now the two-body problem,

L(q1, q2, q̇1, q̇2) =
1

2
m1|q̇1|

2 +
1

2
m2|q̇2|

2 − Ṽ (|q1 − q2|)

in either Q = R3 × R3 or Q = {(q1, q2) ∈ R3 × R3 : q1 6= q2}, and the ‘diagonal’
action Ψ of R3 of Q given by

Ψξ(q1, q2) = (q1 + ξ, q2 + ξ) , ξ ∈ R3 .

It is immediate to check that L is ΨTQ invariant. The infinitesimal generator
associated to ξ ∈ R3 is the constant vector field

ξQ(q1, q2) = (ξ, ξ) ∈ R3 × R3 = T(q1,q2)Q .

Since the momentum covector is p = ∂L
∂q̇

= (m1q̇1, m2q̇2), the Noetherian

momentum associated to ξ ∈ R3 is

JL
ξ (q1, q2, q̇1, q̇2) = p · ξQ

= (m1q̇1,m2q̇2) · (ξ, ξ)

= m1q̇1 · ξ +m2q̇2 · ξ

= (m1q̇1 +m2q̇2) · ξ

namely, (up to a factor) the component along ξ of the total quantity of motion
of the system m1q̇1 +m2q̇2 ∈ R3. Here too, because of the arbitrariness of ξ, we
obtain the conservation of a vector.

Exercises 3.1.1 (i) Show that in example 4. the Lagrangian is invariant under the lift
of the diagonal action ΨR(q1, q2) = (Rq1, Rq2) of SO(3) on Q and that this leads to the
conservation of the momenta (m1q1 × q̇1 +m2q2 × q̇2) · ξ, ξ ∈ R3, and hence of the angular
momentum vector m1q1 × q̇1 +m2q2 × q̇2.

F. Fassò (University of Padova) - Lie Groups and Symmetry (2002/2)



78 Chapter 3.

3.1.C The momentum map. The fact that, in the previous examples, in
presence of a symmetry group of dimension greater than one Noether theorem
leads to the conservation of a vector function raises some issues. In particular,
of which vector space is such conserved quantity a vector?

Recall that, by (2.1.9), for each q ∈ Q, the map ξ 7→ ξQ(q) is a linear map
from g to TqQ. Therefore, for each (q, q̇) ∈ TQ, the map

ξ 7→ JLξ (q, q̇) =
〈
p(q, q̇), ξQ(q)

〉
(3.1.6)

is a linear map from g to R. Since g = TeG is a vector space, for each (q, q̇) ∈ TQ
the map (3.1.6) is an element of the dual space g∗. But then, there exists a
map J : TQ→ g∗ which to each (q, q̇) associates the map (3.1.6).

Definition 3.1.5 Consider a Lagrangian system with Lagrangian L : TQ→ R
and an action Ψ of a Lie group G on Q. The map

JL : TQ→ g∗ , (q, q̇) 7→ JL(q, q̇) =
(
ξ 7→ JLξ (q, q̇)

)

is the momentum map of the lifted action ΨTQ.

Note that

〈
JL(q, q̇), ξ

〉
=

〈
p(q, q̇), ξQ(q)

〉
∀(q, q̇) ∈ TQ , ξ ∈ g (3.1.7)

where on the left of the equal sign the duality is that between g∗ and g and on
the right that between T ∗Q and TQ.

Proposition 3.1.6 (Vector Noether theorem) If L : TQ → R is invariant
under the tangent lift ΨTQ of an action of G on Q, then the momentum map
of ΨTQ is constant along the solutions of the Euler-Lagrange equation for L.

Proof. For each ξ ∈ g, JL(q, q̇)(ξ) = JLξ (q, q̇) is constant along the solutions.

Thus, the ‘Noetherian’ first integrals of variational systems have in a natural
way a vectorial character: they are vectors of the dual g∗ of the Lie algebra g

of the symmetry group. This is a vector space ‘created by the group’, not by
the kinematic or dynamics of the system.

Example: In all the examples of the previous section, the dual of the Lie
algebra, as a vector space, is R3 and the momentum map takes values in R3.

If the momentum map JL : TQ → g∗ is conserved, then its level sets are
invariant under the flow of Lagrange equations (seen as a first order system in
TQ). Concerning their dimension:
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Proposition 3.1.7 If the Lagrangian L is regular and the action is free, then
JL : TQ→ g∗ is a submersion.1

Proof. If L is regular (Remark (i) in section 3.1.A), then the map

ΛL : TQ→ T ∗Q , ΛL(q, q̇) :=
(
q, p(q, q̇)

)

(the Legendre transformation induced by L) is a local diffeomorphism. Restrict
to open sets U ⊆ TQ and U∗ ⊆ T ∗Q such that ΛL : U → U∗ is a diffeomor-
phism, and consider the map J := JL ◦ Λ−1 : U∗ → g∗. Since ΛL|U is a
diffeomorphism, JL : U → g∗ is a submersion if and only if J : U∗ → g∗ is a
submersion. From JL(q, q̇) = J

(
q, p(q, q̇)

)
and (3.1.7) it follows that

〈
J(q, p), ξ

〉
=

〈
p, ξQ(q)

〉
∀(q, p) ∈ U∗ , ξ ∈ g .

Choose a basis ξ1, . . . , ξh, h = dimG, of g and consider the dual basis ξ∗1 , . . . , ξ
∗
h

of g∗. Thus

J(q, p) =

h∑

i=1

〈J(q, p), ξi〉ξ∗i =

h∑

i=1

〈
p, ξQi (q)

〉
ξ∗i . (3.1.8)

Saying that (q, p) 7→ J(q, p) is a submersion at (q, p) means that it has rank h.
It is thus sufficient to prove that, for each q, the linear map p 7→ J(q, p) from
T ∗
qQ to g∗ has rank h. The last expression in (3.1.8) shows that this happens

if the linear map
p 7→

(〈
p, ξQ1 (q)

〉
, . . . ,

〈
p, ξQh (q)

〉)

from TqQ
∗ to Rh has rank h, and in turn this happens if the vectors

ξQ1 (q), . . . , ξQh (q) are linearly independent. This follows from the hypothesis

that the action Ψ on Q is free because ξQi (q) = TeΨ
q · ξi (see (2.1.9)) and, if Ψ

is free, then the proof of Proposition 2.1.10 shows that TeΨ
q is injective.

Remarks: (i) Noether theorem, and the momentum map, extend to actions
of Lie groups that act (in a suitable) way on the tangent bundle TQ and are
not the lifts of actions on Q. An important example is the SO(4) symmetry
of the spatial Kepler system, whose momentum map produces the angular mo-
mentum and the Laplace-Runge-Lenz vector. A thorough understanding of the
momentum map of non-lifted actions requires however the theory of Hamiltonian
systems on symplectic manifolds.

(ii) The momentum map of Definition (3.1.5) depends on the group action and
on the Lagrangian. If the Lagrangian is such that the Legendre transformation
ΛL is a diffeomorphism, then the system can be studied in the Hamiltonian
formulation. The Legendre transformation conjugates the Lagrange equations

1In class I did not prove this fact and I forgot mentioning the hypothesis that L
must be regular.
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for L to the Hamilton equations for the Hamiltonian H = (
∑

i piq̇i − L) ◦ Λ−1
L .

In the Hamiltonian formulation, the momenta pi are coordinates, and the mo-
mentum map depends only on the group action. There is a theory of Lie group
actions on symplectic manifolds that extends the Hamiltonian analogue of lifted
actions considered here and leads to momentum maps which depend only on
the group actions and are conserved for all Hamiltonian systems with invariant
Hamiltonian.

Exercises 3.1.2 (i) Show that if an action Ψ is free then its tangent lift is free.

3.1.D Routh reduction. The invariance of the Lagrangian under a lifted
action not only produces the conservation of the momentum map but, as we
now see, may also be used to reduce the Lagrange equations, and the two
operations may to a certain extent be combined.

We are interested to the case of regular Lagrangians L : TQ → R, so that
Lagrange equations for L can be viewed as a vector field XL on TQ.

Proposition 3.1.8 Assume that a regular Lagrangian L : TQ → R is inva-
riant under the lift ΨTQ of an action Ψ on Q. Then, XL (namely, the Lagrange
equations for L) is invariant under TΨTQ.

Proof. It is known from the introductory courses on Lagrangian mechanics
that if C : Q→ Q is a diffeomorphism, then TC : TQ→ TQ conjugates XL to
XL◦TC (‘geometric invariance’ or ‘invariance in form’ of Lagrange equations).
If L is ΨTQ-invariant, then (TΨg)∗X

L = XL◦TΨg = XL for all g ∈ G.

We note that the invariance of the Lagrangian is stronger than the invariance
of Lagrange equations:

Example: Equation
ẍ = −g , x ∈ R ,

namely the first order system ẋ = v, v̇ = −g in TR ∋ (x, v), is invariant under
the lifted action ΨTQ

λ (x, v) = (x+ λ, v) of R ∋ λ. This equation is the Lagrange
equation of the Lagrangian

L(x, ẋ) =
1

2
ẋ2 − gx

which however is not invariant under ΨTQ because L(x + λ, ẋ) = L(x, ẋ) − gλ.
In this case there is a symmetry of the Lagrange equation, which can be used
to reduce the system (see Exercise 2.2.4.i), but which does not produce a first
integral.

The possibility of performing both operations—first restrict to a level set of the
momentum map and then reduce under the group action—is at the basis of the
classical integration methods in Lagrangian mechanics. However, in general the
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level sets of the momentum map are not invariant under the action of the entire
group, but only of certain subgroups of it, and reduction must be restricted to
the action of these subgroups.

Recall that J is a map from TQ to the dual g∗ of the Lie algebra of G, and
that G acts on g∗ with the coadjoint action (section 2.1.B, example 12).

Proposition 3.1.9 Let Ψ be an action of a Lie group G on Q and L : TQ→ R
be a ΨTQ-invariant Lagrangian. Then

JL ◦ TΨg = (Ad∗)g ◦ JL ∀g ∈ G (3.1.9)

(namely, JL is equivariant with respect to the action ΨTQ on TQ and to the
coadjoint action Ad∗ on g∗).

Proof. (3.1.9) is equivalent to
〈
JL

(
TΨg(q, q̇)

)
, ξ
〉
=

〈
(Ad∗)g

(
JL(q, q̇)

)
, ξ
〉
for

all ξ ∈ g and (q, q̇) ∈ TQ. Since (Ad∗)g is the adjoint map of Adg−1 , see (2.1.4),
(3.1.9) is also equivalent to

〈
JL

(
TΨg(q, q̇)

)
, ξ
〉
=

〈
JL(q, q̇),Adg−1ξ

〉
for all ξ

and (q, q̇). In turn, this is equivalent to JLξ
(
TΨg(q, q̇)

)
= JLAd

g−1ξ
(q, q̇) for all

ξ and (q, q̇), namely to

JLξ ◦ TΨg = JLAd
g−1ξ ∀g ∈ G , ξ ∈ g , (3.1.10)

which is what we prove.
Fix g ∈ G and denote pL = ∂L

∂q̇ and pL◦TΨg = ∂
∂q̇ (L ◦ TΨg) the momenta

covectors of the two Lagrangians L and L ◦ TΨg, respectively. Thus, JLξ =〈
pL, ξQ

〉
and J

L◦TΨg

ξ =
〈
pL◦TΨg , ξQ

〉
for all ξ ∈ g. For each i = 1, . . . , d,

p
L◦TΨg

i (q, q̇) =
∂

∂q̇i
L
(
Ψg(q),Ψ

′
g(q)q̇

)

=
∑

j

∂L

∂q̇j

(
Ψg(q),Ψ

′
g(q)q̇

) ∂

∂q̇i

(
Ψ′
g(q)q̇

)
j

=
∑

j

( ∂L
∂q̇j

◦ TΨg(q, q̇)
)
Ψ′
g(q)ji

=
∑

j

(
pLj ◦ TΨg(q, q̇)

)(
Ψ′
g(q)

T
)
ij

and thus
pL◦TΨg = (pL ◦ TΨg)Ψ′T

g .

Therefore

J
L◦TΨg

ξ =
〈
pL◦TΨg , ξQ

〉

=
〈
(pL ◦ TΨg)Ψ′T

g , ξ
Q
〉
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=
〈
pL ◦ TΨg,Ψ′

gξ
Q
〉

=
〈
pL ◦ TΨg, (Ψg)∗ξQ ◦Ψg

〉

=
〈
pL, (Ψg)∗ξ

Q
〉
◦ TΨg

Recalling (Ψg)∗ξ
Q = (Adgξ)

Q from proposition 2.1.9, this gives

J
L◦TΨg

ξ =
〈
pL, (Adgξ)

Q
〉
◦ TΨg = JLAdgξ ◦ TΨg .

Thus, if L is ΨTQ-invariant, JLξ = JLAdgξ
◦ TΨg for all ξ. Formula (3.1.10) is

obtained changing g into g−1 and using (TΨg−1)−1 = T (Ψ−1
g−1) = TΨg.

Example: Consider the SO(3)-invariant Lagrangian L(q, q̇) = 1
2
m|q̇|2−V (|q|),

q ∈ R3 (example 3, section 3.1.B). The action is the linear action of SO(3) on
R3. If we identify the Lie algebra of SO(3) with R3 then JL

ξ (q, q̇) = ξ · (mq × q̇)
for all ξ ∈ R3 ≡ so(3). In turn, if we identify so(3)∗ with R3 by means of the
standard inner product of R3 ≡ so(3), this gives

JL(q, q̇) = mq × q̇ .

The lifted action is R.(q, q̇) = (Rq,Rq̇). Note that, if R ∈ SO(3), then (Ru) ×
(Rv) = R(u× v) for all u, v ∈ R3. Thus, for any R ∈ SO(3),

JL(Rq,Rq̇) = m(Rq)× (Rq̇) = mR(q × q̇) = RJL(q, q̇)

and (Ad∗)R = R (see example 13, section 3.1.B).

Corollary 3.1.10 In the hypotheses of Proposition 3.1.9, for each µ ∈
JL(TQ) ⊆ g∗, the level set (JL)−1(µ) is invariant under the restriction of
the lifted action ΨTQ to G∗

µ × TQ, where G∗
µ is the isotropy subgroup of µ in

the coadjoint action of G on g∗.

Proof. If (q, q̇) ∈ (JL)−1(µ) then, by (3.1.9), for all g ∈ G∗
µ, J

L
(
TΨg(q, q̇)

)
=

(Adg)
∗(JL(q, q̇)) = (Adg)

∗(µ) = µ.

Under the appropriate hypotheses, therefore, if the Lagrangian is invariant
under a free lifted action, the system can first be restricted to each level set
JL = µ of the momentum map, which has dimension 2 dimQ − dimG, and
then reduced under the action of the isotropy subgroup G∗

µ. This produces a µ-
parametrized family of reduced systems on phase spaces of dimension 2 dimQ−
dimG−dimG∗

µ. Much more can be said about them. We just remark that this
is a generalization of the Routh reduction (or ignoration of coordinates) studied
in the courses on Lagrangian mechanics, which is that in which G is abelian.
The coadjoint action for an abelian group is trivial, namely (Ad∗)g = id for
all g (simple exercise), and therefore G∗

µ = G. In this case, all reduced spaces
have dimension 2 dimQ − 2 dimG. A deeper analysis shows that the reduced
phase space is the tangent bundle of Q/G and each reduced system is still a
Lagrangian system.
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Chapter A

Appendix: Vector fields

The aim of this appendix is to review a few basic facts about vector fields.
We assume some basic facts as known, in particular the notion of (smooth)
manifold.

We will occasionally use the following terminology. Let M be an n-
dimensional manifold. Let ψ : UM → U , with open sets UM ⊆M and U ⊆ Rn

is a local chart, or local coordinate map, of M . Then ψ is a diffeomorphism.
Its components (x1, . . . , xn) are said to be the coordinate functions, or coordi-
nates. The inverse ϕ := ψ−1 : U → UM of the chart map ψ is a diffeomorphism
and will be called local parametrization. Since we will use ϕ more than ψ, we
will denote the latter ϕ−1.

A.1 Vector fields and differential forms

A.1.A The tangent and cotangent bundles. In the following, M is a
(smooth) manifold of dimension n.

The tangent vectors to M at a point m ∈M are the derivatives d
dtγ(t)|t=0

of (smooth) curves γ : R →M that pass through m, namely γ(0) = m.

At each point m ∈ M , tangent vectors to M at m form a vector space
TmM of dimension n = dimM , the tangent space to M at m. As a set, the
tangent bundle TM of M is the disjoint union of all tangent spaces to M . The
smooth structure of M induces a smooth structure on TM , which makes it a
smooth manifold of dimension 2n. This structure is given by an atlas whose
charts are build as follows.

Consider a local parametrization ϕ : U → UM of M , with coordinates
(x1, . . . , xn) = ϕ−1. For each m = ϕ(x) ∈ UM , with x ∈ U , the n coordinate
curves through m are the curves λ 7→ ϕ(x+ λei), i = 1, . . . , n, with ei the i-th

A.1

F. Fassò (University of Padova) - Lie Groups and Symmetry (2002/2)



A.2 Chapter A.

vector of the canonical basis of Rn. The derivatives

∂xi
(m) :=

d

dλ
ϕ(x+ λei)

∣∣∣
λ=0

of these curves are tangent vectors toM atm and, since ϕ is a diffeomorphism,
are linearly independent. Therefore, they form a basis for TmM , called the
natural basis induced by the considered parametrization (or by the coordinate
system ϕ−1 : UM → U). We may therefore define a local parametrization
Tϕ : U × Rn → TUM for TUM as follows: the point of TUM of coordinates
(x, v) ∈ U × Rn is1

(Tϕ)(x, v) :=
∑

i

vi∂xi
(ϕ(x)) ∈ Tϕ(x)M .

In this way, we build an atlas for TM , which is called a “bundle atlas” (and
its local coordinates are called ‘bundle’ or ‘lifted’ coordinates).

For each m ∈ M , the cotangent space T ∗M to M is the dual of TmM
(namely, the space of linear forms on TmM). The cotangent bundle T ∗M of M
is the disjoint union of all its cotangent spaces T ∗

mM . Like TM , also T ∗M has
a smooth structure induced by that of M . Consider a local parametrization
ϕ : U → UM ofM . In each cotangent space T ∗

mM , m ∈ UM , consider the ‘dual
basis’ to the natural basis ∂1(m), . . . , ∂n(m) of TmM . This basis is formed by
the covectors

∂∗x1
(m), . . . , ∂∗xn

(m) ∈ T ∗
mM

defined by

〈∂∗xi
(m), ∂xj

(m)〉m = δij ∀i, j

where 〈 , 〉m denotes the pairing between T ∗
mM and TmM . (Later on, for

reasons which will be explained, the covectors ∂∗i (m) will be denoted dxi(m)).
In this way we obtain on T ∗M local ‘bundle’ parametrizations T ∗ϕ : U ×
Rn → T ∗UM defined as follows: the point of T ∗M of coordinates (x, α) is∑
i αi∂

∗
i (ϕ(x)) ∈ T ∗

ϕ(x)M .

Exercises A.1.1 (i) Show that the transition function between two local bundle pa-
rametrizations Tϕ and T ϕ̃ of TM is (x, v) 7→ (x̃, ṽ) = (C(x), C′(x)v) with C = ϕ̃−1 ◦
ϕ.

(ii) Verify that, if Θ =
∑

αi∂∗i ∈ T ∗
mM and V =

∑

vi∂i ∈ TmM then 〈Θ, V 〉 =
∑

i αivi.

(iii) Show that the transition function between two local bundle parametrizations T ∗ϕ and

T ∗ϕ̃ of TM is (x, α) 7→ (x̃, α̃) =
(

C(x), C′(x)−Tα
)

with C = ϕ̃−1 ◦ ϕ.

1At this stage, Tϕ should be considered as a symbol defined by this condition.
Later on it will be clear that it is in fact the tangent map of ϕ.
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A.1.B Vector fields and differential forms. A vector field on a manifold
M is a (smooth) map X : M → TM which to each point m ∈ M associates
a vector X(m) ∈ TmM . Similarly, a differential 1-form or simply a 1-form on
M is a (smooth) map Θ :M → T ∗M with the property that Θ(m) ∈ T ∗

mM for
all m ∈ M . We will denote by X(M) the set of all vector fields on M and by
X∗(M) the set of all 1-form onM . They are both (infinite-dimensional) vector
spaces.

Globalizing the pairing 〈 , 〉m between tangent and cotangent spaces we
obtain a pairing 〈 , 〉 between vector fields and 1-forms, namely a bilinear map

〈 , 〉 : X∗(M)× X(M) → C∞(M) (A.1.1)

which associates to each 1-form Θ and vector field X a real function 〈Θ, X〉 on
M defined as

〈Θ, X〉(m) := 〈Θ(m), X(m)〉m , m ∈M .

Local representatives. Consider a local parametrization ϕ : U → UM of M
with coordinates (x1, . . . , xn) = ϕ−1. The tangent vectors to the coordinate
lines define vector fields ∂1, . . . , ∂n in UM = ϕ(U), whose values at each point
m ∈ Um form the natural basis of TmM . We thus define the local representative
X loc = (X loc

1 , . . . , X loc
n ) : U → Rn of a vector field X on M as the vector field

via

X |UM
=

n∑

i=1

(X loc
i ◦ ϕ−1)∂xi

.

Similarly, the local representative Θloc = (Θloc
1 , . . . ,Θloc

n ) : U → Rn of a 1-form
Θ is defined by

Θ|UM
=

n∑

i=1

(Θloc
i ◦ ϕ−1)∂∗xi

.

Exercises A.1.2 (i) Let ϕ−1 : UM → U and ϕ̃−1 : ŨM → U be two local coordinate
systems in M with non-disjoint domains. Show that the local representatives Xloc, X̃loc of
a vector field X and the local representatives Θloc, Θ̃loc of a 1-form Θ are related by

X̃loc(C(x)) = C
′(x)X(x) , Θ̃(C(x)) = C

′(x)−TΘ(x) ∀x ∈ U

with (now: this is the inverse of the C of Exercise A.1.1.iii) C = ϕ−1 ◦ ϕ̃.

(ii) Verify that if X|UM
=

∑n
i=1(X

loc
i ◦ ϕ−1)∂xi and Θ|UM

=
∑n

i=1(Θ
loc
i ◦ ϕ−1)dxi, then

〈Θ, X〉m ◦ ϕ =
∑

iX
loc
i Θloc

i for all m ∈ UM .

A.1.C Tangent maps and differentials (exterior derivatives). Every
(smooth) map Ψ :M → N between two manifolds induces a linear map

TmΨ : TmM → TΨ(m)N
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from each tangent space TmM to M and the tangent space to N at the point
Ψ(m). This map, which plays the role of derivative, is called the tangent map of
Ψ at m and is defined as follows. Recall that tangent vectors are derivatives of
curves. If v = γ′(0) ∈ TmM with a curve γ : R → M , γ(0) = m, then TmΨ(v)
is defined as the derivative at t = 0 of the transformed curve Ψ ◦ γ : R → N ,
namely:

TmΨ
(
γ′(0)

)
7→ (Ψ ◦ γ)′(0) .

Note that (Ψ ◦γ)(0) = Ψ(m) and hence (Ψ ◦γ)′(0) ∈ TΨ(m)N . Globalizing this
construction, we obtain a map

TΨ : TM → TN

which is defined by TΨ|TmM := TmΨ for any m ∈ M . The map TΨ can be
shown to be smooth and is called the tangent map of Ψ.

Let us now specialize to the case N = R. At each pointm ∈M , the tangent
map TmF of a function F :M → R is a linear map from TmM to TF(m)R = R
and, as such, can be regarded as a covector dF(m) ∈ T ∗

mM , which is defined
by

TmF · v = 〈dF(m), v〉m ∀ v ∈ TmM . (A.1.2)

Thus, a function F :M → R defines a differential 1-form

dF ∈ X
∗(M) ,

called the differential or the exterior derivative of F. The map d : C∞(M) →
X∗(M) so defined is called differential or exterior derivative of functions.

Note that, in particular, in a chart ϕ−1 = (x1, . . . , xn) : UM → U ⊆ Rn

of M , the differential of the i-th coordinate function xi : UM → R at a point
m ∈ UM is

dxi(m) = ∂∗xi
(m) .

(Indeed, at a point m = ϕ(x), 〈dxi(m), ∂xj
(m)〉m = Tmxi · ∂xj

(m) = Tmxi ·
d
dtϕ(x+ tej)|t=0 = d

dtxi ◦ϕ(x+ tej)|t=0 = δij because xi ◦ϕ(x+ tej) is the i-th
component of x+ tej and equals xi + t if ij and xi if i 6= j).

Because of this, in each chart, the vectors ∂∗x1
(m), . . . , ∂∗xn

(m) of the natural
basis of T ∗

mM are denoted dx1(m), . . . , dxn(m). Hence,

Θ(m) =
∑

i

Θloc
i (x)dxi(ϕ(x)) ∀x ∈ U .

Exercises A.1.3 (i) Show that if Ψloc is the local representative of a map Ψ : M → N
relative to two charts of M and N , then the local representative of TmΨ in the associated
bundle charts of TM and TN is (x, v) 7→ (Ψloc(x),Ψ

′
loc(x)v), where Ψ′

loc(x) is the Jacobian
matrix of Ψloc at the point x.

(ii) Show that, if Floc is the local representative of F :M → R in a chart ϕ−1 = (x1, . . . , xn) :
UM → U ⊆ Rn of M , then the local representative of dF(ϕ(x)), thought of as an element
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of T ∗
mM , is F′

loc(x) =
(

∂Floc

∂x1
(x), . . . , ∂Floc

∂xn
(x)

)

, which in calculus is called the differential

dFloc(x) of Floc at x.

(iii) Show that, if Ψ is a diffeomorphism, then so is TΨ and, in coordinates (see (i) above) it
is the map (y, w) 7→ (Ψ−1

loc(y), (Ψ
−1
loc)

′(y)w) = (Ψ−1
loc(y),Ψ

′
loc(Ψ

−1
loc(y))w). [Hint: for the last

expression use the chain rule.]

A.1.D Flows. Vector fields have two roles—or a double nature: they can
be integrated to define flows, and they act as derivations (of functions, vector
fields, differential forms and in fact all tensor objects). We begin with the first
aspect.

An integral curve of X is a smooth curve

γ : I →M , t 7→ γ(t)

where I ⊂ R is an interval, such that

dγ

dt
(t) = X(γ(t)) ∀t ∈ I .

If γ(0) = m, then we will say that γ is the integral curve “through m”, or
which “passes through m” (understood: at t = 0). The existence, and (up
to the choice of I) the uniqueness, of an integral curve through any point is
granted by the existence and uniqueness theorem for ODEs.

We will assume (usually tacitly) that all vector fields we consider are com-
plete, namely, that their integral curves can be defined for all times, in the
precise sense that they all have (maximal) existence interval I = R.

If X is complete, then there exists its flow

ΦX : R×M →M

which is defined by the fact that ΦX(t,m) is the value at time t of the integral
curve of X which passes through m at t = 0. For each t ∈ R, the “map at time
t of the flow” is the map

ΦXt :M →M , ΦXt (m) = ΦX(t,m) .

The definition of ΦX is thus equivalent to the two following conditions:

ΦX0 = idM , d
dtΦ

X
t = X ◦ ΦXt ∀t ∈ R . (A.1.3)

The smooth dependence of solutions of ODEs from the initial datum implies
that, for each t, ΦXt is a smooth map. Moreover, the ‘time translatability’ of
the solutions of (autonomous) ODEs implies that

ΦXt+s = ΦXt ◦ ΦXs ∀t, s ∈ R . (A.1.4)

This implies that, for any t, ΦXt is invertible and its inverse is ΦX−t. Thus, for
each t, ΦXt is a diffeomorphism of M onto itself.
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Remarks: (i) All vector fields on a compact manifolds are complete.

(ii) (A.1.4) means that the flow of a vector field can be regarded as a group
homomorphism from the abelian group R into the infinite-dimensional group of
all diffeomorphisms of M , with the composition as product.

A.1.E Push-forward and pull-back of functions and vector fields.
Diffeomorphisms (and sometimes smooth maps) Ψ : M → N can be used to
transport geometric objects from one manifold to the other.

Definition A.1.1 The push-forward of functions under a diffeomorphism Ψ :
M → N is the map

M

f   A
AA

AA
AA

A
Ψ // N

Ψ∗f~~
~>
~>
~>
~>

R . Ψ∗ : C∞(M) → C∞(N) , Ψ∗f := f ◦Ψ−1

The pull-back of functions under a (smooth) map Ψ : M → N is the mapM

Ψ∗g    `
 `

 `
 `

 `

Ψ //

g����
��
��
��

R

Ψ∗ : C∞(N) → C∞(M) , Ψ∗g := g ◦Ψ .

The reason why the pull-back of functions can be defined for maps that need
not be diffeomorphisms is that it does not involve the inverse of the map.

Definition A.1.2 Let Ψ : M → N be a diffeomorphism. The push-forwardM

X
��

Ψ // N

Ψ∗X
�� �O
�O
�O

TM
TΨ // TN

Ψ∗ : X(M) → X(N) and the pull-back Ψ∗ : X(M) → X(N) of vector fields
under a diffeomorphism Ψ :M → N are defined as

M

Ψ∗Y
���O
�O
�O

Ψ // N

Y
��

TM
TΨ // TN

Ψ∗X := (TΨ ·X) ◦Ψ−1 , Ψ∗Y := ((TΨ)−1 ·X) ◦Ψ .

Here, the inverse of either Ψ or TΨ appear in both cases; thus, push-forward
and pull-back of vector fields are defined only for diffeomorphisms.

In detail, if X ∈ X(M), then

(Ψ∗X)(n) = TΨ−1(n)Ψ ·X
(
Ψ−1(n)

)
∀n ∈ N ,

and similarly (Ψ∗Y )(m) = (TmΨ)−1 · Y (Ψ(m)) for all m ∈M . Note also that

(Ψ∗X)(Ψ(m)) = TmΨ ·X(m) ∀m ∈M

Push-forward and pull backs of vector fields have a dynamical meaning:

Proposition A.1.3 Let Ψ : M → M be a diffeomorphism and X ∈ X(M).
Then Ψ∗X is the (unique) vector field on M whose integral curves are the
images under Ψ of those of X. Equivalently, if Z ∈ X(M), then

M

ΦX
t
��

Ψ //M

ΦΨ∗X
t

��
M

Ψ //M
Ψ ◦ ΦXt = ΦZt ◦Ψ ∀t ∈ R ⇐⇒ Z = Ψ∗X .

Proof. If t 7→ γ(t) ∈M is a curve, then

γ′ = X ◦ γ ⇐⇒ (Ψ ◦ γ)′ = (Ψ∗X) ◦ (Ψ ◦ γ) .
Thus, Ψ maps integral curves ofX into integral curves of Ψ∗X and this uniquely
defines Ψ∗X (a vector field is uniquely determined by its integral curves). The
equivalence between the two statements follows from the fact that t 7→ ΦXt (m)
is the integral curve of X through m etc.
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A.1.F Push-forward and pull-back of differential 1-forms. Push-
forward and pull-back of differential 1-forms are defined so as to be consistent,
via the pairing (A.1.1), with those of functions and vector fields. Specifically,
the push-forward under a diffeomorphism Ψ : M → N of a 1-form Θ on M is
the 1-form Ψ∗Θ on N defined by

〈Ψ∗Θ, Y 〉 := Ψ∗〈Θ,Ψ∗Y 〉 = 〈Θ,Ψ∗Y 〉 ◦Ψ−1 ∀Y ∈ X(N) (A.1.5)

where the second equality follows from the definition of push-forward of func-

M

〈Θ,Ψ∗Y 〉   A
AA

AA
AA

A N
Ψ−1

oo

〈Ψ∗Θ,Y 〉~~
~>
~>
~>
~>

R

tions.2 Similarly, the pull-back under Ψ of a 1-form Ξ on N is the 1-form Ψ∗Ξ
M

Ψ //

〈Ψ∗Ξ,X〉    `
 `

 `
 `

 `
N

〈Ξ,Ψ∗X〉~~~~
~~
~~
~~

R

on M defined by

〈Ψ∗Ξ, X〉 := Ψ∗〈Ξ,Ψ∗X〉 = 〈Ξ ◦Ψ, TΨ ·X〉 ∀X ∈ X(M) . (A.1.6)

The last expression (which follows from the definitions of pull-back of functions
and of push-forward of vector fields) shows that the pull-back of 1-forms, as that
of functions, is defined for any (smooth) map, not only for diffeomorphisms.

Proposition A.1.4 If Ψ :M → N is a (smooth) map then

Ψ∗(dg) = d(Ψ∗g) ∀g ∈ C∞(N)

and if it is a diffeomorphism then

Ψ∗(df) = d(Ψ∗f) ∀f ∈ C∞(M) .

Proof. Take m ∈M and v ∈ TmM . Then, using (A.1.2), 〈d(Ψ∗f)(m), v〉m =
Tm(Ψ∗f) · v = Tm(f ◦ Ψ) · v = TΨ(m)f · TmΨ · v and using (A.1.6),
〈(Ψ∗df)(m), v〉m = 〈df(Ψ(m)), TmΨ · v〉m = TΨ(m)f · TmΨ · v. The formula
for the push-forward is proven analogously.

The identities of Proposition A.1.4 are referred to as the ‘naturalness’ of the
exterior differential (of functions) with respect to pull-back and push-forward.

Exercises A.1.4 (i) Show that push-forward and pull-back, both of functions and of
vector fields, are linear isomorphisms and are the inverse of each other.

(ii) Show that for any map Ψ : M → N and 1-form Ξ ∈ X∗(N),

(Ψ∗Ξ)(m) = (TmΨ)∗ Ξ(Ψ(m))

where (TmΨ)∗ : T ∗
Ψ(m)

N → T ∗
mM is the adjoint of the linear map TmΨ : TmM → TΨ(m)N .

(iii) Verify that, in bundle coordinates on T ∗M , the local representative of the adjoint
(TmΨ)∗ is the transposed of the Jacobian matrix Ψ′

loc(ϕ
−1(m)) and therefore (Ψ∗Ξ)loc(x) =

Ψ′
loc(x)

T Ξloc(x).

2In words: Ψ∗Θ acts on a vector field Y in the following way: Y is pulled-back to
M with Ψ, its pull-back is paired with Θ in M , where Θ is defined, and the result is
push-forward to N .
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A.2 Lie derivatives and Lie brackets

We consider now the second nature of vector fields, that of derivations, even
though we restrict this topic to the case we need—that of Lie derivatives of
vector fields.

A.2.A Lie derivative of functions. We begin by recalling the notion and
properties of Lie derivatives of functions. Even though elementary, this serves
as a basis for the Lie derivative of vector fields.

Definition A.2.1 The Lie derivative of functions associated to a vector field
X ∈ X(M) is the map LX : C∞(M) → C∞(M) defined by

LXf = 〈df,X〉 .

A derivation of an algebra A is a linear map D : A → A that satisfies
Leibniz rule D(f1f2) = f1Df2 + f2Df1 for all f1, f2 ∈ A. Clearly, for any
X ∈ X(M), the Lie derivative LX is a derivation of C∞(M). It is immediate
to verify that the space Der(A) of all derivations of an algebra A is a vector
space (over R). We quote without proof the following fact:

Proposition A.2.2 LetM be a manifold. The map L : X(M) → Der(C∞(M))
given by X → LX is a vector space isomorphism.

Thus, every derivation of C∞(M) is the Lie derivative associated to a vector
field X su M .

There is a link between the flow of a vector field and the Lie derivative
associated to it:

Proposition A.2.3 For any X ∈ X(M) and f ∈ C∞(M),

LXf = d
dt (f ◦ ΦXt )|t=0

and, for any t,
d
dt (f ◦ ΦXt ) = (LXf) ◦ ΦXt .

Proof. Take m ∈ M . By the chain rule and (A.1.3), d
dt (f ◦ ΦXt )(m)|t=0 =

TΦX
0 (m)f · ddt (ΦXt )(m)|t=0 = Tmf ·X(m) = 〈df(m), X(m)〉m = LXf(m).

Fix now t ∈ R. Using (A.1.4), ddt (f ◦ ΦXt )(m)|t=t = d
ds (f ◦ ΦX

t+s
(m)|s=0 =

d
ds (f ◦ ΦXs ◦ ΦX

t
(m)|s=0 = d

ds (f ◦ ΦXs )(ΦX
t
(m))|s=0 = (LXf)(Φ

X
t
(m)).

Proposition A.2.4 If Ψ :M → N is a diffeomorphism, then

Ψ∗(LY g) = LΨ∗YΨ
∗g ∀g ∈ C∞(N) , Y ∈ X(N)

An analogous identity for Ψ∗ is also true.
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Proof. Using (A.1.6) and Proposition A.2.3, Ψ∗(LY g) = Ψ∗〈dg, Y 〉 =
〈Ψ∗dg,Ψ∗Y 〉 = 〈d(Ψ∗g),Ψ∗Y 〉 = LΨ∗Y (Ψ

∗g).

Exercises A.2.1 (i) For vector fields Xloc and functions f loc on open subsets of Rn,

LXlocf
loc = (f loc)′Xloc = Xloc · ∇f loc =

∑

i

Xloc
i

∂f loc

∂xi
.

(ii) In a local parametrization of M ,

(LXf)
loc = LXlocf

loc .

(iii) Verify that LX is a derivation.

(iv) Verify that, in a local parametrization ϕ with coordinates (x1, . . . , xn) = ϕ−1, the
components Xloc

i of the representative Xloc of a vector field X are Xloc
i = (LXxi) ◦ ϕ.

(v) X ∈ X(M) is the zero vector field if and only if LXf = 0 for all f ∈ C∞(M).

A.2.B Lie bracket and Lie derivative of vector fields. The Lie deri-
vative and the Lie bracket (or commutator) of vector fields happen to be the
same thing, but introduced in two different ways.

• The first way refers to the interpretation of vector fields as derivations
of the algebra of functions. If X,Y ∈ X(M), then the Lie derivatives
LX , LY : C∞(M) → C∞(M) are linear maps. Their commutator

LXLY − LY LX : C∞(M) → C∞(M)

is a linear map which, in addition, satisfies Leibniz rule. This is verified
observing that

LXLY (fg) = LX(LY (fg))

= LX(fLY g + gLY f)

= (LXf)(LY g) + fLX(LY g) + (LXg)(LY f) + gLX(LY f)

and that LY LX(fg) has the same expression with X and Y switched, so
that

(LXLY − LY LX)(fg) = f(LXLY − LY LX)(g) + g(LXLY − LY LX)f .

This means that LXLY −LY LX is a derivation of C∞(M). Therefore, by
Proposition A.2.2, there exists a vector field, which is denoted [X,Y ] and
is called the Lie bracket or the commutator of X and Y , such that

L[X,Y ]f = (LXLY − LY LX)f ∀ f ∈ C∞(M) . (A.2.1)
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• The second way refers to the idea of differentiating a vector field along the
flow of another—similarly to what done for functions in Proposition A.2.3.
Specifically, given two vector fields X,Y ∈ X(M), the Lie derivative of Y
along X is the vector field LXY ∈ X(M) defined by

LXY (m) := d
dt

[
(ΦXt )∗Y

]
(m)|t=0 ∀ x ∈M . (A.2.2)

(That this actually defines a vector field on M is verified by noting that,
for any m ∈ M , the r.h.s. is a vector in TmM because [(ΦXt )∗Y ](m) =
TΦX

t (m)Φ
X
−t · Y (ΦXt (m)) belongs to TmM for all t, and the derivative of a

curve in a vector space is a vector of such a space).

Proposition A.2.5 LXY = [X,Y ] for all X,Y ∈ X(M)..

Proof. We may verify this equality in coordinates. To keep the notation
simple, we we do not use different symbols for local representatives. Compute

−LXY (x) =
d

dt

[
(ΦXt )∗Y

]
(x)

∣∣
t=0

=
d

dt

[[(
ΦXt )′Y ◦ ΦX−t

]
(x)

]
t=0

=
d

dt

[
(ΦXt )′(ΦX−t(x))Y (ΦX−t(x))

]
t=0

=
d

dt

[
(ΦXt )′

(
ΦX−t(x)

)]
t=0

Y (x) +
d

dt

[
Y (ΦX−t(x))

]
t=0

where we have used Leibniz rule, ΦX0 = id, (ΦX0 )′(x) = I for all x. Now (keep
in mind that ΦXt (x) = ΦX(t, x) is a function of the two variables t and x)

d

dt

[
(ΦXt )′

(
ΦX−t(x)

)]
t=0

=
[d(ΦXt )′

dt
(x)

]
t=0

+ (ΦX0 )′′(x)
[ d
dt
ΦX−t(x)

]
t=0

.

Here the second term vanishes because (ΦX0 )′(x) = I is constant. Thus,

using the ‘variational equation’
d(ΦX

t )′

dt (x) = X ′(ΦXt (x))(ΦXt )′(x) and again

(ΦX0 )′(x) = I, we have d
dt

[
(ΦXt )′

(
ΦX−t(x)

)]
t=0

= X ′(x). Since d
dt

[
Y (ΦX−t(x))

]
t=0

=

Y ′(x) ddtΦ
X
−t(x)

∣∣
t=0

= −Y ′(x)X(x), we eventually find LXY (x) = −X ′(x)Y (x)+
Y ′(x)X(x) which equals [X,Y ](x) (see Exercise A.2.2.i).

For this reason, the terms ‘Lie derivatives’ ‘Lie bracket’ and ‘commutator’ of
vector fields are used as synonyms. We now see some of their properties:

Proposition A.2.6 If M and N are manifolds and X,Y, Z ∈ X(M), then:

i. [X,Y ] = −[Y,X ].

ii. [X,Y + Z] = [X,Y ] + [X,Z].
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iii. LX(fY ) = fLXY + (LXf)Y for all f ∈ C∞(M).

iv. d
dt

[
(ΦXt )∗Y

]
= (ΦXt )∗LXY and d

dt

[
(ΦXt )∗Y

]
= −(ΦXt )∗LXY for all t ∈ R.

v. ψ∗[X,Y ] = [ψ∗X,ψ∗Y ] for any diffeomorphism ψ :M → N , and similarly
for the pull-back.

Proof. i. and ii. follow, e.g., from the coordinate expression of the Lie bracket,
which is given in Exercise A.2.2.i.

(iii.) In coordinates, [(LX(fY )]i = LX(fYi)−LfYXi = YiLXf + fLXYi−
fLYXi = YiLXf + f(LXY )i.

(iv.) This can be verified with a computation similar to the one used to
prove the analogous fact for the Lie derivative of functions, noticing also that
(ΦXt+s)

∗ = (ΦXs ◦ ΦXt )∗ = (ΦXt )∗ ◦ (ΦXs )∗.
(v.) This is equivalent to Lψ∗[X,Y ]g = L[ψ∗X,ψ∗Y ]g for all functions g ∈

C∞(N) (see Exercise A.2.1.v). Since Ψ is a diffeomorphism, any function on
N is the push-forward of a function on M and we may thus equivalently verify
that

Lψ∗[X,Y ]ψ∗f = L[ψ∗X,ψ∗Y ]ψ∗f ∀f ∈ C∞(M) .

Using the naturalness of the Lie derivatives of functions with respect to the
push-forward we compute

L[ψ∗X,ψ∗Y ](ψ∗f) = Lψ∗X

(
Lψ∗Y (ψ∗f)

)
− Lψ∗Y

(
Lψ∗X(ψ∗f)

)

= Lψ∗X

(
ψ∗LY f

)
− Lψ∗Y

(
ψ∗LXf

)

= ψ∗

(
LXLY f − LY LXf

)

= ψ∗(L[X,Y ]f)

= Lψ∗[X,Y ](ψ∗f) .

Statements i. and ii. of Proposition A.2.6 show that the Lie bracket is an anti-
symmetric, bilinear map X(M)×X(M) → X(M). The property in statement v.
expresses the fact that the Lie bracket is natural with respect to push-forward
and pull-back

We conclude recalling a basic result about the commutation of flows:

Proposition A.2.7 For any pair of vector fields X and Y on a manifold, the
following conditions are equivalent:
i. [X,Y ] = 0

ii. (ΦYs )∗X = X for all s ∈ R.

iii. The flows of X and Y commute, namely ΦXt ◦ ΦYs = ΦYs ◦ ΦYt for all
t, s ∈ R.

Proof. The equivalence of ii. and iii. follows from Proposition A.1.3 (with
Ψ = ΦYs , Z = (ΦYs )∗X). That of i. and ii. from d

ds (Φ
Y
s )∗X = −(ΦYs )∗[X,Y ]

(and the fact that the push-forward under a diffeomorphism Ψ is injective, so
that Ψ∗Z = 0 if and only if Z = 0).
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Exercises A.2.2 (i) Verify that the components [X,Y ]loci of the representative of [X,Y ]
in a coordinate system are

[X,Y ]loci = LXlocY
loc
i − LY locX

loc
i = (Y loc

i )′Xloc − (Xloc
i )′Y loc

and so
[X,Y ]loc = (Y loc)′Xloc − (Xloc)′Y loc .

[Hint: If ϕ is the local parametrization and ϕ−1 = (x1, . . . , xn), then [X, Y ]loci = (L[X,Y ]xi)◦
ϕ (Exercise A.2.1.iii). Now use Exercises (A.2.1).i and ii.]
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