1) QUESTIONS ABOUT PREVIOUS EXERCISES
2) LIMITS WITH "LITTLE-O" METHOD

$$
\lim _{x \rightarrow 0} e^{\frac{1}{x}}=1+\frac{1}{x}+\sigma\left(\frac{1}{x}\right)
$$

$$
\begin{aligned}
& \text { (} e^{x}=1+x+\frac{x^{2}}{2}+\cdots+\frac{x^{n}}{n!}+o\left(x^{n}\right) \\
& e^{x}=1+\sigma(1) \\
& \log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots+(-1)^{n+1} \frac{x^{n}}{n}+o\left(x^{n}\right) \\
& !^{(1+x)^{a}}=1+a x+\frac{a(a-1)}{2} x^{2}+\cdots+\left(\begin{array}{c}
n \\
a \\
n
\end{array}\right) x^{n}+o\left(x^{n}\right) \quad \text { dove }\binom{a}{n}=\frac{a(a-1) \ldots(a-n+1)}{n!} \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots+(-1)^{n} \frac{x^{n+1}}{(2 n+1)!}+0\left(x^{2 n+2}\right) \\
& \cos x=1-\frac{x^{2}}{21}+\frac{x^{4}}{4 \|}+\cdots+(-1)^{x^{2 n}}\left(\frac{x^{2 n}}{(2 n)}+o\left(x^{2 n+1}\right)\right. \\
& \tan x=x+\frac{x^{3}}{3}+\frac{2}{15^{5}}+\cdots+o\left(x^{6}\right) \\
& \sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots+\frac{x^{2 n+1}}{(2 n+1)!}+o\left(x^{\left(x^{n+2}\right)}\right. \\
& \cosh x=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots+\frac{x^{2 n}}{(2 n)!}+o\left(x^{2 n+1}\right) \\
& \tanh x=x-\frac{x^{3}}{3}+\frac{2}{15} x^{5}+o\left(x^{6}\right) \\
& \text { arcsin } x=x+\frac{1}{6^{x}}{ }^{3}+\frac{3}{40^{3}} x^{5}+\cdots+\frac{(2 n)!}{4 n(n))^{2}(2 n+1)^{2^{2 n+1}}+o\left(x^{2 n+2}\right)} \\
& \text { arctan } x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{2 n+1}+o\left(x^{2 n+2}\right) \\
& \text { arsinh } x .=x-\frac{1}{6} x^{x^{3}}+\frac{3}{40^{3}} x^{5}+\cdots+\frac{(-1)^{n}(2 n)!}{4 n(n))^{(2 n+1)}} x^{2 n+1}+o\left(x^{2 n+2}\right) \\
& \text { artanh } x=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots+\frac{x^{2 n+1}}{2 n+1}+o\left(x^{2 n+2}\right) \\
& \begin{array}{l}
\lim _{x \rightarrow 0} \frac{3 \operatorname{arctg} x+(1-\cos 2 x) \sin ^{2} x}{27 x^{4}+5 \sin x} \\
\cos (f(x))=1-\frac{(f(x))^{2}}{2}+\sigma\left(f^{2}(x)\right)
\end{array} \\
& (\sin x)^{2}=(x+\sigma(x))^{2} \\
& \frac{1}{=} x^{2}+2\left(x \sigma(x)+\sigma\left(x^{2}\right)\right. \\
& =x^{2}+\sigma\left(x^{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
N: \quad \underbrace{3(x+\sigma(x))}+\left[y-\left(x-\frac{(2 x)^{2}}{2}+\sigma f(2 x)^{2}\right]\right)]\left(x^{2}+\sigma\left(x^{2}\right)\right) \\
\sigma(3 x) \quad 2 x^{2}+\sigma\left(x^{2}\right) \\
3 x+\sigma(x)+\left(2 x^{2}+\sigma\left(x^{2}\right)\right)\left(x^{2}+\sigma\left(x^{2}\right)\right) \\
2 x^{2}\left(x^{2}+\sigma\left(x^{2}\right)\right)+\sigma\left(x^{2}\right)\left(x^{2}+\sigma\left(x^{2}\right)\right)
\end{gathered}
$$

$$
\begin{aligned}
& 4 x^{4}+\sigma\left(x^{4}\right)+\sigma\left(x^{4}\right)+\sigma\left(x^{4}\right) \\
& 4 x^{4}+\sigma\left(x^{4}\right)=\sigma\left(x^{3}\right) \\
&=\sigma\left(x^{2}\right)=\sigma(x) \\
& 3 x+\sigma(x)+4 x^{4}+\sigma\left(x^{4}\right) \\
& \sigma\left(x^{3}\right) \quad \lim _{x \rightarrow \infty} \frac{1+x}{x}=\lim _{x \rightarrow \infty} \frac{x}{x} \frac{\left(1+\frac{1}{x}\right)}{1} \\
&=\lim _{x \rightarrow \infty} \underbrace{1+\frac{1}{x}=1}_{\underbrace{}_{0}}
\end{aligned}
$$

$$
\begin{array}{rlrl}
D: & 27 x^{4}+5 \sin x & \sin x & =x+\sigma(x) \\
& 27 x^{4}+5 x+\sigma(x) & x^{4}=\sigma(x) & \sigma(1)=\sigma\left(x^{0}\right), \sigma(x), \\
& 5 x+\sigma(x) & & \\
\lim _{x \rightarrow 0^{-}} & \lim _{x \rightarrow 0} \frac{N}{D}=\lim _{x \rightarrow 0} \frac{3 x+\sigma(x)}{5 x+\sigma(x)}=\lim _{x \rightarrow 0} \frac{3+\sigma(1)}{5+\sigma(1)}=\frac{3}{5}
\end{array}
$$

$$
\sigma(1)=\sigma\left(x^{0}\right), o(x), x\left(x^{2}\right),
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin ^{2} x-1+\cos x+3 \log (1+x)}{x \log (1+x)-2 \sin x+1-\cos x}
\end{aligned}
$$

$$
\begin{aligned}
& D: x(x+\sigma(x))-2(x+\sigma(x))+1-(\underbrace{\left(1-\frac{x^{2}}{2}+\sigma\left(x^{2}\right)\right.}_{1+\sigma(1)}) 3 x+\sigma(x) \quad \frac{\sigma\left(x^{2}\right)}{x^{3}}=\text { ? } \\
& x^{2}+\sigma\left(x^{2}\right)-2 x+\sigma(x)+\frac{x^{2}}{2}+\sigma\left(x^{2}\right) \\
& -2 x+\sigma(x) \\
& \text { eg. } \\
& \lim _{x \rightarrow 0} \frac{x^{2}}{x}=0 \\
& x^{2}=\sigma\left(3^{\alpha} x\right) \\
& \lim _{x \rightarrow 0} \frac{x^{2}}{3 x}=0 \\
& \text { e.g. } \quad x^{1+\beta}=\sigma(x) \quad B>0
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} \frac{N}{D}=\lim _{x \rightarrow 0} \frac{3 x+\sigma(x)}{-2 x+\sigma(x)}=-\frac{3}{2}
$$

egg. $\quad x^{1+\beta}=\sigma(x) \quad \beta>0$

$$
\sigma(N), \sigma\left(N^{2}\right)
$$

$$
\begin{align*}
& \text { 4) } \lim _{x \rightarrow 0} \frac{\sin x-\operatorname{tg} x}{\operatorname{arctg} x-\operatorname{tg} x} \\
& N: \quad x+\sigma(x)-(x+\sigma(x)) \\
& \sigma(x) \tag{x}
\end{align*}
$$

$$
D: \quad x+\sigma(x)-(x+\sigma(x))
$$

$$
\begin{aligned}
& x-\frac{x^{3}}{6}+\sigma\left(x^{3}\right)-\left(x+\frac{x^{3}}{3}+\sigma\left(x^{3}\right)\right) \\
& -\left(\frac{1}{6}+\frac{1}{3}\right) x^{3}+\sigma\left(x^{3}\right) \\
& -\frac{1}{2} x^{3}+\sigma\left(x^{3}\right)
\end{aligned}
$$

$$
\rightarrow \lim \frac{N}{D}=\lim \frac{-\frac{1}{2} x^{3}+\sigma\left(x^{3}\right)}{-\frac{2}{3} x^{3}+\sigma\left(x^{3}\right)}=3
$$

8) $\lim _{x \rightarrow 0}$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{e^{\sin x}+\log \left(\frac{1-x}{e}\right)}{\sin x^{2}} \\
& N: \quad 1+\sin x+\sigma(\sin x)+\log (1+(-x))-\log _{" 11} e \\
& { }^{\prime \prime} \\
& x+\sigma(x) \quad \sigma_{1} \sigma_{1}(x+\sigma(x)) \quad(-x)+\sigma(x) \\
& \sigma^{\prime \prime}(x)
\end{aligned}
$$

$1+x+\sigma(x)-x+\sigma(x)-1$

$$
\begin{aligned}
& 1+\sin x+\frac{(\sin x)^{2}}{2}+\sigma\left(\sin ^{2} x\right)+(-x)-\frac{(-x)^{2}}{2}+\sigma\left(x^{2}\right)-1 \\
& x-\frac{x^{3}}{6}+\sigma\left(x^{3}\right) \quad \sigma\left(x^{2}\right) \\
& x^{\prime \prime}+\sigma\left(x^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \not x+\sigma\left(x^{2}\right)+\frac{x^{2}}{2}+\sigma\left(x^{2}\right)-x-\frac{x^{2}}{2}+\sigma\left(x^{2}\right) \\
& \sigma\left(x^{2}\right) \longrightarrow-\frac{1}{2} x^{3}+\sigma\left(x^{3}\right)
\end{aligned}
$$

$D: \sin x^{2}=x^{2}+\sigma\left(x^{2}\right)$

$$
\lim \frac{N}{D}=\lim \frac{\sigma\left(x^{2}\right)}{x^{2}+\sigma\left(x^{2}\right)}=O \quad\left[=\lim _{x \rightarrow 0}-\frac{1}{2} x+\sigma(x)\right]
$$

$$
\begin{aligned}
& \text { 10) } \lim _{x \rightarrow 0} \frac{x^{\sin x}-1-x \log x}{\operatorname{tg}^{2} \log ^{2} x}
\end{aligned}
$$

$$
\begin{aligned}
& (1+\sin x \log x+\sigma(\sin x \log x)-1-x \log x)
\end{aligned}
$$

$$
\begin{aligned}
& x \log x-\frac{x^{3}}{6} \log x+\sigma\left(x^{3} \log x\right)+\frac{x^{2} \log ^{2} x}{2}+\sigma\left(x^{2} \log ^{2} x\right) \\
& +\sigma\left(x^{2} \log ^{2} x\right)-x \log x \\
& \log ^{n} x=\sigma(x) \\
& \frac{x^{2} \log ^{2} x}{2}+\sigma\left(x^{2} \log ^{2} x\right)
\end{aligned}
$$

D: $\operatorname{tg}_{\text {" }} x^{2} \log ^{2} x+\sigma\left(x^{2}\right):=x^{2} \log ^{2} x+\sigma\left(x^{2} \log ^{2} x\right)$

$$
\lim \frac{N}{D}=\lim _{\ln }^{\left(\frac{1}{2}\right) x^{2} \log ^{2} x+\sigma\left(x^{2} \log ^{2} x\right)} \frac{x^{2} \log ^{2} x+\sigma\left(x^{2} \log ^{2} x\right)}{\frac{1}{2}}
$$

g) $\lim \frac{e^{x} \sin x-\frac{x^{2}}{1+x}-x}{1+x}$
9) $\lim _{x \rightarrow 0} \frac{e^{x} \sin x-\frac{x^{2}}{1+x}-x}{\operatorname{arctg}^{3} x}$
$N:\left[1+x+\frac{x^{2}}{2}+\sigma\left(x^{2}\right)\right]\left[x-\frac{x^{3}}{\sigma}+\sigma\left(x^{3}\right)\right]-x^{2}(1+x)^{-1}-x$

$$
\begin{aligned}
x- & \frac{x^{3}}{6}+\sigma\left(x^{3}\right)+x^{2} \\
& = \\
& \frac{4}{3} x^{3}+\sigma\left(x^{3}\right) \\
& =\left(1+\frac{1}{2}-\frac{1}{6}\right)
\end{aligned}
$$

$D: \quad x^{3}+\sigma\left(x^{3}\right)$

$$
\rightarrow \lim _{x \rightarrow 0} \frac{N}{D}=\lim _{x \rightarrow 0} \frac{\frac{4}{3} x^{3}+\sigma\left(x^{3}\right)}{x^{3}+\sigma\left(x^{3}\right)}=\frac{4}{3}
$$

calculate the limits

1) $\lim _{x \rightarrow 0} \frac{\sin x^{2}+\log (1+2 x)}{x \cos x+\sin 3 x}$
2) $\lim _{x \rightarrow 0^{+}} x\left(x \sin \frac{1}{x}-\log \left(\frac{x^{2}}{x^{2}+1}\right)-1\right)$
3) $\lim _{x \rightarrow 0^{+}} \frac{4 x^{2} \sin \sqrt{x}+(1-\cos x)^{2}}{\sqrt{x} \sinh x^{2}+\left(e^{x}-1\right)^{3}}$
4) $\lim _{x \rightarrow+\infty} x\left(e^{\frac{2 x+2}{x+5}}-e^{2}\right)$
5) $\lim _{x \rightarrow 2^{+}}\left(e^{x}-e^{2}\right) \frac{1}{\log (\sin (x-2))}$
6) $\lim _{x \rightarrow+\infty}(x-\sin x)\left(\frac{1}{x}-\sin \frac{1}{x}\right)$
7) $\lim _{x \rightarrow 0} \frac{\sin x-\operatorname{tg} x}{\operatorname{arctg} x-\operatorname{tg} x}$
8) $\lim _{x \rightarrow 0} \frac{1+\log ^{2}(1+x)-e^{x^{2}}}{x(1-\cos x}$
9) $\lim _{x \rightarrow 0^{+}} \frac{\log (1+2 \sqrt{x} \operatorname{arctg} x)-e^{x^{2}}+1}{\sqrt{1+x^{3 / 2}-1}}$
10) $\lim _{x \rightarrow 0} \frac{\sin x}{\log ^{2}(1+x)}-\frac{1}{x}$
11) $\lim _{x \rightarrow 0} \frac{\operatorname{tg} x-\operatorname{arctg} x}{\log (1+x)-\sin x+x(1-\cos x)}$
12) $\lim _{x \rightarrow 0} \frac{\sin (\operatorname{arctg}(\sin x))-\operatorname{arctg}(\sin x)}{\sin (\operatorname{arctg} x)-\sin x}$
13) $\lim _{x \rightarrow 0^{+}} \frac{x^{\log x}+\operatorname{ctg}^{2} x}{e^{\frac{1}{x}}+\left(\tanh ^{2} x\right)^{-1}}$
14) $\lim _{x \rightarrow 0} \frac{\sinh \left(x^{x}-1\right)}{1-\cosh \left(x^{x}-1-x \log x\right)}$
15) $\lim _{x \rightarrow 0} \frac{e^{\sin x}+\log \left(\frac{1-x}{e}\right)}{\sin x^{2}}$
16) $\lim _{x \rightarrow 0} \frac{\log (\sin x)-\log (x \cos x)}{\operatorname{tg} x^{2}+e^{-1 / x}}$
17) $\lim _{x \rightarrow 0} \frac{e^{x} \sin x-\frac{x^{2}}{1+x}-x}{\operatorname{arctg}^{3} x}$
18) $\lim _{x \rightarrow+\infty} x^{2} \frac{\log \left(\sin ^{2} x\right)-\log x^{2}-\log x}{x-\sin x}$
19) $\lim _{x \rightarrow 0} \frac{c \sin x-\overline{1+x}-x}{\operatorname{arctg}^{3} x}$
20) $\lim _{x \rightarrow+\infty} x^{2} \frac{\log (\sin x)-\log x-\log x}{x-\sin x}$
21) $\lim _{x \rightarrow 0} \frac{x^{\sin x}-1-x \log x}{\operatorname{tg} x^{2} \log ^{2} x}$
22) $\lim _{x \rightarrow 0^{+}} \frac{\left(1+x^{3}\right)^{\log x}-1}{\log x \log (1+x-\sin x)}$
