
Chapter 2

Lagrangian Mechanics

2.1 Introduction

There are two problems that naturally lead to the Lagrangian formalism within Newtonian Me-
chanics: the problem of writing the equations of motion in an arbitrary system of coordinates, and
the problem, strictly connected to it, of eliminating constraint forces, or constraint reactions, in
constrained systems. Such problems arise alrady for elementary systems with a single point mass,
so we shall illustrate them here in such a simple case, deferring the general treatment to the next
sections. A further important motivation to be interested in the Lagrangian formalism is its con-
nection with other disciplines, like geometry and optics, or with general problems of optimization,
through the so-called variational formulation of the laws of mechanics. To such an important aspect
of Lagrangian mechanics we shall devote the last sections of this chapter.

2.1.1 The point mass in arbitrary coordinates

The Newton equation for a point P of mass m, subject to a force F(P,v, t) depending on its
position, its velocity and possibly on time, has the well known form

ma = F . (2.1.1)

Such a vector equation coresponds to three scalar equations: if x, y, z are the Cartesian coordinates
of P in a given reference frame of origin O and axes x, y, z, with unit vectors ex, ey, ez, then (2.1.1)
is equivqlent to the system

mẍ = Fx(P,v, t) , mÿ = Fy(P,v, t) , mz̈ = Fz(P,v, t) , (2.1.2)

where Fx, Fy e Fz denote the components of F in the chosen frame, that is Fx = F · ex and so
on. Such equations, as is known, are invariant for a rather wide class of coordinate changes – the
so-called Galilean transformations – including translations and rotations of the frame, as well as
passing to coordinate systems in uniform rectilinear motion: if we change coordinates within this
class, the equations of motion in the new coordinates mantain the elementary form (2.1.2).

The form (2.1.2) of the equations is instead lost if we pass to more general coordinates, like the
familiar cylindrical or polar coordinates. Let us restrict ourselves, for simplicity, on the plane, and
consider the usual polar coordinates r,ϑ, searching for the equations of motion in such coordinates;
the relation between polar and Cartesian coordinates, we recall, is

x = r cosϑ , y = r sinϑ .
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Figure 2.1: Illustrating the passage from Cartesian to polar coordinates in the plane.

To deduce from (2.1.1) two scalar equations for r and ϑ, we should project it, this time, not along
ex e ey, but along the unit vectors er e eϑ tangent to the new coordinate lines, named respectively
radial and transversal (figure 2.1). Such vectors, at variance with ex e ey, are different from place
to place, and so, for any motion, they change in time. Let us then observe, preliminarly, that

Lemma 16 It is

ėr = ϑ̇eϑ , ėϑ = −ϑ̇er . (2.1.3)

Proof. These expressions immediately follow from

er = cosϑex + sinϑey , eϑ = − sinϑex + cosϑey ,

taking a time derivative.

It is now easy to proceed: if P − O = rer is the vector giving the position of our point P ,
by deriving with respect to time and using the (2.1.3), we first find the velocity of P , namely
v = ṙer + rϑ̇eϑ, and then its acceleration

a = (r̈ − rϑ̇2) er + (rϑ̈+ 2ṙϑ̇) eϑ .

The acceleration appears now decomposed into its radial and transversal components, namely

ar = r̈ − rϑ̇2 , aϑ = rϑ̈+ 2ṙϑ̇ .

We can finally write the equations of motion mar = Fr, and maϑ = Fϑ, where Fr = F · er and
Fϑ = F · eϑ denote, respectively, the radial and transversal components of the force. As a result,
the equations of motion assume the form, different from (2.1.2),

mr̈ = Fr +mrϑ̇2 , mrϑ̈ = Fϑ − 2mṙϑ̇ .

The natural question arises whether there exists a general form of the equations of motion, more
general than (2.1.2), which remains invariant under any change of coordinates. The question can
be formulated, in general terms, as follows: denote w = (w1, w2, w3) = (x, y, z); quite generally, a
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change of coordinates from x, y, z to any coordinates q = (q1, q2, q3) — a traditional notation in
Lagrangian mechanics — is a regular map1

w = w(q) ,

or equivalentently

x = x(q1, q2, q3) , y = y(q1, q2, q3) , z = z(q1, q2, q3) ,

from a convenient open set U ⊂ R3 (the domain of q) to its image w(U) ∈ R3 (the domain of w),
such that the Jacobian matrix

∂w

∂q
=

∂(x, y, z)

∂(q1, q2, q3)
=





∂x
∂q1

∂x
∂q2

∂x
∂q3

∂y
∂q1

∂y
∂q2

∂y
∂q3

∂z
∂q1

∂z
∂q2

∂z
∂q3





has rank 3, that is has nonvanishing determinant; such a condition guarantees, at least locally, that
the change of coordinates is a diffeomorphism, i.e. a regular invertible map with regular inverse (as is
necessary to say the map is a change of coordinates). As is known, the condition on the determinant
implies that the three vectors corresponding to the three columns of the matrix, namely

∂w

∂qh
=

∂x

∂qh
ex +

∂y

∂qh
ey +

∂z

∂qh
ez , h = 1, 2, 3 ,

are linearly independent, and so provide a basis in R3. Each vector ∂w
∂qh

turns out to be tangent2

to the h–th coordinate line, namely the line obtained by letting only qh to vary; figure 2.2 shows
the situation for the common spherical polar coordinates (q1, q2, q3) = (ρ,ϑ,ϕ) defined by

x = ρ sinϑ cosϕ , y = ρ sinϑ sinϕ , z = ρ cosϑ . (2.1.4)

In the very particular case of Cartesian coordinates, it is w = xex+ yey + zez; the coordinate lines
are then straight lines parallel to the coordinate axes, and the Jacobian matrix is the identity.

Exercise 25 For the above defined spherical polar coordinates, write the three vectors ∂w
∂ρ ,

∂w
∂ϑ ,

∂w
∂ϕ

tangent to the coordinate lines, and determine where the Jacobian matrix has rank lower than three
(that is, where spherical coordinates are not good).

It is now clear that the general procedure to obtain from the Newton vector equation three
scalar differential equations for the unknowns qh(t), h = 1, 2, 3, is to project the equation, point by
point, along the three directions tangent to the coordinate lines, that is to write

(ma− F) ·
∂w

∂qh
= 0 , h = 1, 2, 3 . (2.1.5)

We shall see in the next section that such an expression, properly developed, leads to equations of
motion that no matter how the coordinates have been chosen, have one and the same form, namely
that of the Lagrange equations. Before going on, however, it is worthwhile to observe that equations
similar to (2.1.5) naturally appear also in connection with the dynamics of the constrained point
mass.

1We are here excluding, for simplicity, changes of coordinates which depend explicitly on time.
2Think for example of a curve described parametrically by the three functions of time x(t), y(t), z(t). The vector

(dxdt ,
dy
dt ,

dz
dt ) is the velocity, tangent to the curve. Here, in place of time, we have any of the qh, the remaining ones

staying constant.
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Figure 2.2: Illustrating the passage from Cartesian to spherical polar coordinates.

2.1.2 The constrained point mass

Let us then come to the problem of the equations of motion for a constrained point mass. We
start from kinematics, considering first the case of a point mass constrained to a given susrface Q

(constraint manifold , or configuration space). We recall that a surface Q can be defined implicitly,
by means of an equation F (x, y, z) = 0 with regular F such that3 its gradient ∇F never vanishes
on Q, or instead in a parametric form. As is well known from mathematical analysis, for each
implicitely defined surface, it is always possible to produce locally a parametric representation of
the form

x = x(q1, q2) , y = y(q1, q2) , z = z(q1, q2) , (2.1.6)

in compact notation
w = w(q1, q2) , (2.1.7)

where (q1, q2) ∈ U ⊂ R2, U being some open set.4 In particular, in each of its points, the surface
admits a tangent plane, and the 3× 2 Jacobian matrix

∂(x, y, z)

∂(q1, q2)
=





∂x
∂q1

∂x
∂q2

∂y
∂q1

∂y
∂q2

∂z
∂q1

∂z
∂q2





has rank 2; this means the two vectors ∂w
∂qh

, h = 1, 2, each being tangent to the coordinate line
which is obtained by letting only the qh coordinate vary, provide, in any point w ∈ Q, a basis for
the tangent plane TwQ to the surface Q in w. Each tangent vector can then be represented as a
linear combination of such vectors (figure 2.3). For tangent vectors, we shall use the traditional
notation5 δw, denoting correspondingly by δqh, h = 1, 2, their components along the basis vectors;

3For example, the equation x2 + y2 + z2 −R2 = 0 appropriately defines a surface (the sphere of radius R) because
∇F = (2x, 2y, 2z) never vanishes where F = 0. Instead the equation x2 + y2 + z2 = 0 does not define a surface
but a different object (a point), because ∇F vanishes where F = 0. Which geometrical object remains defined by
x2 + y2 − z2 = 0?

4A possible parametric representation (although, in general, not the most convenient one) is obtained by means
of the implicit function theorem: if, in a point of the surface, it is, for example, ∂F

∂z
#= 0, then the surface can be

described locally as the graph of a function z = f(x, y), with suitable f ; in such a case the (2.1.6) are given by x = q1,
y = q2, z = f(q1, q2).

5The notation induces to confuse tangent vectors with “small quantities”, or with differentials. This is not
unpleasent, since the rules to operate on them, starting from (2.1.8), are the same. The correct way to read (2.1.8)
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Figure 2.3: The point mass constrained to a surface.

that is, we shall write

δw =
2∑

h=1

∂w

∂qh
δqh . (2.1.8)

The vector δw ∈ TwQ is also called, in the traditional language of mechanics, virtual displacement
(to be thought of as an a priori possible displacement, compatible with the constraint, to be
distinguished from the effective displacement which is realized by a given motion passing through
w). The local coordinates q1, q2 are called free coordinates (to stress the difference with respect to
x, y, z, which are instead related by F (x, y, z) = 0).

Example Consider a spherical pendulum, that is a point mass subject to the constraint
F (x, y, z) = 0, with F = x2 + y2 + z2 − R2; the condition ∇F &= 0 on the sphere F = 0 is
satisfied. In the upper hemisphere z > 0 it is possible to use q1 = x and q2 = y as free coordinates;
the corresponding parametric equations are then

x = q1 , y = q2 , z =
√
R2 − q21 − q22 , (2.1.9)

and the Jacobian matrix ∂(x,y,z)
∂(q1,q2)

has everywhere rank 2. In a similar way it is possible to parametrize
the lower hemisphere z < 0. It is instead necessary to exclude the equator z = 0, where equations
(2.1.9) are not anymore differentiable. A different much preferable choice of the free coordinates is
provided by the angles ϑ and ϕ of the sperical coordinates; the corresponding parametric equations
are

x = R sinϑ cosϕ , y = R sinϑ sinϕ , z = R cosϑ ,

namely the (2.1.4) with ρ = R. It is easy to check that the condition on the rank is satisfied
everywhere, but on the poles ϑ = 0,π.

Let us finally come to the case of a point mass which is constrained to move on a given curve
Q. The curve can be defined implicitly through a pair of equations F (x, y, z) = 0, G(x, y, z) = 0
(figure 2.4), the functions F and G being independent, more precisely such that, on Q, the 2 × 3
Jacobian matrix

∂(F,G)

∂(x, y, z)
=

(
∂F
∂x

∂F
∂y

∂F
∂z

∂G
∂x

∂G
∂y

∂G
∂z

)

is to look at it as at the tangent (or derivate) application Dw to the application (2.1.7); Dw is indeed a linear
application from TqU to Tw(q)Q, which sends the vector of components δq1, δq2 into the vector δw, and is represented

in coordinates by the matrix ∂(x,y,z)
∂(q1,q2)

.
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Figure 2.4: The point mass constrained to a curve.

has rank 2, and correspondingly, the vectors ∇F , ∇G are linearly independent;6 in such a case the
position of P on the curve is identified by just one free coordinate, say q1, and the curve admits the
parametric representation x = x(q1), y = y(q1), z = z(q1), that is w = w(q1), with the property
that ∂w

∂q1
&= 0. An easy example is the ordinary plane pendulum of lenght l, suspended at the origin

of a Cartesian frame xyz. If the pendulum is constrained to the vertical plane xy, with vertical axis
y, and ϑ denotes as usual the angle between the negative y axis and the pendulum, the constraint
can be expressed through the pair of equations

x2 + y2 − l2 = 0 , z = 0 ,

while the parametric representation (with ϑ = q1) is evidently

x = l sinϑ , y = −l cosϑ , z = 0 .

It is then clear that, from a kinematic point of view, the two cases of a point mass constrained
to a curve or to a surface are formally similar to the case of the unconstrained point mass described
in arbitrary coordinates: in all cases, the position of P is expressed locally (that is, in an open set
U ⊂ Rn) in the parametric form

w = w(q1, . . . , qn) , (2.1.10)

by means of three regular functions, with, in the three considered cases, n = 1, n = 2 or n = 3;
moreover the vectors ∂w

∂qh
, h = 1, . . . , n, tangent to the coordinate lines, in every point are linearly

independent. The number n is said to be the number of degrees of freedom of the system.

Let us now come to the dynamics. While in the case of a free point mass the use of the Newton
equation presents no problems, and directly leads to the equations of motion (2.1.5), in the case of
a constrained point mass it is necessary to keep into account the action of the physical device which
realizes the constraint, that is keeps the point P on the constraint manifold. The first assumption
we need to make, is that the device acts by producing a convenient force Φ, which adds to the
other forces. To distinguish, the latter are called the active forces, while Φ is called the constraint
reaction. If F denotes the resultant of the active forces, then the Newton equation writes

ma = F+Φ .

While F should be thougt of to be known (a datum of the problem), Φ instead it is not: rather, it
should be considered as an unknown, which adds to the motion to be determined.

6Such a condition replaces the previous condition ∇F #= 0. It implies that both surfaces F = 0, G = 0 are
well defined, and moreover they intersect transversally (the two vectors ∇F and ∇G, ortogonal to them, are never
parallel; see figure 2.4).
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• Consider for example the case of a point P of mass m, which is resting on a floor. We know
the point is subject to the weight force F = −mgez; if we observe the point does not move,
and we admit the Newton law ma = F + Φ holds, we necessarily deduce Φ = −F: that
is, the floor reacts to the weight, by producing in some way a force (constraint reaction)
Φ which exactly balances the weight. We thus see that the constraint reaction “adapts” to
the actual strenght, and is not known in advance, or deducible in some way by knowing in
detail the structure of the floor. Moreover: in general, Φ also depends on the velocity of the
point P .7 This is evident, for example, in the simple case of a point mass rotating uniformly
on a horizontal circle, subject to the gravity F = −mgez: as is known, in such a case the
acceleration is purely radial (aϑ = 0) and it is ar = −rϑ̇2; so, from ma = F + Φ it follows
Φ = −mϑ̇2rer − F.

An easy balance between the number of equations at our disposal (three, corresponding the Newton
vector equation) and the number of unknowns (three for Φ, n for the motion) shows the problem
is undetermined, unless we have at our disposal some further informations about the device that
realizes the constraint; for the constraint to a surface or to a curve, the number of lacking equations
is, respectively, n = 2 and n = 1. The Lagrangian method applies to the case of the so-called ideal
constraints, and allows to write in all cases exactly n equations for the movement P = P (t), in which
the constraint reaction Φ does not appear explicitly; once the motion w(t) has been determined,
and with it the acceleration a(t), the constraint reaction, if required, is easily determined by the
relation Φ = ma− F.

A general definition of ideal constraint will be provided below in section 2.2.3. In the simple
case considered here of a point mass constrained to a given surface or curve, the constraint is said
to be ideal if the susface or the curve are smooth, namely the reaction Φ in w ∈ Q is always exactly
perpendicular to the surface or to the curve in w (figures 2.3 and 2.4). Recalling the notation δw
for a generic tangent vector to Q in w, the above condition expresses analytically in the form

Φ · δw = 0 (2.1.11)

for any tangent vector δw, or equivalently through the n conditions (n = 1 or 2)

Φ ·
∂w

∂qh
= 0 ∀h . (2.1.12)

It appears then clearly that the assumption the constraint be ideal produces exactly as many
equations as is necessary to make the problem determined. Moreover, if we proceed as for the
free point mass, that is we project the Newton equation along each of the tangent vectors ∂w

∂qh
, the

constraint reaction Φ completely disappears, and we are left with exactly n = 1 or n = 2 equations
for the movement, which are

(ma− F) ·
∂w

∂qh
= 0 ∀h . (2.1.13)

7The fact that Φ is not purely positional, and depends in general on the motion (typically, as in the following
example, on the square of the velocity), raises nontrivial conceptual problems, if one aims to construct a physical
model of constraint, that is a device which not by magic, but obeying to the laws of Physics, is able to produce
in each circumstance the reaction which is necessary to make the motion to conform to the constraint. For an
introduction to this problem (generally neglected in the literature, and not even mentioned in classical textbooks),
see V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer 1978, and G. Gallavotti, The elements of
Mechanics, Springer 1983. The fundamental idea however, although difficult to reconcile with the necessity of forces
depending on velocities, is the intuitive one: the constraint is realized by some device having high rigidity (large
elastic constants, ideally infinite), able to react with arbitrarily large forces to imperceptible deformations.
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By comparison with (2.1.5), which formally coincides with (2.1.13) if we let n = 3, we see that also
for dynamics, as for kinematics, the problem of the point mass constrained to a smooth surface or
curve is analog to the problem of the free point mass described in arbitrary coordinates, only the
number n of degrees of freedom being different in the different cases.

2.1.3 Relative motions and mobile constraints

The above considerations concerning the motion a single point mass, easily extend to two other
interesting problems. An especially relevant one is the problem of relative motions: how to write
the correct equations of motion in a mobile reference frame, for example a frame which rotates
uniformly, with given angular velocity ω, around the z axis of the fixed frame. As we shall see in
detail in the next section, in Lagrangian mechanics it is not necessary to introduce the so-called
“fictitious forces”, like the centrifugal or the Coriolis forces, so as to simulate we are in an inertial
reference frame. It will be enough to write a time-dependent change of coordinates, in the example

x = q1 cosωt− q2 sinωt, y = q1 sinωt+ q2 cosωt, z = q3 ,

and proceed exactly as above: that is projecting the Newton equation, point by point, along the
three vectors ∂w

∂qh
tangent to the coordinate lines (frozen in their instantaneous configuration),

regardless of the fact that coordinate lines do move. The correct equations of motion will automat-
ically follow, as in the time independent case.

A second problem, clearly related to the previous one, is that of mobile constraints: for example
a spherical pendulum of radius R, whose suspension point C is not fixed, but moves along the
vertical axis with some given law zC = zC(t); the equation of such a constraint has the form
F (x, y, z, t) = 0, with

F (x, y, z, t) = x2 + y2 + (z − zC(t))
2 −R2 ,

while the parametric representation of the motion, using as before the angles ϑ,ϕ of the spherical
coordinates, is

x = R sinϑ cosϕ , y = R sinϑ sinϕ , z = zC(t) +R cosϑ .

There is no essential difference with respect to the case of fixed constraints: here too, it will
be enough to project the Newton equation along the two directions tangent to the sphere in its
instanteneous configuration, that is along the two vectors ∂w∂ϑ ,

∂w
∂ϕ tangent to the coordinate lines, as

if the constraint were fixed. The notion of ideal constraint, too, remains unchanged: the constraint
reactionΦ is assumed to be perpendicular to the sphere, in its instantaneous configuration, ignoring
the fact that the sphere moves.

2.2 Systems of N possibly constrained point masses

2.2.1 Holonomic constraints and free coordinates

After having illustrated in the previous section the aim of the Lagrangian formalism, and having
introduced, for the case of a single point mass, the notion of constraint and of free coordinates, we
come now to the general case of N point masses (N finite); with minor additional work, we shall
include the possibility of time dependent coordinates and of mobile constraints. Consider a system
of N point masses P1, . . . , PN , and introduce for their Cartesian coordinates the compact notation

w = (w1, . . . , w3N ) = (x1, y1, z1, . . . , xN , yN , zN ) ,
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so as a single vector w ∈ R3N provides a complete description of the whole system.

In absence of constraints, a generic change of coordinates from w to new coordinates q =
(q1, . . . , qn), n = 3N , possibly dependent on time, writes

w = w(q, t) .

The jacobian matrix ∂wi
∂qh

is supposed to have everywhere, and at any time, nonzero determinant;
this ensures that, at least locally, the change of coordinates is a diffeomorphism. The same condition
also ensures that the vectors ∂w

∂qh
, h = 1, . . . , n, which are tangent to the n coordinate lines, are

linearly independent, and thus provide a local basis in R3N .

Coming now to constrained systems, let as first give a definition:

Definition 10 We shall say a system of N point masses P1, . . . , PN is subject to r holonomic
constraints, 1 ≤ r < 3N , if the set of the configurations w the system can access satisfies r
equations of the form

F (s)(w, t) = 0 , s = 1, . . . , r , (2.2.1)

where F (1), . . . , F (r) are regular independent functions, such that

rank
(∂F (s)

∂wj

)
= r (2.2.2)

for any accessible configuration, that is wherever condition (2.2.1) is satisfied.

In this way, at any time t we deal with a manifold Q ⊂ R3N of dimension n = 3N − r (actually a
submanifold of R3N ); Q is called the constraint manifold, or configuration space, while n is called
the number of degrees of freedom of the constrained system.

According to mathematical analysis, condition (2.2.1) allows to introduce, at least locally, a
parametric representation of Q, that is to express all coordinates w1, . . . , w3N as functions of n
convenient parameters q1, . . . , qn, called free coordinates, and of t: precisely,8

wi = wi(q1, . . . , qn, t) , i = 1, . . . , 3N , (2.2.3)

with

rank
(∂wi

∂qh

)
= n . (2.2.4)

The parametrization in general is only local, that is covers only a portion of Q, providing, in the
common language of geometry, a chart of Q. (The terminology clarly comes from geography, where
a chart reproduces a portion of the Earth’s surface on a portion of plane.) Should it be required,
it is always possible to cover Q with different charts, overlapping on the borders, so constructing
an atlas of Q (like the common geographical atlases). Only exceptionally it is possible to have a
single global parametric representation of Q, with a single chart. In the following, for simplicity, we
shall stick to the local point of view, but it is important to know that everything could be extended
globally.

The meaning of property (2.2.4) is that the n vectors

∂w

∂qh
, h = 1, . . . , n ,

8Indeed, in virtue of the implicit function theorem, we can always take as free coordinates n conveniently chosen
coordinates out of w1, . . . , w3N . A similar choice, however, it is not always the most convenient one.
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which are tangent to the coordinate lines in a generic point w ∈ Q, provide a basis for the tangent
space to Q in w. A generic vector tangent to Q, in its instantaneous configuration at any time t,
will be denoted δw, and we shall write

δw =
n∑

h=1

∂w

∂qh
δqh , (2.2.5)

where δqh, h = 1, . . . , n, are arbitrary coefficients.

Quite in general, keeping together the constrained and the unconstrained cases, it is convenient
to make reference to the following

Definition 11 A system of N point masses is said to be a local holonomic system with n ≤ 3N
degrees of freedom, if its configuration w ∈ R3N is expressed locally in the parametric form (2.2.3),
by means of regular functions w1, . . . , w3N satisfying (2.2.4).

The case n = 3N evidently corresponds to a change of coordinates, with no constraint (r = 0); in
such a case the constraint manifold Q is the whole space, and the tangent space too coincides with
the whole R3N . In the unconstrained case, the expression (2.2.5) simply expresses a generic vector
of R3N in the local basis ∂w

∂qh
, h = 1, . . . , n, formed by the vectors tangent to the n = 3N coordinate

lines.

Making reference, as will also be useful, to the common notation P1, . . . , PN for the N point
masses, the parametric representation assumes the form, equivalent to (2.2.3),

Pi = Pi(q1, . . . , qn, t) , i = 1, . . . , N (2.2.6)

(this is nothing but taking three by three the components of w). Correspondingly, we can introduce
the virtual displacement of the i-th point

δPi =
n∑

h=1

∂Pi

∂qh
δqh , i = 1, . . . , N , (2.2.7)

which is nothing but a triplet of components of δw (by aligning one after the other the N virtual dis-
placement of the N points, the tangent vector δw is reconstructed: that is, δw = (δw1, . . . , δw3N ) =
(δP1, . . . , δPN )).

Example Consider a system of two points P1, P2, constrained to stay at a fixed distance d; the
constraint can be expressed in the form F = 0, with F = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 − d2.
There are then n = 5 free coordinates. A possible choice is provided by the three Cartesian
coordinates of P1 and the two angles ϑ and ϕ of the spherical coordinates of the vector (P2 − P1).
A more convenient choice, in view of the equations of motion that follow, is taking, in place of the
Cartesian coordinates of P1, the Cartesian coordinates of the barycenter.

2.2.2 Non-holonomic constraints (a short comment)

For the sake of completeness, we just mention here the so-called non-holonomic constraints, if only
for explaining the above introduced terminology. Let us consider the case of a single constraint, of
equation F (w) = 0 (for simplicity, we assumed the constraint to be fixed). By differentiating, we
obtain the relation

f1(w) dw1 + · · ·+ f3N (w) dw3N = 0 , (2.2.8)
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with fi =
∂F
∂wi

; in such a form, the constraint appears as a limitation to the allowed displacements,
rather than to the possible configurations. Such an equation including differentials is however
substantially equivalent to the finite or integer relation F = 0. (More precisely, the differential
form (2.2.8) corresponds to a family of constraints of the form F (w) = 0, the different F differing
by an additive constant.)

Quite obviously, not any limitation to the displacements of the form (2.2.8) gives, by integration,
an equation in integer form: for this to happen (at least locally), the closure relations

∂fi
∂wj

=
∂fj
∂wi

, i, j = 1, . . . , 3N,

need to be satisfied, up to a possible previous multiplication of the fi’s by a convenient common
integrating factor9 λ(w). In such a case the constraint is still called holonomic (or also semi-
holonomic). In fact, the word “holonomic” means precisely the constraint can be expressed by an
“integer form” (from the greek óλoς = whole or integer, νóµoς = law).

The differential expression (2.2.8) can be equivalently rewritten by using velocities, precisely

f1ẇ1 + · · ·+ f3N ẇ3N ;

the constraint then appears as a limitation to the admitted velocities.

An example of constraint that is spontaneously written in the differential form, but turns out
to be holonomic, is the condition of pure rolling of a disc on a line. Consider a disc of radius R
leaning on the x axis; its configuration is determined by the two coordinates x and ϕ, where x is
the abscissa of the center C of the disc, actually the same as that of the contact point A of the
disc with the x axis, while ϕ is the angle from the segment OC and some fixed radius drawn in
the disc. If however we impose the constraint of pure rolling (that is, point A of the disc has zero
velocity), there is the further condition

dx+Rdϕ = 0 , equivalently ẋ+Rϕ̇ = 0 .

The differential form representing the constraint is however closed, and the constraint can be written
in the integer form

x+Rϕ− c = 0 ,

c being an arbitrary constant (determined, observe, once an initial datum is given). The system is
then a holonomic system with one degree od freedom, and either x or ϕ can be conveniently taken
as the free coordinate.

A few simple examples of non-holonomic constraints are sketched in appendix A.

2.2.3 Ideal constraints

A. The notion of ideal constraint. Let us consider a holonomic system with n degrees of freedom
composed by N point masses P1, . . . , PN , and let (2.2.3) be the parametric equations providing the
position of each point as a function of the free coordinates q1, . . . , qn and of time. Determining the
movement Pi(t), i = 1, . . . , N , or equivalently w(t), means determining the n unknown functions
qh(t), h = 1, . . . , n. We assume the system moves respecting the constraints, being subject to some

9Indeed, (2.2.8) is equivalent to g1(w)dw1 + · · · + g3N (w)dw3N = 0, where gj(w) = λ(w)fj(w), i = 0, . . . , 3N ,
λ(w) #= 0.
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given active forces Fi, one for each point, and to suitable constraint reactions Φi, also one for each
point. Active forces are supposed to be known functions of positions and velocities of all points,
and possibly of time:

Fi(P1, . . . , PN ,v1, . . . ,vN , t) or Fi(w, ẇ, t) .

The constraint reactions instead are not known in advance: we only know they do whatever is
needed, for the motion to obey the constraint. The Newton equations for the N point masses write
then:

miai = Fi +Φi , i = 1, . . . , N , (2.2.9)

and we are confronted with the problem of deducing from them a system of n “pure” equations,
namely equations that do not contain the constraint reactions, for the unknowns q1, . . . , qn, so as
the motion is determined.

A trivial count of the number of equations and unknowns shows the problem is undetermined,
unless we impose some restriction on the constraint reactions Φi. Indeed, the (2.2.9) are a system of
only 3N scalar equations, while the unknowns, also including the 3N components of the constraint
reactions, are 3N + n. The n lacking equations cannot be searched in the principles of mechanics,
that we already used, and must come from an a priori assumption on the kind of forces the
physical device providing the constraint reactions is able to produce. This should not surprise us,
if we think that a point mass constrained, for example, to a surface, certainly moves differently
(although respecting the constraint, in presence of the same active forces) if the surface is smooth
or differently rough.

Let us then come to the notion of ideal constraint, which generalizes to the case of several point
masses the idea we already introduced for the case of a single point mass.

Definition 12 We shall say a holonomic system of N point masses is subject to ideal constraints, if
the set of the a priori admissible constraint reactions Φ1, . . . ,ΦN is characterized by the condition

N∑

i=1

Φi · δPi = 0 (2.2.10)

for any choice of the virtual displacements δP1, . . . δPN .

The left hand side of (2.2.10) is traditionally called the virtual work of the constraint reactions; the
condition the constraint is ideal can then be stated by saying the device that physically realizes the
constraint is able to produce all and only forces Φ1, . . . ,ΦN that perform null virtual work, for all
conceivable virtual displacements.

Using (2.2.7), also taking into account the arbitrariness of the δqh, equation (2.2.10) results in
the independent conditions

N∑

i=1

Φi ·
∂Pi

∂qh
= 0 , h = 1, . . . , n , (2.2.11)

which are exactly n, that is as many as required to make the problem determined.10

10Observe that, in absence of constraints, the virtual displacements δP1, . . . , δPN are themselves independent; from
(2.2.11) we deduce then, as expected, that all constraint reactions vanish.
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• Equation (2.2.10) has a strong analogy with the case of a single point mass. The analogy
becomes clear we introduce the vector

Ψ = (Ψ1, . . . ,Ψ3N ) = (Φ1, . . . ,ΦN ) ∈ R
3N ,

in which the components of the constraint reaction are placed one after the other, exactly
as the coordinates of the points do compose w. Using this notation, the ideality condition
writes

Ψ · δw = 0 for any choice of the tangent vector δw ,

or equivalently

Ψ ·
∂w

∂qh
= 0 , h = 1, . . . , n .

We then see that in the case of N point masses, too, the ideality of the constraint can be in-
terpreted as the orthogonality of the constraint reaction, more precisely of Ψ, to the constraint
manifold Q.

In a completely equivalent way, in the notion of ideal constraint we can make reference to all possible
velocities ui of the point masses, which are a priori compatible with the constraints: namely

ui =
n∑

h=1

∂Pi

∂qh
q̇h ,

with arbitrary q̇1, . . . q̇n; the ui are called virtual velocities.11 In this language, we can say the
constraints are ideal if the power of the constraint reactions vanishes for all choices of the virtual
velocities u1, . . . ,uN :

N∑

i=1

Φi · ui = 0 , ∀ u1, . . . ,uN . (2.2.12)

• Concerning the definition of ideal constraint, it is worthwhile to stress a fact that, at first
glance, might escape. Consider for simplicity the case of a single point mass constrained to a
fixed surface. The ideality condition implies that, as we just observed, for any effective motion,
the constraint reaction does not do work. However, the assumption that the work vanishes
for any effective motion, does not imply that the constraint is ideal. Indeed, for the effective
work to vanish it is enough the constraint reaction aroused by each particular motion (which
depends on the motion) is orthogonal to that motion only. The ideality condition requires
instead that the constraint reaction is orthogonal to the surface, that is orthogonal not only
to the velocity of the motion at hand, but simultaneously to all velocities tangent to the
surface (think of a magnetic force: no work, but not orthogonal to the surface).

B. The ideality of the rigidity constraint. An important example of ideal constraint is the rigidity
constraint, namely the requirement that for any pair of points Pi, Pj of the body the distance
‖Pi − Pj‖ stays constant. (For basic notions about Newtonian mechanics of rigid systems, here

11In the case of fixed constraints, the effective velocities vi, realized in a certain motion, are indeed a particular
choice inside the set of virtual velocities ui. In the case of mobile constraints, this is not anymore true, for the
presence, in the effective motion, of non tangent components of the velocity (think, for example, of a point at rest
on a plane that rises).
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assumed to be familiar, see appendix B). More precisely, it is not difficult to prove that the rigidity
constraint is ideal, if we assume it be physically realized by pairs of internal forces satisfying
Newton’s third law (pairs of opposite central forces):

Proposition 17 Consider a rigid system of N point masses P1, . . . , PN , and let Φ1, . . . ,ΦN be the
constraint reactions associated to a given motion. Assume

Φi =
∑

j !=i

Fi,j ,

the forces Fi,j satisfying Newton’s third law:

Fi,j = −Fj,i , Fi,j parallel to (Pi − Pj) .

Then the constraint is ideal.

Proof. We limit ourselves, for simplicity, to the case of two point masses, the generalization being
trivial. The assumption on the constraint reactions reduces, in such a case, to

Φ2 = −Φ1 , Φ1 parallel to (P1 − P2) .

By definition of rigid system, it is d
dt(P1−P2)2 = 0, so for any possible motion, that is for any choice

of velocities u1,u2 compatible with the constraint, it is (P1 − P2) · (u1 − u2) = 0; it immediately
follows that the power of the constraint reactions vanishes:

Φ1 · u1 +Φ2 · u2 = Φ1 · (u1 − u2) = 0 .

It is important to observe that the assumptions on the forces that realize the constraint are the
same ones that guarantee the validity of the cardinal equations

Q̇ = Rext , Ṁ = Next ,

where Q and M denote, respectively, the momentum and the angular momentum of the system,
while Rext denotes the resultant of the external forces (of the active forces, in the Lagrangian
language) and Next is their resultant torque. In fact, it is possible to prove (see appendix B) that
for rigid bodies, cardinal equations are equivalent to the ideality of the constraint. We shall come
back on this point after introducing the Lagrange equations. The fact that the rigidity constraint
is ideal, that is the power of the constraint reactions vanishes, corresponds to the fact, well known
within Newtonian Mechanics, that for rigid bodies (at variance with generic non–rigid systems of
N point masses) internal forces do not contribute to the potential energy.

• The example of the rigidity constraint shows in particular how important is asking, in (2.2.10)
or in (2.2.12), that the overall virtual work (or power) vanishes, without assuming Φi ·δPi = 0
(or Φi · ui = 0) separately for each point.

2.3 Kinetic energy, work and potential energy

Our purpose here is to determine the expression of kinetic energy, of work and (for conservative
systems) of potential energy, as functions of the free coordinates q = (q1, . . . , qn) and of the corre-
sponding velocities q̇ = (q̇1, . . . , q̇n), also called generalized velocities.
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2.3.1 Kinetic energy

The parametric equations (2.2.3) and (2.2.6) provide the configuration w of the system and the
position of each point Pi as functions of q and possibly of time; correspondingly, for the velocities
ẇi, i = 1, . . . , 3N and vi, i = 1, . . . , N , we have

ẇi =
n∑

h=1

∂wi

∂qh
(q, t) q̇h +

∂wi

∂t
(q, t) , vi(q, q̇, t) =

n∑

h=1

∂Pi

∂qh
(q, t) q̇h +

∂Pi

∂t
(q, t) (2.3.1)

(observe that in the time dependent case, the vector ẇ is not tangent to the constraint manifold,
because of the term ∂w

∂t ).

Concerning the kinetic energy of the system, the following easy proposition holds:

Proposition 18 For a holonomic system of N point masses, the kinetic energy, expressed as a
function of the free coordinates, has the form

K = K2 +K1 +K0 , (2.3.2)

K2, K1 and K0 being homogeneous polynomial of degree, respectively, 2, 1 and 0 in q̇:

K2 =
1

2

n∑

h,k=1

ahk(q, t) q̇hq̇k , K1 =
n∑

h=1

bh(q, t) q̇h , K0 =
1

2
c(q, t) . (2.3.3)

The coefficients ahk, bh, c are given by

ahk =
N∑

i=1

mi
∂Pi

∂qh
·
∂Pi

∂qk
, bh =

N∑

i=1

mi
∂Pi

∂qh
·
∂Pi

∂t
, c =

N∑

i=1

mi
∂Pi

∂t
·
∂Pi

∂t
. (2.3.4)

Finally, matrix a = (ahk) is symmetric and positive definite.12

Matrix a is called the kinetic matrix. The fact a is positive definite plays a quite relevant role
throughout Lagrangian mechanics. A particularly important consequence, that we shall invoke
several times, is that the determinant of a is different from zero (actually is positive, see footnote
12), and thus a is invertible. In the particular but important case in which equations (2.2.3),
(2.2.6) do not explicitly contain time (time independent change of coordinates, fixed constraints),
it is K1 = K0 = 0, so that K is a (positive definite) homogeneous quadratic form.

Proof. By replacing expression (2.3.1) of vi in the usual formula 1
2

∑N
i=1miv2i of the kinetic energy,

we find

K =
1

2

N∑

i=1

mi

[ n∑

h,k=1

∂Pi

∂qh
·
∂Pi

∂qk
q̇hq̇k + 2

n∑

h=1

∂Pi

∂qh
·
∂Pi

∂t
q̇h +

∂Pi

∂t
·
∂Pi

∂t

]
;

12 Let us recall that a symmetric matrix A is said to be positive definite, if for any u #= 0 it is Au · u > 0; it
is possible to prove that A is positive definite if and only if all diagonal minors (including A itself) have positive
determinant. From this property, but also directly from the definition, it follows that if A is positive definite, then
any diagonal minor is also positive definite. Another necessary and sufficient condition is that all eigenvalues of A
(which for symmetric A are real) are positive. For a symmetric 2 × 2 matrix A it is immediate to see that A is
positive definite if detA > 0 and the diagonal entries (which for detA > 0 have the same sign) are positive. Instead,
detA > 0 is not enough to ensure that A is positive definite, as is shown by the trivial counterexample

A =

(

−1 0
0 −1

)

.
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Figure 2.5: The oblique Cartesian velocities ξ, η.

exchanging the sums and using (2.3.4), the claimed expression of K immediately follows.

Concerning the properties of the kinetic matrix a, its symmetry trivially follows from the sym-
metry of the scalar product. To show a is positive definite, we must show that K2 > 0 for any
choice of q̇ &= 0. For this purpose, let us introduce the velocities “at frozen time”

v∗
i =

n∑

h=1

∂Pi

∂qh
q̇h , vi = v∗i +

∂Pi

∂t
.

As is evident, K2 = 1
2

∑N
i=1mi(v∗

i )
2. But in virtue of condition (2.2.4) on the rank of the matrix

∂wi
∂qh

, we know that if q̇ &= 0, then the velocities v∗
i cannot be all equal to zero; as a consequence,

K2 > 0.

Exercise 26 Write the kinetic energy of a point mass, in plane and spherical polar coordinates.
Answere: for plane polar coordinates it is

K(r,ϑ, ṙ, ϑ̇) =
m

2
(ṙ2 + r2ϑ̇2) ; (2.3.5)

for spherical coordinates it is

K(ρ,ϑ,ϕ, ρ̇, ϑ̇, ϕ̇) =
m

2
(ρ̇2 + ρ2ϑ̇2 + ρ2 sin2 ϑϕ̇2) . (2.3.6)

Exercise 27 Write the kinetic energy of the spherical pendulum of length R. Answer:

K =
1

2
mR2(ϑ̇2 + sin2 ϑϕ̇2)

(it is enough to consider the expression of K in spherical coordinates, and impose the further
constraint ρ = R).

In the above exercises, the kinetic energy does not contain mixed times in the velocities (the
kinetic martix is diagonal). It is easy to see this is due to the fact the coordinate lines intersect
othogonally. Instead:

Exercise 28 Consider a point mass costrained to a plane; in place of the usual x and y axes, use
an axis ξ coinciding with x and an axis η forming a given angle α with the ξ axis (figure 2.5). Write
the kinetic energy. Answere: from the easy relations x = ξ + η cosα, y = η sinα, it immediately
follows

K =
1

2
m(ξ̇2 + η̇2 + 2 cosα ξ̇η̇) . (2.3.7)
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Exercise 29 Write the kinetic energy of a system of two point masses P1, P2, constrained to stay
on a plane and to mantain fixed distance d; use as free coordinates: (a) the Cartesian coordinates
x1, y1 of P1 and the angle ϑ between the x axis and the vector P2 − P1; (b) the coordinates X,Y of
the barycenter and the same angle ϑ. Answere: in case (a) we find

K =
1

2
m(ẋ21 + ẏ21) +

1

2
m2[d

2ϑ̇2 − 2d(ẋ1 sinϑ− ẏ1 cosϑ)ϑ̇] ,

with m = m1 +m2; in case (b) we find the much simpler expression

K =
1

2
m(Ẋ2 + Ẏ 2) +

1

2
µd2ϑ̇2 ,

where µ = m1m2
m1+m2

; µ is called the reduced mass of the system. It is like having a mass m free to
move on the plane and a second mass µ constrained to a circle of radius d, independent from each
other.

Exercise 30 Write the kinetic energy of a point mass constrained to the xy plane, in a Cartesian
frame XY that rotates uniformly, with angular velocity ω, around the z axis: that is,

x(X,Y, t) = X cosωt− Y sinωt , y(X,Y, t) = X sinωt+ Y cosωt .

Answer: the expression is K = K2 +K1 +K0, with

K2 =
1

2
m(Ẋ2 + Ẏ 2) , K1 = mω(XẎ − ẊY ) , K0 =

1

2
mω2(X2 + Y 2) .

Exercise 31 Write the kinetic energy of the centrifugal pendulum, that is a pendulum whose plane
of oscillation rotates uniformly, with angular velocity ω, around the vertical axis passing through the
suspension point. Answer: it is enough to consider the kinetic energy of the spherical pendulum,
and impose the further constraint ϕ = ωt (and consequently ϕ̇ = ω); the result is

K =
1

2
mR2(ϑ̇2 + ω2 sin2 ϑ) .

Other exercises focused on the calculation of kinetic energy can be found in the exercise part
of these lecture notes.

2.3.2 Forces, work, potential energy

Consider a holonomic system, and let Fi be the active force on the i-th point mass, i = 1, . . . , N ;
the quantity

N∑

i=1

Fi · δPi ,

that is the work of the active forces corresponding to the virtual displacements δP1, . . . , δPN , is
called the virtual work of the active forces.

Proposition 19 It is
N∑

i=1

Fi · δPi =
n∑

h=1

Qhδqh ,

where

Qh =
N∑

i=1

Fi ·
∂Pi

∂qh
, h = 1, . . . , n . (2.3.8)
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Proof. It is enough to use the (2.2.7) and to exchange the sums.

In particular, in the case of conservative positional forces, we know there exists a potential
energy function V (P1, . . . , PN , t), such that

Fi = −∇iV ,

where ∇i denotes the gradient restricted to the three coordinates xi, yi, zi of point Pi.

Proposition 20 Denote V̂ (q, t) = V (w(q, t), t). It is:

Qh(q, t) = −
∂V̂

∂qh
, h = 1, . . . , n .

Proof. It is enough to use the standard rule of derivation of composed functions.

For a single point mass, Qh is precisely the projection of F in the direction of the h-th coordinate
line. But if appropriately understood, this is also true in the case of N point masses: indeed, if we
align one after the other all active forces in a single vector

FFF = (FFF1, . . . ,FFF3N ) = (F1, . . . ,FN ) ∈ R
3N ,

it is clear that

Qh = FFF ·
∂w

∂qh
;

in a similar way, the work is expressed as well by FFF · δw or by Q · δq, having denoted Q =
(Q1, . . . , Qn), while the relation between forces and potential energy writes

FFF = −∇V = −
( ∂V
∂w1

, . . . ,
∂V

∂w3N

)
,

and correspondingly

Q = −∇V̂ = −
(∂V̂
∂q1

, . . . ,
∂V̂

∂qn

)
.

The quantities Q1, . . . , Qn, which to all purposes replace forces in the Lagrangian formalism, are
named generalized forces, or Lagrangian components of the force.

Without risk of confusion, to simplify the notation we shall denote by V , rather than by V̂ , the
potential energy expressed as a function of the free coordinates.

2.4 The Lagrange equations

2.4.1 Deducing the equations

Let us consider a holonomic system consisting of N point masses P1, . . . , PN , of mass m1, . . . ,mN ,
possibly subject to ideal constraints, moving in some given system of active forces F1, . . . ,FN . The
Newton equations

miai = Fi +Φi , i = 1, . . . , N , (2.4.1)

then hold, where Φi, i = 1, . . . , N , are the constraint reactions; as already discussed, these should
be thought of as unknowns. Exploiting the assumption of ideality of the constraints, it is easy to
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eliminate the constraint reactions, so as to obtain exactly n pure equations: indeed, multiplying
(2.4.1) by ∂Pi

∂qh
and summing on i, we get

N∑

i=1

(miai − Fi −Φi) ·
∂Pi

∂qh
= 0 , h = 1, . . . , n ;

thanks to the ideality of the constraint, that is to (2.2.11), the constraint reactions disappear. Using
then definition (2.3.8) of Qh, we immediately find

N∑

i=1

miai ·
∂Pi

∂qh
= Qh , h = 1, . . . , n .

A fundamental proposition follows:

Proposition 21 Consider a holonomic system of N point masses, with n degrees of freedom, possi-
bly subject to ideal constraints, which move in an assigned system of active forces Fi, i = 1, . . . , N .
Then the free coordinates q1, . . . , qn satisfy the equations

d

dt

∂K

∂q̇h
−
∂K

∂qh
= Qh , h = 1, . . . , n . (2.4.2)

Equations (2.4.2) will be called the Lagrange equations “in improper form”.13

Proof. The proof reduces to verify the identity

N∑

i=1

miai ·
∂Pi

∂qh
=

d

dt

∂K

∂q̇h
−
∂K

∂qh
, h = 1, . . . , n , (2.4.3)

where K(q, q̇, t), we recall, is the kinetic energy expressed as a function of the free coordinates
and of the corresponding generalized velocities, according to (2.3.2)–(2.3.4). Moreover, thanks to
the additivity of kinetic energy, that is K =

∑N
i=1Ki where Ki(q, q̇, t) is the kinetic energy of the

i-th point mass (expressed as a function of the free coordinates), it is enough to verify the identity
(2.4.3) separately for each Pi:

miai ·
∂Pi

∂qh
=

d

dt

∂Ki

∂q̇h
−
∂Ki

∂qh
, h = 1, . . . , n .

To this end, from ai =
dvi
dt we deduce the identity

miai ·
∂Pi

∂qh
= mi

d

dt

(
vi ·

∂Pi

∂qh

)
−mivi ·

d

dt

∂Pi

∂qh
; (2.4.4)

we can then use the following relations, to be verified below:

∂Pi

∂qh
=
∂vi

∂q̇h
,

d

dt

∂Pi

∂qh
=
∂vi

∂qh
(2.4.5)

13Such a terminology is not of common use. We use it here just to distinguish (2.4.2) from the “proper form”
Lagrange equations (2.4.7), that we shall soon meet. In the literature, both (2.4.2) and (2.4.7) are commonly called
the Lagrange equations, without distinction.
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(to remember them: the former is as if we divide numerator and denominator by dt; the latter is
an exchange of partial and total derivatives). The conclusion is immediate: by replacing (2.4.4) in
(2.4.4), it easily follows

miai ·
∂Pi

∂qh
= mi

d

dt

(
vi ·

∂vi

∂q̇h

)
−mivi ·

∂vi

∂qh

=
d

dt

∂

∂q̇h

(1
2
mivi · vi

)
−

∂

∂qh

(1
2
mivi · vi

)

=
d

dt

∂Ki

∂q̇h
−
∂Ki

∂qh
.

We now check identities (2.4.5). The former immediately follows from (2.3.1), taking a derivative
with respect to q̇h; the latter comes from a quite elementary lemma, that we enucleate here in a
general form for a future use:

Lemma 22 For a generic function f(q, t), the following identity holds:

d

dt

∂f

∂qh
=

∂

∂qh

df

dt
(2.4.6)

(that is, total and partial derivative can be exchanged).

The easy proof is below. We use here the lemma by taking as f , one by one, the coordinates of Pi.
This concludes the proof of the proposition.

Proof of the Lemma. Use is made of the formula for the derivation of a composite function:

d

dt

∂f

∂qh
=

n∑

k=1

∂

∂qk

∂f

∂qh
q̇k +

∂

∂t

∂f

∂qh
=

∂

∂qh

( n∑

k=1

∂f

∂qk
q̇k +

∂f

∂t

)
=

∂

∂qh

df

dt

(in essence: the possibility of exchanging the order of partial derivatives, also implies the possibility
of exchanging partial and total derivative).

In the important case of positional forces which admit a potential energy, we deduce immediately,
as a corollary, the following

Proposition 23 For a holonomic system with n degrees of freedom of kinetic energy K(q, q̇, t),
subject to conservative forces deduced from the potential energy V = V (q, t), the free coordinates
q1, . . . , qn satisfy the equations

d

dt

∂L

∂q̇h
−
∂L

∂qh
= 0 , h = 1, . . . , n , (2.4.7)

where L(q, q̇, t) is defined as
L = K − V .

Such equations will be called the Lagrange equations “in proper form”, or simply the Lagrange
equations.

Proof. In these assumptions, as already commented, we have Qh = − ∂V
∂qh

; since ∂V
∂q̇h

= 0, the
conclusion is immediate.
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We see that, in such a fundamental case, the Lagrange equations are deduced from a single
function L of coordinates, velocities and time. L is called the Lagrange function, or Lagrangian, of
the system. We shall also use, for the Lagrange equations, the compact notation

d

dt

∂L

∂q̇
−
∂L

∂q
= 0 .

It is also interesting to consider the “mixed” case Qh = Q′
h + Q′′

h, where the Q′
h are conservative,

namely Q′
h = − ∂V

∂qh
, while the Q′′

h are generic. In such a case the Lagrange equations assume the
form

d

dt

∂L

∂q̇h
−
∂L

∂qh
= Q′′

h , h = 1, . . . , n , (2.4.8)

with L = K − V .

The quantities ∂L
∂q̇h

that enter the Lagrange equations, play an important role throughout La-
grangian mechanics. A typical notation, that we shall use in several occasions, is

ph(q, q̇, t) =
∂L

∂q̇h
(q, q̇, t) ; (2.4.9)

ph is called the momentum conjugate to qh. The notion of conjugate momentum generalizes the
common notion of linear o angular momentum, to which it reduces in the most simple cases.

2.4.2 Simple examples

Let us now see some elementary examples of Lagrangian systems.

Example Point mass in Cartesian coordinates x, y, z.

The kinetic energy is evidently K = 1
2m(ẋ2 + ẏ2 + ż2); if V (x, y, z) is the potential energy, the

Lagrangian is

L(x, y, z, ẋ, ẏ, ż) =
1

2
m(ẋ2 + ẏ2 + ż2)− V (x, y, z) ,

and the common Newton equations follow. With evidence, the conjugate momenta px =
mẋ , . . . , pz = mż are the three components of the linear momentum.

Example Point mass in cylindrical coordinates r,ϕ, z.

The kinetic energy is K = 1
2m(ṙ2 + r2ϕ̇2 + ż2). Denoting by V the potential energy, expressed as

a function of the variables r,ϑ, z, we have

L(r,ϑ, z, ṙ, ϑ̇, ż) =
1

2
m(ṙ2 + r2ϑ̇2 + ż2)− V (r,ϑ, z)

and the Lagrange equations turn out to be

mr̈ −mrϑ̇2 +
∂V

∂r
= 0 , mr2ϑ̈+ 2mrṙϑ̇+

∂V

∂ϑ
= 0 , mz̈ +

∂V

∂z
= 0 .

The conjugate momenta turn out to be pr = mṙ (the radial component of the linear momentum),
pϑ = mr2ϑ̇2 (the z component of the angular momentum), pz = mż (the z component of the linear
momentum).

Example Point mass in spherical coordinates ρ,ϑ,ϕ.
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The kinetic energy K has the expression (2.3.6); if V (ρ,ϑ,ϕ) denotes the potential energy, the
Lagrangian is L = K − V and the Lagrange equations are

mρ̈−mρϑ̇2 −mρ sin2 ϑϕ̇2 +
∂V

∂ρ
= 0 , mρ2ϑ̈+ 2mρρ̇ϑ̇− 2mρ2 sinϑ cosϑϕ̇2 +

∂V

∂ϑ
= 0

mρ2 sin2 ϑϕ̈+ 2mρ sin2 ϑρ̇ϕ̇+ 2mρ2 sinϑ cosϑϑ̇ϕ̇+
∂V

∂ϕ
= 0 .

It is easy to see that pρ is the radial component of the linear momentum, pϕ is the z component
of the angular momentum, while pϑ is the modulus of the projection of the angular momentum on
the xy plane.

In these examples the kinetic energy does not contain mixed terms in the velocities (the kinetic
matrix is diagonal). Correspondingly, each Lagrange equation contanis only one second derivative.

Example Point mass in a plane, described in non orthogonal Cartesian coordinates ξ, η.

From expression (2.3.7) of K, if V (ξ, η) is the potential energy, the Lagrangian is L = K − V and
the Lagrange equations are

mξ̈ +m cosαη̈ +
∂V

∂ξ
= 0 , m cosαξ̈ +m sin2 αη̈ +

∂V

∂η
= 0 .

Other examples of Lagrange functions and Lagrange equations can be found in the exercise part
of these lecture notes.

2.4.3 General Lagrangian systems

The Lagrange equations (2.4.7) have been here deduced in connection with mechanical problems:
more precisely, we considered a holonomic system with n degrees of freedom, possibly subject to
ideal constraints, which moves under the effect of an assigned system of active forces; in such
a context, starting from the Newton equations, we deduced equations (2.4.7). Equations of this
form, however, are interesting far beyond mechanics: as we shall see below, in section 2.8 devoted
to the so-called variational calculus, equations of the form (2.4.7) appear naturally in problems
of geometry, or optics, and in general in problems of optimization, when the variable on which
we optimize is not a number, but a function. In general however, for problems that go beyond
mechanics, the Lagrange function L does not have the form L = K−V , with K of the form (2.3.2),
but can be any function of the n unknowns, of their velocities and of the independent variable (of
q, q̇ and t, in the mechanical case). The Lagrangian systems for which it is L = K − V , with K
of the form (2.3.2), will be called mechanical, or also natural Lagrangian systems, while the other
ones will be called general Lagrangian systems. In the next subsections we shall mainly deal with
mechanical systems, but occasionally we shall also comment the general case, putting in evidence
those properties of the Lagrange equations which are valid in the general case, too.

2.4.4 The normal form of Lagrange equations

As seen so far, the Lagrange equations, in their form (2.4.2) or (2.4.7), are equalities that are
satisfied during the motion. Here we make a step forward, showing that in the mechanical case
equations (2.4.2), and consequently equations (2.4.7), have the form of second order differential
equations in the unknowns q1(t), . . . , qn(t) that, thanks to the properties of the kinetic matrix, can
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always be put in normal form. This is fundamental, because the Cauchy theorem of existence and
uniqueness of solutions then holds: initial data determine the movement (and consequently the
constraint reactions), and so the Lagrange equation (2.4.2) or (2.4.7) may well be said to be the
equations of motion of the system. Precisely:

Proposition 24 In the mechanical case, the Lagrange equations (2.4.2) are equivalent to a system
of n second order differential equations of the form

q̈ = f(q, q̇, t) , (2.4.10)

f being given by
f = a−1(Q− g) , (2.4.11)

where

gh =
∑

jk

(∂ahk
∂qj

−
1

2

∂ajk
∂qh

)
q̇j q̇k +

∑

k

(∂bh
∂qk

−
∂bk
∂qh

+
∂ahk
∂t

)
q̇k +

∂bh
∂t

−
1

2

∂c

∂qh
; (2.4.12)

for any assigned initial datum (q0, q̇0), both the motion q(t) and the constraint reactions
Φ1(t), . . . ,ΦN (t), satisfying the ideality condition (2.2.10), are uniquely determined.

The precise expression of gh, added here for completeness, will not be much relevant for us: its only
essential property is that it includes q, q̇ and t, but not the second derivaties q̈ of the unknown
functions. The second order system (2.4.10) can always be rewritten as a system of 2n equations
of first order, of the form

q̇ = v , v̇ = f(q,v, t) . (2.4.13)

Proof. From expression (2.3.2) of K, thanks to the symmetry of the kinetic matrix, it follows

∂K

∂q̇h
=

n∑

k=1

ahk(q, t)q̇k + bh(q, t) ;

it is then straightforward to check that

d

dt

∂K

∂q̇h
−
∂K

∂qh
=

n∑

k=1

ahk(q, t)q̈k + gh(q, q̇, t) ,

gh(q, q̇, t) being a convenient function of q, q̇, t but not of q̈. (In other words: the terms containing
the second derivatives q̈h come only from K2, and appear in the above form.) An elementary
computation shows gh has the expression (2.4.12). The Lagrange equations appear then in the
form

a(q, t)q̈ = Q(q, q̇, t)− g(q, q̇, t) ;

from this expression, thanks to the invertibility of the kinetic matrix, equation (2.4.10) follows, f
being as in (2.4.11). The uniqueness of the motion for given initial data is a consequence of the
Cauchy theorem of existence and uniqueness of solutions of differential equations. The constraint
reactions Φi exerted on each point mass Pi, i = 1, . . . , N , are in turn determined by the Newton
equations, Φi = miai − Fi.
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• Using the conjugate momenta ph, it is also spontaneous to write the n Lagrange equations as
a system of 2n equations of the form

ph =
∂L

∂q̇h
(q, q̇, t) , ṗh =

∂L

∂qh
(q, q̇, t) , h = 1, . . . , n

(on the left we have the very definition of ph, on the right the Lagrange equation). The
left equations, however, are not in normal form, because they are not solved with respect to
the q̇h. An alternative way to obtain from the Lagrange equations a system of 2n equations
in normal form, comes then spontaneously: namely inverting the first n equations, making
explicit q̇ as a function of q, p and t, and then replacing q̇ in the second group of equations.
In this way, we obtain a system of 2n equations in which the fundamental variables are
not positions and velocities, but positions and momenta. A new formulation of mechanics,
alternative to Lagrangian mechanics and called Hamiltonian mechanics, starts from here.
Such an alternative formulation is very interesting and fruitful, but we haven’t the possibility
to enter it in these notes.

Exercise 32 Put in normal form the Lagrange equations appearing in the examples of section 2.4.2.
Pay special attention to the last of them.

Note that, thanks to (2.2.4), there is a one-to-one correspondence between the initial datum
(q0, q̇0) and the initial datum (w0, ẇ0), or equivalently (P0,1, . . . , P0,N ,v0,1, . . . ,v0,N ), if we impose
the latter is compatible with the constraints, that is w0 stays on the constraint manifold and ẇ0 is
tangent to it. Keeping this in mind, we may also reformulate Proposition 24 in the following way:

Proposition 25 Consider a holonomic system of N point masses with n degrees of freedom, subject
to given active forces Fi, i = 1, . . . , N ; assigne initial positions and velocities, compatible with the
constraints. There exists an unique choice of the constraint reactions Φi, satisfying the ideality
condition (2.2.7), such that the motion of the points, subject to the Newton equations miai =
Fi+Φi, is compatible with the constraints. Such a motion satisfies the Lagrange equations (2.4.2),
and is determined by them.

It is immediate to check that for general Lagrangian systems, in any case, independently of the
form of L, equations (2.4.7) are a system of n second order differential equations in the variables
q1(t), . . . , qn(t), linear in q̈1, . . . , q̈n, of the form

n∑

k=1

∂2L

∂q̇h∂q̇k
q̈k + gh = 0 , h = 1, . . . , n ,

with some gh = gh(q, q̇, t). Quite clearly, the condition for the system can be put in normal form
is that the Hessian of L with respect to the q̇h does not vanish:

det
( ∂2L

∂q̇h∂q̇k

)
&= 0 .

For natural systems the matrix
(

∂2L
∂q̇h∂q̇k

)
is nothing but the kinetic matrix a = (ahk).
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2.4.5 Lagrange equations and rigid bodies

As already commented in section 2.2.3-B, the rigidity constraint, in the usual assumptions such
that the cardinal equations hold, is an ideal constraint; a quite relevant consequence is that for
such systems the Lagrange equations do hold. In fact, it is possible to prove (see appendix B) that
for rigid systems, cardinal equations and Lagrange equations are equivalent.

An obvious generalization is the case of rigid bodies with further constraints (for example, rigid
bodies with a fixed point, or a fixed axis), assuming of course the additional constraints do not
violate the ideality condition. Similarly obvious is the extension to systems including several rigid
bodies, possibly constrained to each other by hinges or other devices, of course in the assumption
that all constraints are ideal. All of this, it is understood, limited to the case of rigid bodies
consisting of a finite number of points. Quite delicate is instead the extension to rigid bodies
consisting of infinitely many elements, in particular continuous rigid bodies. The question itself is
nontrivial, because (already within Newtonian mechanics) it is not that easy to understand what
does it mean dynamics of infinitely many points subject to infinitely many constraints.14 We shall
not go further into such a delicate problem, and limit ourselves to a few comments.

– First of all, the kinematics of rigid bodies, as holonomic systems with six degrees of freedom,
is totally independent of the number of points of the system (the position of each point, no
matter if they are infinite, is in any case determined as a function of six free coordinates).

– The dynamical quantities entering the Lagrangian, namely K and V , are well defined, in
analogy to finite systems, by simply replacing sums by integrals (precisely as we do in Newto-
nian mechanics, when we introduce the quantities Q, M, Rext and Next, entering the cardinal
equations). This means the Lagrange equations, intended as differential equations in six vari-
ables, by themselves, regardless of whether they are appropriate or not, are well defined, and
coincide with those of finite bodies with the same K and V as functions of the free coordinates
(similar considerations hold for the cardinal equations, too).

– It is not easy to say anything else. We may imagine a continuous rigid body to be the limit
of a sequence of finite systems, each with the same K and V and thus the same Lagrange
equations, regardless of the number of points (the same Q, M, Rext, Next, and thus the same
cardinal equations, in the Newtonian framework). This makes highly reasonable to assume
the dynamics of continuous rigid bodies is described by the Lagrange equations (or by the
cardinal equations). But in any case, it is an assumption: logically, it is not possible to deduce
(in the mathematical sense) the behavior of an infinite system, in particular a continuous one,
from that of finite systems.

In the following, we shall assume the Lagrange equations also hold for rigid bodies consisting of
infinitely many points, in particular for continuous rigid bodies.

It is an easy exercise to check, in particular cases, that the Lagrange equations are equivalent
to the cardinal equations.

Example Consider a rigid body which is free of rotate around a fixed axis. With obvious notation,
it is then K = 1

2Iϕ̇
2, while the potential energy is some function V (ϕ) such that N = −dV

dϕ , where

14This is clearly a general problem concerning the dynamics of continuous bodies, no matter if rigid or not, and its
possible “deduction” from the dynamics of systems with finitely many point masses.
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N is the resultant momentum of the external forces with respect the rotation axis. From the
Lagrangian L = K − V we then obtain the Lagrange equation

Iϕ̈−N = 0 ,

and this is the cardinal equation for the angular momentum, projected on the rotation axis.

Example Consider a homogeneous disc which rolls without slipping on straight guide. In absence
of constraint, we would have (with obvious meaning of the symbols, I referring to the central axis)
K = 1

2mẋ2 + 1
2Iϕ̇

2, with some V = V (x,ϕ). If F denotes the x component of the resultant of
external forces, and N is the resultant external momentum with respect to the central axis, it is
F = −∂V

∂x , N = −∂V
∂ϕ . If we now introduce the constraint of pure rolling x = x0 − Rϕ, we obtain

L = 1
2(mR2 + I)ϕ̇2 − V (x0 −Rϕ,ϕ). In the corresponding Lagrange equation

(mR2 + I)ϕ̈+RF −N = 0

we immediately recognize the cardinal equation for the angular momentum, relative to any point
of the guide, projected in the direction orthogonal to the disc.

2.4.6 Invariance properties of the Lagrange equations

A. Invariance in form of the equations. The procedure itself we used to deduce the Lagrange
equations for a system of point masses, with arbitrary choice of the free coordinates (q1, . . . , qn),
allows us to conclude that the equations of motion always have the form (2.4.7), or more in general
(2.4.2), in any system of coordinates, that is to say, the Lagrange equations are invariant in form
for change of coordinates. Such a property, however, is independent of the mechanical context in
which we deduced the equations: it holds for general Lagrangian systems, and directly follows from
the form of the equations, which by itself is invariant under change of coordinates.

Indeed, let us consider any change of coordinates (possibly dependent of time), from coordinates
(q1, . . . , qn) to new coordinates (q̃1, . . . , q̃n), that is a regular map

qh = qh(q̃1, . . . , q̃n, t) , h = 1, . . . , n , (2.4.14)

such that its Jacobian matrix J has nonvanishing determinant:

det J &= 0 , where Jhk =
(∂qh
∂q̃k

)
; (2.4.15)

such a conditions ensures indeed that the transformation is invertible at least locally, and has
regular inverse (is a local diffeomorphism).15 From (2.4.14) we obtain, by derivation, the extension
of the transformation to the velocities:

q̇h(q̃, ˙̃q, t) =
n∑

k=1

∂qh
∂q̃k

˙̃qk +
∂qh
∂t

. (2.4.16)

15Equation (2.4.15) also guarantees that the matrix ∂w̃
∂q̃

, where we posed w̃(q̃, t) = w(q(q̃, t), t), has rank n,
and consequently (q̃1, . . . , q̃n) are good free coordinates. We are here putting in evidence the expression of the old
coordinates as functions of the new ones, which is concretely used to substitute variables inside a function. But it
would be equivalent, thanks to the invertibility of the transformation, writing the new coordinates as functions of
the old ones, q̃ = q̃(q, q̇, t).
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By replacing the variables inside L, we obtain the new Lagrangian

L̃(q̃, ˙̃q, t) = L(q(q̃, t), q̇(q̃, ˙̃q, t), t) , (2.4.17)

and it is not difficult to prove, in complete generality, that the movement, in the new variables,
satisfies the Lagrange equations associated to L̃:

d

dt

∂L̃

∂ ˙̃qh
−
∂L̃

∂q̃h
= 0 , h = 1, . . . , n . (2.4.18)

Precisely:

Proposition 26 Consider a Lagrangian system of Lagrangian L(q, q̇, t); introduce a change of vari-
ables (2.4.14) satisfying (2.4.15), and let (2.4.16) be its extension to velocities. Finally, let L̃(q̃, ˙̃q, t)
be the Lagrangian obtained from L by replacement of variables, according to (2.4.17). The move-
ment q̃(t) is a solution of the Lagrange equations associated to L̃, if and only if the corresponding
movement q(t), image of q̃(t) through (2.4.14), is a solution of the Lagrange equations associated
to L.

Proof. From the expression of L̃, taking the derivatives and using the easy relations

∂q̇k
∂ ˙̃qh

=
∂qk
∂q̃h

,
∂q̇k
∂q̃h

=
d

dt

∂qk
∂q̃h

(the former immediately follows from (2.4.16), the latter is obtained by exchanging partial and
total derivative, according to Lemma 22), we obtain

∂L̃

∂ ˙̃qh
=

n∑

k=1

∂L

∂q̇k

∂qk
∂q̃h

,
d

dt

∂L̃

∂ ˙̃qh
=

n∑

k=1

[( d

dt

∂L

∂q̇k

)∂qk
∂q̃h

+
∂L

∂q̇k

( d

dt

∂qk
∂q̃h

)]
,

∂L̃

∂q̃h
=

n∑

k=1

[ ∂L
∂qk

∂qk
∂q̃h

+
∂L

∂q̇k

d

dt

∂qk
∂q̃h

]
.

As a consequence, we have

d

dt

∂L̃

∂ ˙̃qh
−
∂L̃

∂q̃h
=

n∑

k=1

Jkh
[ d
dt

∂L

∂q̇k
−
∂L

∂qk

]
,

and thanks to (2.4.15), we conclude that the Lagrange equations relative to L̃ are satisfied, if and
only if the Lagrange equations relative to L are satisfied.

Later on, after introducing the variational principles, we shall see a much simpler and natural proof
of this proposition, which in that context will appear even obvious.

• From the invariance in form of the Lagrange equations under arbitrary changes of coordinates,
it follows that if the motion of a system obeys the Lagrange equations in a given system of
coordinates, then it obeys the Lagrange equations in any other system of coordinates. Now,
it is trivial to verify that the Newton equations for a system of N point masses (without
constraints), written in the usual Cartesian coordinates, are precisely the Lagrange equations
relative to L = K − V , with the usual definitions of K and V ; as a consequence, they
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mantain the form of Lagrange equations, relative to the Lagrangian L̃ obtained from L by
substitution of variables, in any other system of coordinates. This is a particularly simple
and direct deduction of the Lagrange equations, for systems of unconstrained point masses
described in arbitrary coordinates.

B. The gauge invariance. Quite evidently, different Lagrange functions may lead to the same
Lagrange equations: for example, if we add to L a constant, or multiply L by a constant, it is
evident that the equations do not change. Beyond such trivial cases, it is not difficult to check that
the Lagrange equations do not change, if two Lagrangians L and L′ differ by a function L0(q, q̇, t),
which is the total derivative with respect to time of any function F (q, t):

L0(q, q̇, t) =
dF

dt
(q, q̇, t) =

n∑

k=1

∂F

∂qk
(q, t)q̇k +

∂F

∂t
(q, t) . (2.4.19)

Once more, such a property follows directly from the form of the Lagrange equations, and so it
holds for general Lagrangian systems, beyond the mechanical case:

Proposition 27 For any choice of the function F (q, t) and of the real constant c &= 0, the La-
grangian L(q, q̇, t) and the Lagrangian

L′(q, q̇, t) = c L(q, q̇, t) + L0(q, q̇, t) , with L0 =
dF

dt
,

lead to the same Lagrange equations.

Proof. It is enough to show that the term L0 =
dF
dt does not contribute to the equations of motion,

that is
d

dt

∂L0

∂q̇h
−
∂L0

∂qh
= 0 .

This is immediate since, from expression (2.4.19) of L0, also using Lemma 22, we obtain

d

dt

∂L0

∂q̇h
=

d

dt

∂F

∂qh
=

∂

∂qh

dF

dt
=
∂L0

∂qh
.

Such a property of invariance of the Lagrange equations, by adding to the Lagrangian a term of
the special form dF

dt , is called gauge invariance.16 This property too will be better understood, and
appear natural, in the context of variational principles.

2.5 Potentials dependent on velocity

In the physical world, there are two simple examples of forces which depend on the velocity, but
haven’t dissipative nature, namely the Coriolis force

F = −2mω × q̇ , (2.5.1)

16The expression gauge invariance comes from electrodynamics, where it is used to characterize the analogous fact
that by adding to the vector potential A the gradient ∇F of any scalar function, the magnetic field B = ∇×A does
not change.
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which is introduced (similarly to the centifugal force) to describe a point mass in a rotating system
with instantaneous angular velocity ω, so as we can proceed as if the system were inertial, and the
Lorentz force

F = e(E−B× q̇) (2.5.2)

wich determines the motion of an electric charge e in a given electromagnetic field. The problem
then arises to appropriately treat similar forces within the Lagrangian formalism. A possible way
is, of course, writing the Lagrange equations in the improper form (2.4.2), or in the mixed form
(2.4.8), that is treating such velocity dependent forces similarly to dissipative forces. But we can
do better, namely we can write the Lagrange equations in the much preferable proper form (2.4.7),
if we accept the presence, in the Lagrangian, of (simple) potential terms which are not positional,
but depend on the velocity too, actually are linear in the velocity. The idea is simple: from the
improper form of the Lagrange equations

d

dt

∂K

∂q̇h
−
∂K

∂qh
= Qh

we worked out the proper form
d

dt

∂L

∂q̇h
−
∂L

∂qh
= 0 ,

with L = K−V , assumingQh was positional and deducible from some function V (q) viaQh = −∂V
∂q .

It is clear however that the proper form of the equations also follows if, more generally, there exists
a function V (q, q̇), such that

Qh =
d

dt

∂V

∂q̇h
−
∂V

∂qh
. (2.5.3)

It is not difficult to check the Coriolis force and the Lorentz force fall into this case.

2.5.1 The Coriolis force

Let us assume here for simplicity the angular velocity ω is constant; in such a case, the so-called
fictitious forces (or inertial forces) we need to introduce for each point mass P of the system, in
addition to the “real” forces, so as we can work in the rotating system as if it were inertial, reduce to
the centrifugal force Fc = mω2rer, where r denotes the distance of P from the rotation axis and er
is the radial unit vector of the cylindrical coordinates, and the Coriolis force (2.5.1). The centrifugal
force is a positional conservative force, described by the potential Vc = −1

2mω
2r2, which sums to

the potential of the other possibly present positional conservative forces. Concerning instead the
Coriolis force, the following easy proposition holds:

Proposition 28 In the case of constant angular velocity, the Coriolis force (2.5.1) deduces, through
(2.5.3), from a potential V1(q, q̇), linear in q̇, given by

V1(q, q̇) = m ω × q̇ · q . (2.5.4)

Proof. From the expression of V1 we obtain immediately

∂V1

∂qh
= m(ω × q̇)h ;
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moreover (observing that, by a well known property of the mixed vector product, it is V1 =
mq× ω · q̇), we also have

∂V1

∂q̇h
= m(q× ω)h ,

d

dt

∂V1

∂q̇h
= m(q̇× ω)h .

The conclusion is immediate.

The Lagrangian of the system is then

L = K − V0 − V1 , (2.5.5)

where K = m
2 (q̇

2
1+ q̇22+ q̇23) as it appears in the rotating frame, while V0 (the subscript zero reminds

the term is of degree zero in the velocities) includes the potential of the centrifugal force and of the
other possibly present active forces.

Exercise 33 Verify that the Lagrangian (2.5.5), with V1 of the form (2.5.4), is the Lagrangian of
a point mass in a rotating frame, also in the case of non constant ω. (More precisely: if ω depends
on time, the term V1 produces an additional term −m ω̇ × q, which effectively enters, in such a
case, the fictitious force.)

Working in a non inertial reference frame, proceeding as if it were inertial through the expedient
of introducing convenient fictitious forces, is spontaneous within Newtonian mechanics, and can
also be done, as we have just seen, in the Lagrangian context. But the most natural way to proceed,
within the Lagrangian formalism, is different: without necessity of invoking the nontrivial theory
of relative motions, we can easily pass from an inertial frame to a rotating one (or to any other
accelerated frame) by simply writing a change of coordinates depending on time. Suppose we are
dealing, as above, with a frame which rotates uniformly, with angular velocity ω, around the z axis.
If x, y, z and q1, q2, q3 denote, respectively, the Cartesian coordinates of P in the inertial frame
and in the rotating frame, then the change of coordinates is given by

x = q1 cosωt− q2 sinωt , y = q1 sinωt+ q2 cosωt , z = q3 , (2.5.6)

with correspondingly

ẋ = q̇1 cosωt− q̇2 sinωt− ω(q1 sinωt+ q2 cosωt)

ẏ = q̇1 sinωt+ q̇2 cosωt+ ω(q1 cosωt− q2 sinωt)

ż = q̇3 .

In the inertial frame the kinetic energy is K̃ = m
2 (ẋ

2 + ẏ2 + ż2); developing the squares and

substituting, we find K̃ = K2 +K1 +K0, with

K2 =
1

2
m(q̇21 + q̇22 + q̇23)

K1 = mω(q1q̇2 − q2q̇1) = mω · q× q̇ = −mω × q̇ · q
K0 =

1

2
mω2(q21 + q22) .

It clearly appears that the term K2 is the kinetic energy in the rotating system, while the kinetic
term K1 is the opposite of the potential term V1 which produces the Coriolis force, and finally
K0 = −Vc. So, the Lagrangian is the same as (2.5.5). It is interesting to observe that the
same terms of the Lagrangian appear in one case as kinetic, in the other case as potential. In
other examples, if we proceed in the most spontaneous way, we obtain Lagrangians which do not
coincide, but differ by a term of the form L0 =

d
dtF (with suitable F (q, t)), and so are equivalent.
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Exercise 34 Study the motion of a simple pendulum, whose oscillation plane rotates uniformly
around the vertical (centrifugal pendulum); work both in the inertial frame and in the rotating frame,
and compare the results. In a similar way, study the motion of a pendulum, whose suspension point
C moves along the vertical axis y with some assigned law yC = f(t). [The problem is treated in
detail in the exercise part of these notes.]

2.5.2 The Lorentz force

Let us come to the Lorentz force (2.5.2). In the case of constant uniform magnetic field, we do not
need to do anything: the magnetic part of the Lorentz force gets identical to the Coriolis force,
if only we identify eB with 2mω, and so it comes from V1 = 1

2eB × q̇ · q, while the electric part
comes from a suitable potential Φ through E = −e∇Φ.

But without much difficulty, we can treat the case of any assigned electromagnetic field E(q, t),
B(q, t), by simply introducing, besides the “scalar potential” Φ, the “vector potential” A; in
electrodynamics, we recall, E and B are related to Φ and A through

E = −
(
∇Φ+

∂A

∂t

)
, B = ∇×A . (2.5.7)

Indeed, the following proposition holds:

Proposition 29 The Lorentz force (2.5.2) is deduced, through (2.5.3), from the potential

V (q, q̇) = eΦ− e q̇ ·A . (2.5.8)

The vector j = eq̇ is interpreted as the current associeted to the motion of the charge e with velocity
q̇; so, precisely as the electric charge couples with the scalar potential Φ, the current couples with
the vector potential A (and it gets spontaneous to rewrite (2.5.8) in the form of a scalar product
of four-components vectors, as in relativity theory).

Proof. Using potentials, the Lorentz force assumes the form

F = −e
(
∇Φ+

∂A

∂t

)
+ e q̇×∇×A ;

it is then enough to show that the r.h.s. of this expression coincides with d
dt
∂V
∂q̇ − ∂V

∂q , with V is as
in (2.5.8). This is not difficult: by deriving we get

∂V

∂q̇h
= −eAh ,

d

dt

∂V

∂q̇h
= −e

(∂Ah

∂t
+

3∑

k=1

q̇k
∂Ah

∂qk

)
,

∂V

∂qh
= e
( ∂Φ
∂qh

−
3∑

k=1

q̇k
∂Ak

∂qh

)
,

and so
d

dt

∂V

∂q̇h
−
∂V

∂qh
= −e

( ∂Φ
∂qh

+
∂Ah

∂t

)
+ e

3∑

k=1

q̇k
(∂Ak

∂qh
−
∂Ah

∂qk

)
;

it is then easy to check that17

3∑

k=1

q̇k
(∂Ak

∂qh
−
∂Ah

∂qk

)
= (q̇×∇×A)h ,

17Such an equality is easily remembered in the form v × (∇×A) = ∇(v ·A) − (v ·∇)A, v = q̇, very similar to
the common formula for the double vector product a× (b× c) = b(a · c)− c(a · b).
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and this concludes the proof.

So, the Lagrangian of a particle of mass m and electric charge e in a given electromagnetic field is

L = K − V =
1

2
mq̇2 + eq̇ ·A− eΦ .

2.6 The conservation laws in Lagrangian mechanics

Foreward: in the previous sections we deduced the Lagrange equations and discussed their most
relevant properties. Within the mechanical, or natural, context, we first met the “improper form”
(2.4.2) of the equations, where only the kinetic energyK = K2+K1+K0 does appear, and then their
“proper form” (2.4.7), where the Lagrangian L = K − V enters. To include in our discussion the
Coriolis force and the Lorentz force, we added the possibility the potential is not positional, V (q, q̇).
Finally, we mentioned the “general” Lagrangian systems, with any Lagrange function L(q, q̇). In
the next two sections we are primarily interested in natural Lagangian systems, but it will also be
useful, for a better comprehension, to understand the level of generality of the different statements.
Among natural systems, a special role is played by the case, actually the simplest and most common
one, in which the kinetic energy has only the quadratic term, K(q, q̇) = K2(q, q̇): this is indeed
the case of mechanical systems with fixed constraints and time independent coordinates, to which
we shall devote a special attention.

2.6.1 The conservation of energy

Consider any Lagrangian system with n degrees of freedom, with Lagrangian L(q, q̇, t), and intro-
duce the function

E(q, q̇, t) =
n∑

h=1

q̇h
∂L

∂q̇h
(q, q̇, t)− L(q, q̇, t) . (2.6.1)

On the basis of the Lagrange equations, without restrictions on the form of L (and so for general
Lagrangian systems, too), it is easy to compute the total derivative of E(q(t), q̇(t), t) with respect
to t:

Ė =
n∑

h=1

(
q̈h
∂L

∂q̇h
+ q̇h

d

dt

∂L

∂q̇h

)
−

n∑

h=1

(
q̇h
∂L

∂qh
+ q̈h

∂L

∂q̇h

)
−
∂L

∂t

=
n∑

h=1

q̇h
(d
dt

∂L

∂q̇h
−
∂L

∂qh

)
−
∂L

∂t

= −
∂L

∂t
.

So, in the case L does not depend explicitly on time, we see that E is a constant of motion.

If in addition the Lagrangian has the form L(q, q̇) = K(q, q̇)−V (q), withK(q, q̇) = K2(q, q̇) =
1
2

∑
h,k ahk(q)q̇hq̇k (natural systems with fixed constraints and pure positional conservative forces),

then the function E is easily interpreted: indeed it is not difficult to see that

E = 2K − (K − V ) = K + V , (2.6.2)

and so E is the energy of the system, written as a function of the Lagrangian coordinates q and q̇.

Equality (2.6.2) can be verified directly, but the best idea is to use the Euler lemma on homo-
geneus functions.
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Definition 13 The function f(x1, . . . , xn) is said to be homogeneous of degree α, if for any λ > 0
and any choice of x1, . . . , xn it is

f(λx1, . . . ,λxn) = λαf(x1, . . . , xn) . (2.6.3)

Any homogeneous polynomial is evidently a homogeneous function of the same degree as the poly-
nomial; f(x1, x2) =

√
x1 + x22/x1 is homogeneous of degree α = 1/2.

Lemma 30 If f is homogeneous of degree α, then

n∑

i=1

xi
∂f

∂xi
= αf .

Proof. Derive equality (2.6.3) with respect to λ, and then set λ = 1.

To deduce (2.6.2), it is enough to apply the Euler lemma to K = K2.

Consider now the case in which V also depends on velocities, more precisely the case V =
V0(q) + V1(q, q̇), V1 being linear in q̇ (Lorentz force, Coriolis force); quite clearly, we get

E = 2K − V1 − (K − V0 − V1) = K + V0 .

We see the quantity E mantains the meaning of energy, however the term V1, linear in q̇, does not
contribute. This is coherent with the well known fact that the forces associated to V1 are orthogonal
to the velocity, and thus do not make work. They are called gyroscopic forces.

The Lagrangian formalism is also interesting if, in addition to conservative and gyroscopic forces,
with overall potential V (q, q̇), there exist other forces, of any nature, with Lagrangian components
Q1, . . . , Qn. In such a case, as we already commented, the Lagrange equations can be written in
the mixed form

d

dt

∂L

∂q̇h
−
∂L

∂qh
= Qh(q, q̇, t) ,

with L = K − V . Proceeding as above, we obtain (for time-independent L), in place of the
conservation law Ė = 0, the more general relation

Ė =
n∑

h=1

Qh(q, q̇, t) q̇h ;

the right hand side represents the power of the additional forces, written in the free coordinates.
If such a quantity is always less or equal zero (as in the case of friction), the forces are called
dissipative.

Of course, we can also include in Qh all active forces, thus making reference to the Lagrange
equations in their improper form

d

dt

∂K

∂q̇h
−
∂K

∂qh
= Qh ;

in such a case, by applying the previous result with V = 0 and E = K, we obtain

K̇ =
n∑

h=1

q̇hQh(q, q̇, t) ;

this is the well know theorem of kinetic energy (also called work–energy theorem), stating that the
time derivative of the kinetic energy is equal to the power of all active forces.
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2.6.2 Ignorable coordinates and reduction

Consider a Lagrangian system with n degrees of freedom, and assume L does not depend on
certain coordinates,18 for example qm+1, . . . , qn, for some m < n. If we denote q′ = (q1, . . . , qm),
q′′ = (qm+1, . . . , qn), then the Lagrangian does not depend on q′′, and can be written

L(q′, q̇′, q̇′′, t) .

Such a situation arises, typically, in problems that include some symmetry, if the free coordinates
are chosen appropriately; for example, for a problem of central motion like the Kepler problem,
if we reduce to the plane of the orbit and use the polar coordinates r,ϑ, then the Lagrangian
L = 1

2m(ṙ2 + r2ϑ̇2)− V (r) does not depend on ϑ.

If the Lagrangian does not depend on a given coordinate ql, its conjugate momentum pl =
∂L
∂q̇l

,
see (2.4.9), according to Lagrange equations, is conserved; in the example, the conserved quantity
is pϑ = ∂L

∂ϑ̇
= mr2ϑ̇, that is the angular momentum. If, as we assumed above, the Lagrangian does

not depend on qm+1, . . . , qn, then there are n−m constants of motion

p′′l (q
′, q̇′, q̇′′, t) =

∂L

∂q̇l
(q′, q̇′, q̇′′, t) , l = m+ 1, . . . , n . (2.6.4)

We wish to exploit the existence of such constants of motion to reduce the number of the effective
degrees of freedom of the system from n to m, that is to write a Lagrangian L′ which depends only
on q′, q̇′, but concerning the first m coordinates is equivalent to L; L′ will of course depend also
on the momenta p′′l , with the role of constant parameters. To let q̇′′ disappear, and let instead
the vector p′′ = (pm+1, . . . , pn) appear, it is necessary to invert equations (2.6.4) with respect to
q̇′′m+1, . . . , q̇

′′
n, so as to obtain an expression of the form

q̇′′ = u(q′, q̇′, t,p′′) .

The inversion is always possible, and explicit, for natural systems,19 that is in the familiar case
L = K − V with K = K2 +K1 +K0. Indeed in such a case it is easy to see that (2.6.4) is a linear
relation of the form

p′′ = a′′(q′, t)q̇′′ + f(q′, q̇′, t) , (2.6.5)

where a′′ is the diagonal minor of the kinetic matrix formed by the last n−m rows and columns,
while f is a convenient function (not containing q̇′′). Thanks to the fact that the kinetic matrix is
positive definite, we have, in particular, det a′′ &= 0, and thus (2.6.5) can be inverted, giving

q̇′′ = a′′(q′, t)−1[p′′ − f(q′, q̇′, t)] . (2.6.6)

The right hand side of (2.6.6) is the function u we were looking for.

18At least for natural systems, the Lagrangian must instead depend on all velocities, otherwise the kinetic matrix
is not positive definite.

19In the case of general Lagrangian systems, mathematical analysys tells us that the condition which in principle
assures, at least locally, the invertibility, is that the jacobian matrix

( ∂pl
∂q̇k

)

l,k=m+1,...n
=

( ∂2L
∂q̇l∂q̇k

)

l,k=m+1,...n

has nonvanishing determinant. “In principle” means that the function u is by itself well defined, not that we are able
to write it explicitely. In the case of natural systems, instead, the inversion is always explicit and global.
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This expression can be used to replace q̇′′ in L, thus eliminating it. The Lagrangian
L(q′, q̇′,u(q′, q̇′, t,p′′), t) obtained in this way, however, is not yet the good one, and a correction
is needed: precisely, we should pose

L′(q′, q̇′, t,p′′) = L(q′, q̇′,u(q′, q̇′, t,p′′), t)− p′′ · u(q′, q̇′, t,p′′) .

The following important proposition, known as Routh’s theorem, guarantees indeed this is the
appropriate Lagrangian:

Proposition 31 For any solution q(t) = (q′(t),q′′(t)) of the Lagrange equations relative to L, q′(t)
solves the Lagrange equations relative to L′, while q′′(t) is given by

q′′(t) = q′′(0) +

∫ t

0
u(q′(s), q̇′(s), s,p′′) ds . (2.6.7)

Proof. For h ≤ m we have

∂L′

∂qh
=
∂L

∂qh
+

n∑

l=m+1

∂L

∂q̇l

∂ul
∂qh

−
n∑

l=m+1

pl
∂ul
∂qh

=
∂L

∂qh
,

and similarly ∂L′

∂q̇h
= ∂L

∂q̇h
; as a consequence, the Lagrange equations relative to L′ coincide with the

first m Lagrange equations relative to L. Equation (2.6.7) is obvious.

The system with only m degrees of freedom described by L′, is called the reduced system; L′

in turn is called the reduced Lagrangian, and the overall procedure we followed is called reduction.
The coordinates qm+1, . . . , qn are called ignorable coordinates. The proposition shows that the
solution of the reduced problem is equivalent to the resolution of the complete problem. Properly
speaking, L′ is a family of Lagrangians parametrized by the n−m parameters pm+1, . . . , pn (which
are determined by the initial datum).

Example In the above considered example of the central motion (n = 2, m = 1), it is, as already
commented, pϑ = mr2ϑ̇ (the relation is linear homogeneous, and correspondingly pϑ does not
depend on ṙ). The inversion trivially gives

ϑ̇ = u(r, pϑ) =
pϑ
mr2

(u in this case does not contain ṙ), and finally we have

L′(r, ṙ, pϑ) =
1

2
mṙ2 +

p2ϑ
2mr2

− V (r)−
p2ϑ
mr2

=
1

2
mṙ2 −W (r; pϑ) ,

with

W (r, pϑ) = V (r) +
p2ϑ

2mr2
.

We thus obtained a Lagrangian system with only one degree of freedom, with an “effective potential
energy” W ; observe the additional term (for pϑ &= 0) is repulsive and diverges in the origin. If V is
the Kepler potential V (r) = −k/r, the graphic of the effective potentialW and the phase portrait of
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the reduced system are (apart for notations) as in figure 1.11. Yet we did not discuss systematically,
in the Lagrangian context, about equilibrium, but the phase portrait clearly shows that for any
pϑ &= 0 the reduced system has has a unique equilibrium point r∗; correspondingly, the complete
system has a uniform circular motion of radius r∗, with

ϑ̇ =
pϑ

m(r∗)2
.

Expressions (2.6.6) and (2.6.7) show that always, when the reduced system has an equilibrium
(constant q′ and q̇′ = 0), the ignorable coordinates advance uniformly.

Exercise 35 Draw the graphic of the effective potential W for the two-dimensional harmonic os-
cillator and for a point mass subject to a radial force of constant intensity (point constrained to
the surface of a reversed cone, in the gravity). Make a qualitatively study of the motion in the two
cases.

Exercise 36 Determine the conditions on V (r), such that the origin cannot be reached (for fixed
energy and angular momentum).

2.6.3 The Noether’s theorem

Consider a Lagrangian system of Lagrangian L(q, q̇, t); let

q *→ ϕ(α,q) (2.6.8)

be a transformation dependent on a parameter α, defined for α in a neighborhood of the origin,
which for α = 0 is the identity:

ϕ(0,q) = q .

For any fixed q, by varying α, the map (2.6.8) defines an arc of a curve passing through q in the
configurations space (figure 2.6, left). The map naturally extends to the velocities by posing

q̇ *→ ψ(α,q, q̇) , (2.6.9)

where

ψ =
dϕ

dt
i.e. ψh(α,q, q̇) =

n∑

k=1

∂ϕh

∂qk
(α,q) q̇k . (2.6.10)

For α = 0, ψ too is the identity (the Jacobian matrix ∂ϕh
∂qk

, which appears in (2.6.10), for α = 0
is the identity matrix); so, by varying α, the extended map (ϕ(α,q),ψ(α,q, q̇)) defines a curve in
the 2n dimensional space of states, which for α = 0 passes through (q, q̇) (figure 2.6, right).

There are relevant examples, connected with symmetries of the system at hand, in which the
Lagrangian remains invariant, that is stays constant, along similar curves:

L(ϕ(α,q),ψ(α,q, q̇), t) = L(q, q̇, t) . (2.6.11)

An elementary example is the case discussed above, in section 2.6.2, where the Lagrangian does
not depend on a particular coordinate ql: quite evidently, the absence of ql among the arguments
of L, is equivalent to say that L is invariant for the particular transformation

ϕh(α,q) = qh + αδlh , ψh(α,q, q̇) = q̇h , h = 1, . . . , n , (2.6.12)
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Figure 2.6: Illustrating the Noether’s theorem.

in which the (only) coordinate ql is translated by α. To this invariance property, we have seen, the
law of conservation of the momentum pl is associated.

Such a result generalizes to any transformation of the form (2.6.8), which leaves L invariant:
more precisely, to each invariance property, a particular conservation law is associated. This is
ensured by the following proposition, which is a particular case of a more general theorem due to
Emmy Noether:

Proposition 32 Consider a family of regular maps q *→ ϕ(α,q), depending on a real parameter α,
defined and regular in α for α in a neighborhood of the origin, such that ϕ(0,q) = q; let (2.6.9) be
its natural extension to the velocities. If for any choice of q, q̇ and α it is

L(ϕ(α,q),ψ(α,q, q̇), t) = L(q, q̇, t) , (2.6.13)

then the function

P (q, q̇, t) =
n∑

h=1

∂ϕh

∂α
(0,q) ph(q, q̇, t) ,

where ph = ∂L
∂q̇h

, is a constant of motion for the Lagrange equations associated to L.

For the translation (2.6.12) it is P = pl; in general instead P is a linear combination of momenta,
with coefficients ∂ϕh

∂α (to be evaluated at α = 0).

Proof. According to (2.6.13), the derivative of L(ϕ(α,q),ψ(α,q, q̇), t) with respect to α vanishes:

n∑

h=1

[ ∂L
∂qh

(ϕ(α,q),ψ(α,q, q̇), t)
∂ϕh

∂α
(α,q) +

∂L

∂q̇h
(ϕ(α,q),ψ(α,q, q̇), t)

∂ψh

∂α
(α,q, q̇)

]
= 0 .

From the definition ψh = dϕh
dt it follows (lemma 22) ∂ψh

∂α = d
dt
∂ϕh
∂α ; by substituting, and posing

α = 0, we then obtain

n∑

h=1

[ ∂L
∂qh

(q, q̇, t)
∂ϕh

∂α
(0,q) +

∂L

∂q̇h
(q, q̇, t)

d

dt

∂ϕh

∂α
(0,q)

]
= 0 .

Recalling finally that, along any solution of the Lagrange equations, it is ∂L
∂qh

= d
dt

∂L
∂q̇h

, we get

d

dt

n∑

h=1

∂ϕh

∂α
(0,q)

∂L

∂q̇h
(q, q̇, t) = 0 ,
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that is Ṗ = 0.

The basic example to understand Noether’s theorem is the following:

Example Consider two (unconstrained) point masses m1 and m2, and suppose the interaction
potential is central, namely it depends only on the distance |P2 −P1|. Denoting by (q1, . . . , q6) the
Cartesian coordinates of P1 and P2, the Lagrangian is of the form

L(q, q̇) =
1

2
m1(q̇

2
1 + q̇22 + q̇23) +

1

2
m2(q̇

2
4 + q̇25 + q̇26)− V

(
(q4 − q1)

2 + (q5 − q2)
2 + (q6 − q3)

2
)
.

Using Noether’s system, we can show the overall momentum and angular momentum of the system
are conserved.

a) L is invariant under translation along any of the Cartesian axes. With reference to translations
along the x axis, this means L stays constant under the substitution qh *→ ϕh(α,q), q̇h *→
ψh(α,q, q̇), with

ϕ1 = q1 + α , ϕ4 = q4 + α , ϕh = qh for h &= 1, 4 ,

and correspondingly ψh = q̇h for any h. Using Noether’s theorem we immediately conclude
that P = p1 + p4, namely the x component of the linear momentum, is conserved. In the
same way we can proceed for the two other components.

b) The Lagrangian, thanks to the spherical symmetry, is invariant under rotation along any of
the coordinate axes. With reference to rotations along the z axis, this means the substitution
qh *→ ϕh(α,q) defined by

(
ϕ1

ϕ2

)
=

(
cosα − sinα
sinα cosα

)(
q1
q2

)
; ϕ3 = q3

(
ϕ4

ϕ5

)
=

(
cosα − sinα
sinα cosα

)(
q4
q5

)
; ϕ6 = q6

with obvious extension q̇h *→ ψh(α,q, q̇), leaves L invariant. In such a case we have

∂ϕ1

∂α
(0,q) = −q2 ,

∂ϕ2

∂α
(0,q) = q1 ,

∂ϕ3

∂α
(0,q) = 0 ,

and similar relations with all indices raised by three. The conserved quantity is then

P = −q2p1 + q1p2 − q5p4 + q4p5 = m1(x1ẏ1 − y1ẋ1) +m2(x2ẏ2 − y2ẋ2) ,

namely the z component of the angular momentum. In the same way we can proceed for the
two other components.

The example immediately generalizes to any number of point masses, interacting through inter-
nal forces of a central type. We then see that within the Lagrangian formalism, the most common
conservation laws of Physics can be traced back to the invariance properties of the Lagrangian un-
der translation (homogeneity of space) and under rotation (isotropy of space). It is worthwhile to
observe that the conservation of energy, which requires the independence of the Lagrangian from
t, is also associated to an invariance property, namely the invariance of the Lagrangian for time
translations (homogeneity of time).
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2.7 Equilibrium, stability, small oscillations

In this section we will study equilibrium, stabilty of equilibrium, and motions close to equilibrium, as
they are treated within the Lagrangian formalism. Attention will be restricted to natural systems,
moreover we will suppose constraints are fixed and coordinates are independent of t. In these
assumptions, as we know, kinetic energy K reduces to its quadratic part K2:

K(q, q̇) =
1

2

n∑

h,k=1

ahk(q)q̇hq̇k .

The forces, and so V in the conservative case, will also be assumed to be independent of t.

On several occasions, we shall invoke notions and results of Chapter 1, concerning generic
differential equations. To avoid confusion, it will always be necessary to keep in mind the distinc-
tion, in the Lagrangian context, between space of configurations, n-dimensional and endowed with
coordinates q, and space of states, 2n-dimensional and endowed with coordinates (q, q̇).

2.7.1 Equilibrium

Let us consider a holonomic system with n degrees of freedom, with fixed constraints and forces
independent of t, defined for q in some open set U0 ⊂ Rn and q̇ ∈ Rn; the kinetic energy corre-
spondingly reduces to its quadratic part. As we know, the Lagrange equations

d

dt

∂K

∂q̇h
−
∂K

∂qh
= Qh , h = 1, . . . , n

can always be put in normal form, more precisely we can write them as a system of n second order
differential equations of the form q̈h = fh(q, q̇), h = 1, . . . , n, or equivalently a system of 2n first
order equations

q̇h = vh , v̇h = fh(q,v) , h = 1, . . . , n . (2.7.1)

Taking up the general notion of equilibrium point for a system of differential equations, as intro-
duced in Chapter 1,20 we shall say that q∗ ∈ U0 is an equilibrium configuration for the Lagrange
equations, if c = (q∗, 0) is an equilibrium point for the system (2.7.1), that is if

fh(q
∗, 0) = 0 , h = 1, . . . , n .

It is then easy to verify the following

Proposition 33 The configuration q∗ ∈ U0 is an equilibrium configuration, if and only if
Qh(q∗, 0) = 0 for h = 1, . . . , n.

Proof. Let us recall (section 2.4.4, proposition 24) that f = a−1(Q − g), where a is the kinetic
matrix. In the case we are here considering, g vanishes for q̇ = 0, and thus

f(q∗, 0) = a−1(q∗)Q(q∗, 0) .

As a consequence, f(q∗, 0) vanishes if and only if Q(q∗, 0) vanishes.

20Here it is particularly important to distinguish between configuration space (to which q∗ belongs) and space of
states (to which c belongs); pay attention to the use we are making of the terms “configuration” and “point”.
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Figure 2.7: Three systems having different kinetic energy but the same
potential energy, and thus the same equilibrium configurations.

• It clearly appears that the possible presence of forces proportional to the velocity, or more
generally forces which vanish for vanishing velocities (viscous friction, Coriolis or Lorentz
force), is completely irrelevant to determine the equilibrium configurations.

• Such a result is clearly the analog of the result, obvious within Newtonian mechanics, that
there is equilibrium if and only if forces vanish. The proposition however is not trivial: think
of a point mass constrained to a surface; in the equation of motion ma = F+Φ, the constraint
reaction Φ is also present, but Φ does not enter the equilibrium condition, according to which
it is necessary and sufficient that the components of F tangent to the surface do vanish.

In the particularly relevant case of conservative forces described by a potential energy V , it is
Qh(q) = − ∂V

∂qh
(q). The above proposition assumes then the following form:

Proposition 34 In the case of conservative positional forces, the configuration q∗ ∈ U0 is an equi-
librium configuration, if and only if V is stationary in q∗, that is ∂V

∂qh
(q∗) = 0 for any h.

• So, systems having different kinetic energy, but the same potential energy, have the same
equilibrium configurations. Look at the three systems represented in figure 2.7: the kinetic
structure is different, the equations of motion are different, but for all of them the potential
energy is the elementary one of the simple pendulum, and so, although moving differently,
they share the equilibrium configurations ϑ = 0,π.

• In this section, we are restricting the attention, for simplicity, to the case in which the kinetic
energy only contains the term K2. In the general mechanical case K = K2 +K1 +K0, it is
easy to see that: (i) K1 is irrelevant, precisely as a potential term V1 would be; (ii) proposition
34 remains valid, if V is replaced by V −K0.

2.7.2 Stability of equilibrium

Let us now come to the question of stability of equilibrium. Making reference to the notion of
stability introduced in Chapter 1, we shall say that the equilibrium configuration q∗ ∈ U0 is stable
for the Lagrange equations, if c = (q∗, 0) is a stable equilibrium point for the system (2.7.1); in a
similar obvious way, the notion of stability in the future, or in the past, as well as the notion of
asymptotic stability, are also transposed.
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• It is not difficult to recognize that the notion of stability can be rephrased in the following
way: for any neighborhood U ⊂ U0 of q∗, and any ε > 0, there exist a neighborhood V of
q∗ and a number δ > 0, such that any motion with initial datum (q0, q̇0), with q0 ∈ V and
K(q0, q̇0) < δ, stays forever in U and mantains kinetic energyK(q, q̇) < ε. The proof is left as
an exercise; it is actually enough to see that it is not restricive to take the neighborhoods U and
V , which appear in the definition of stability, of the type U =

{
(q, q̇) : q ∈ U,K(q, q̇) < ε

}
,

and similarly for V ).

In the case of conservative positional forces, a stability criterion of fundamental importance,
in the form of a sufficient condition for the stability of equilibrium, is stated in the following
proposition, known as the Lagrange–Dirichlet theorem:

Proposition 35 Consider a natural Lagrangian system, with Lagrangian L(q, q̇) = K(q, q̇)−V (q),
K = K2 =

1
2

∑
h,k ahk(q)q̇hq̇k. If the potential energy V has a proper minimum in q∗, then q∗ is a

stable equilibrium configuration (for all times).

Proof. If q∗ is a minimum for V , then it is ∂V
∂qh

= 0, h = 1, . . . , n, and so q∗ is an equilibrium

configuration. The stability of q∗ follows as an easy corollary of the Lyapunov theorem,21 by simply
using the energy as the Lyapunov function. To apply the theorem we must obviously refer to the
2n–dimensional space where the motion takes place, with the correspondence of notation x = (q, q̇),
and check that in a neighborhood of the equilibrium point c = (q∗, 0), the energy E = K + V is a
good Lyapunov function. This is immediate: since K, as a function of q̇, is positive definite, if V
has a proper minimum in q∗, then E has a minimum in c (going out of c, either K or V or both
grow).22 On the other hand, since E is a constant of motion, it is Ė = 0. This concludes the proof.

The Lagrange–Dirichlet theorem extends in an obvious way to the most common cases of velocity
dependent forces. Precisely:

i) In presence of gyroscopic forces, that is for velocity dependent potentials of the form V (q, q̇) =
V0(q)+V1(q, q̇), with V1 linear in q̇, it is easy to see that the stability criterion remains valid,
as a sufficient condition, provided we make reference only to the positional part V0 of the
potential: indeed, in a neighborhood of a minimum of V0 (which remains an equilibrium
configuration), the energy E = K + V0 (recall the term V1 does not contribute to E) remains
a good Lyapunov function, as if velocity dependent forces did not exist. So, in particular, the
Lagrange-Dirichlet stability condition extends to the case of magnetic forces and of rotating
reference frames. Warning: we are not saying gyroscopic forces are irrelevant for the stability
of equilibrium, but only that if V0 has a proper minuimum in q∗, then adding a gyroscopic
force cannot make q∗ unstable. Conversely, however, gyroscopic force can produce stability:
there are indeed cases (see appendix C) in which q∗ is not stable, but gets stable thanks to
the introduction of a convenient gyroscopic force.

21Hystorically, things went in the opposite way, that is the Lyapunov theorem came as an extension of the Lagrange–
Dirichlet theorem.

22Observe that, should instead V have a maximum, E would be neither maximum nor minimum in c, but a
saddle-point.



118

ii) If, in addition to conservative and possibly gyroscopic forces, there are dissipative forces, the
stability of a proper minimum of V0 persists, for positive times. Indeed, as we have seen,
dissipative forces are characterized by the fact that Ė =

∑
h q̇hQh ≤ 0; for the Lyapunov

theorem, the conclusion is immediate. In typical cases of physical interest (in particular
for viscous friction), using as hypothesis inside the Lyapunov theorem the assumption b”),
weaker than b’), it is possible to show that dissipation not only does not destroy stability (in
the future), but converts it in asymptotic stability.

It is worthwhile to stress that the above proved Lagrange–Dirichlet theorem gives only a suf-
ficient condition, and not a necessary one,23 for the stability of equilibrium. There is however an
important case in which the condition is also necessary: namely the case in which gyroscopic forces
are not present, and (as is generic) the presence or absence of a minmum of V in q∗ is decided
by looking only at the second derivatives of V , without necessity to investigate the higher order
derivatives.

Let us denote by B the Hessian matrix of V , computed in the equilibrium configuration q∗:

Bhk =
∂2V

∂qh∂qk
(q∗) .

If B is positive definite, then V has a minimum in q∗, and correspondingly all eigenvalues of V
are positive. If instead B has one or more negative eigenvalues, then certainly V does not have
a minimum in q∗ (going out of q∗ in the direction corresponding to a negative eigenvalue, V
decreases); correspondingly, as we shall see, it is possible to prove that q∗ is not stable. The only
case that escapes such analysis, in which only the Hessian matrix i.e. the second derivatives of V
are considered, is the case in which all eigenvalues of B are non-negative, and at least one is zero.

Other necessary conditions for the stability of an equilibrium are known, but the general problem
of finding a necessary condition for the stability of an equilibrium configuration (known as the
inverse Dirichet problem) is still partially open.

• For n = 2, deciding if a symmetric matrix B is positive definite, is immediate: it is enough to
write the eigenvalue equation, and pretend both eigenvalues are positive. It is also immediate
to recognize that:

– If detB > 0, then the matrix is definite (either positive or negative). Indeed in such a
case the eigenvalues are both positive or both negative: positive if the diagonal elements
of B (that for detB > 0 have the same sign) are positive, negative if they are negative;
it is enough to look at any of them (or at their sum, i.e. the trace of B, as is occasionally
easier).

– if instead detB ≤ 0, the matrix is not definite.

2.7.3 Linearization of the equations around an equilibrium point

Our aim here is to study the behavior of Lagrangian systems near an equilibrium point. For this
purpose, we shall apply to the Lagrange equations a linearization procedure, similar to the one we
used in the first chapter to pass from the equation ẋ = f(x) to the linearized equation ẋ = Ax,

23A simple counterexample is provided by a system with only one degree of freedom, with potential energy V (q) =
qk sin q−1, k > 4 (completed by V (0) = 0): the origin is not a minimum of V , nevertheless it is easy to recognize it
is stable. A counterexample with V of class C∞ is given by V (q) = exp (−1/q2) sin q−1.
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in view of the classification of critical points. We should however keep in mind a few differences:
indeed, unlike Chapter 1, here we will deal directly with second order equations; moreover, we
will restrict the attention to conservative systems. In the essence, what we will do is extending to
Lagrangian systems with n degrees of freedom the study we made in Chapter 1 for conservative
systems with one degree of freedom (systems ẋ = Ax in R2, with TrA = 0).

So, let us consider a natural Lagrangian system with n degrees of freedom, with time indepen-
dent Lagrangian L(q, q̇) = K(q, q̇)− V (q), K = K2 = 1

2

∑
h,k ahk(q)q̇hq̇k. We assume the system

has an equilibrium configuration q∗, and expand L around c = (q∗, 0), considering small both the
difference q− q∗ and the velocity q̇. To simplify notations, without loss of generality (it is enough
to translate the origin), we shall assume q∗ = 0. We then find

ahk(q) = ahk(0) + O(‖q‖)

K(q, q̇) =
1

2

n∑

h,k=1

ahk(0)q̇hq̇k + O(‖q‖ ‖q̇‖2) ,

while concerning V it is

V (q) = V (0) +
n∑

h=1

∂V

∂qh
(0)qh +

1

2

n∑

h,k=1

∂2V

∂qh∂qk
(0)qhqk + O(‖q‖3) .

Neglecting the constant V (0), and recalling ∂V
∂qh

(0) = 0 for any h, we then obtain for L the expansion

L(q, q̇) =
1

2

n∑

h,k=1

ahk(0)q̇hq̇k −
1

2

n∑

h,k=1

∂2V

∂qh∂qk
(0)qhqk + O(‖(q, q̇)‖3) .

Such a Lagrangian has the form L = L∗ + O(‖(q, q̇)‖3), with

L∗(q, q̇) = K∗(q̇)− V ∗(q) , (2.7.2)

having set

K∗ =
1

2

n∑

h,k=1

Ahkq̇hq̇k , Ahk = ahk(0)

V ∗ =
1

2

n∑

h,k=1

Bhkqhqk , Bhk =
∂2V

∂qh∂qk
(0) ;

in more compact notation we can write

L∗(q, q̇) =
1

2
q̇ ·Aq̇−

1

2
q ·Bq .

The equations of motion associated to L∗ are linear, precisely have the form

Aq̈+Bq = 0 . (2.7.3)

It is easy to verify that the same equation is obtained if we first write the Lagrange equations cor-
responding to the complete Lagrangian L, and then linearize the equations around the equilibrium
point (Exercise: check explicitly such a statement; observe how terms O(‖(q, q̇)‖3) in L necessarily
produce terms O(‖(q, q̇)‖2) in the equations, which disappear in the linearization).
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• The linearized equations of motion (2.7.3) differ from the true equations by terms of second
order in qh and q̇h; therefore, we chan think (but it is a delicate question, not to be taken
lightly) they represent well the system in a small neighborhood of the equilibrium point. This
is particularly interesting if the equilibrium point is stable, because then, as we know, any
trajectory with initial datum sufficiently close to the equilibrium point stays indefinitely close
to it, and so the linearized equations approximate the true equations for long times (here
however we need ever greater caution: in particular, we should not think that the solution of
the linearized equations and of the true equations stay necessarily close for long times).

The equations of motion (2.7.3) are linear homogeneous, therefore the superposition principle holds,
and to find the general solution of the equations it is enough to find 2n independent particular
solutions. With a typical procedure, similar to the one we used in Chapter 1 (section 1.4.2), we
search for solutions of the particular factorized (or “separated”) form

q(t) = τ(t)u ,

where u ∈ Rn is a constant vector, while the scalar function τ : R → R encompasses the dependence
on time. By substituting in (2.7.3) we obtain τ̈(t)Au+ τBu = 0, and this is possible if and only if
Au and Bu are parallel, that is if, with suitable constant λ, it is24

Bu = λAu . (2.7.4)

For any value of λ which solves this equation, the function τ(t) is then determined by the familiar
second order equation

τ̈ = −λτ (2.7.5)

which, we know, always furnishes two independent solutions. So, for any solution of (2.7.4), we
find two independent solutions of (2.7.3); this means the search of the general solution of (2.7.3)
reduces to the search of n independent solutions of (2.7.4). Such an equation appears to be a
generalization of the familiar eigenvalue equation for matrix B, to which it reduces in the case A is
the identity. Thanks to the fact that A is symmetric and positive definite, the generalized equation
mantains, with minor adjustments, the essential algebric properties of the eigenvalue equation. In
particular (using, with little abuse, the terms eigenvalue and eigenvector respectively for λ and u)
the following properties hold:

i) The eigenvalues are the roots of the secular equation

det(B − λA) = 0 , (2.7.6)

which is an algebric equation of degree n for λ.

ii) If B, as in our case, is symmetric, then the eigenvalues λ1, . . . ,λn are real, and the corre-
sponding eigenvectors u(1), . . . ,u(n), that for real λ can be assumed to be real, can be taken
“orthonormal with respect to matrix A”, in the sense they satisfy the condition

u(i) ·Au(j) = δij . (2.7.7)

24We could also write Au = λBu, excluding however the case, which is fairly possible, Bu = 0 with Au #= 0. The
opposite case Au = 0 with Bu #= 0, excluded by (2.7.4), instead cannot arise (Au never vanishes for u #= 0).
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iii) If B too is positive definite, then the eigenvalues λ1, . . . ,λn are positive.

iv) If we denote by U the matrix having as columns the eigenvectors, that is the matrix with

entries Uij = u(j)i , then matrix UTAU coincides with the identity, and simultaneously matrix
UTBU is diagonal, precisely (UTBU)ij = λiδij .

All these properties are proved as in the case of the ordinary eigenvalue equation, with minor
changes. Shortly:

– Property i) follows from the fact the homogeneous system (B−λA)u = 0 must have nontrivial
solutions.

– Property ii), for the part concerning the reality of eigenvalues and eigenvectors, is obtained
by writing, besides (2.7.4), the complex conjugated equation

Bu = λAu ;

if we scalar multiply (2.7.4) by u and the conjugated equation by u, and subtract, thanks to
the symmetry of the matrices we get

0 = (λ− λ)u ·Au .

Because of the positivity of A,25 it is u ·Au &= 0, and thus λ−λ = 0. Concerning eigenvectors,
we can certainly take them real, indeed the real and the imaginary part of complex u, if λ is
real, are real eigenvectors with the same λ.

– Property ii), for the part concerning the othogonality (with reference to A) of the eigenvectors,
is easy for eigenvectors u(i), u(j) corresponding to different eigenvalues λi, λj : indeed if

Bu(i) = λiAu
(i) , Bu(j) = λjAu

(j) ,

multiplying the former equation by u(j) and the latter by u(i) and subtracting, thanks to the
symmetry of A and B we get

0 = (λi − λj) u
(j) ·Au(i) ;

for λi &= λj , orthogonality follows. The case of multiple eigenvalues is more delicate, and
we shall not enter it (as for the usual eigenvalue problem, the point is showing that the
geometric and algebric multiplicity do coincide; once this is established, it is easy to choose
the eigenvectors, inside the eigenspace, so as the generalized othogonality is satisfied).

– Property iii) is immediate: multiplying (2.7.4) by u we get

u ·Bu = λ u ·Au ,

and consequently, if B is also positive definite, λ is positive.

– Finally, concerning property iv), it is easy to see that

(UTAU)ij = u(i) ·Au(j) , (UTBU)ij = λju
(i) ·Au(j) ,

and thanks to (2.7.7), the conclusion is immediate.
25If the real symmetric matrix A is positive definite, then by definition it is u · Au > 0 for any real u #= 0; it

immediately follows u ·Au > 0 for any complex u #= 0 (just write u = v + iw, with real v, w).
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2.7.4 Normal modes of oscillation and normal coordinates

The most interesting case is when the equilibrium point is stable, more precisely V has in q∗ = 0
a minimum of order two. In such a case matrix B is positive definite and we can pose

ω2
i = λi > 0 , i = 1, . . . , n .

Correspondingly, for any i equation (2.7.5) is the equation of a harmonic oscillator of angular
frequency ωi, and the general solution of the equation can be written τ (i)(t) = Ai cos(ωit+ ϕi). In
turn, the general solution of (2.7.3) can be written in the form

q(t) =
n∑

i=1

Ai cos(ωit+ ϕi)u
(i) . (2.7.8)

Observe the expression contains 2n arbitrary constants, whose choice is equivalent to the choice
of the initial datum for (q, q̇). An interesting case is when only one of the amplitudes A1, . . . ,An

is different from zero, say Aj = 1 and Ai = 0 for i &= j: as (2.7.8) shows, in such a case we find
particular solutions of the form

q(t) = cos(ωjt+ ϕj)u
(j) ,

with components

qh(t) = Uhj cos(ωjt+ ϕj) , h = 1, . . . , n ;

such particular solutions are periodic, actually harmonic, and all variables q1, . . . , qn oscillate with
the same period and moreover with the same phase. Periodicity of motion is an exceptional fact,
which disappears if two or more amplitudes are different from zero (unless the corresponding fre-
quencies are two by two commensurable: check it as an exercise). Such particular periodic motions
of the system are named normal modes of oscillation, and are of fundamental importance in any
field of physics or engineering, wherever there are oscillating systems of any nature (from antennas
to skyscrapers to musical instruments). Equation (2.7.8) shows the general solution of the linearized
Lagrange equations is a superposition of normal modes.

It is also interesting to introduce the change of coordinates q = Ux in the truncated Lagrangian
(2.7.2). We see immediately that the new Lagrangian L̃(x, ẋ) = L∗(Ux, U ẋ) is

L̃ =
1

2
(UTAU)ẋ · ẋ−

1

2
(UTBU)x · x .

But thanks to property iv) above, it is

L̃ =
1

2

n∑

i=1

ẋ2i −
1

2

n∑

i=1

λix
2
i , (2.7.9)

and so the equations of motion decouple, namely

ẍi = −λixi , i = 1, . . . , n . (2.7.10)

The coordinates x1, . . . , xn are named normal coordinates of the system. Equations (2.7.8) and
(2.7.9) show a property of capital importance: any Lagrangian system, if linearized around a
stable equilibrium point (whose stability is recognized by analyzing the second derivatives of V ) is
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equivalent, via a linear change of coordinates, to a system of uncoupled harmonic oscillators. Also
observe that the energy of the system assumes the form

E =
n∑

i=1

Ei , Ei =
1

2
(ẋ2i + ω2

i x
2
i ) ,

as in a system of n material oscillators.

The change to normal coordinates can be done, of course, independently of the sign of the
eigenvalues λi: in any case we obtain equations (2.7.10), decoupled from each other, which represent
a harmonic oscillator (λi > 0), a harmonic repulsor (λi < 0), or a free particle (λi = 0). The case
discussed above, in which all eigenvalues λi are positive, is however the most interesting one.

• Simultaneous diagonalization of two matrices. As is known, the diagonalization of a single
symmetric matrix can always be realized by means of an orthogonal change of coordinates
(a rigid movement of the frame). Instead the simultaneous diagonalization of two matrices
A and B, unless they commute, cannot be realized by an orthogonal transformation. The
simultaneous diagonalization is however possible, as we have seen, by a more general linear
transformation, provided both matrices are symmetric and one at least is positive definite.
To get convinced, and consider the property even obvious, few geometric considerations are
sufficient. Consider, just for simplicity, the case n = 2, and recall that to any symmetric
matrix M , a conic section is associated, namely the conic section of equation

x ·Mx = 1 ;

the orthogonal transformation which diagonalizes M is a rotation, which leads the coordinate
axes to coincide with the symmetry axes of the conic section. For matrix A, which is assumed
to be positive definite, the conic section is an ellipse. It is then clear that the simultaneous
diagonalization of A and B can be realized by making, one after the other, the following
three linear transformations: i) a rotation R1, which carries the coordinate axes over the
symmetry axes of the ellipse associated to A; ii) a dilatation D of the new coordinate axes,
which changes the ellipse into a circle of radius one (with this transformation, non orthogonal,
the conic section associated to B changes its symmetry axes, but it remains a conic section
centered in the origin); iii) a rotation R2, which carries the coordinate axes over the symmetry
axes of the second conic section (while the circle remains a circle of radius one). The overall
transformation U = R2DR1 diagonalizes simultaneously A and B, and even more, it changes
A into the identity matrix. The generalization to n > 2 is obvious.

2.7.5 Linearization and stability

From the uncoupled equations (2.7.10), it clearly appears that, for the linearized problem, the origin
is a stable equilibrium point if all roots λ1, . . . ,λn of the secular equation are positive, and unstable
if one at least is zero or negative. As already commented in Chapter 1, the stability properties
of the linearized system do not always transfer in a trivial way to the original nonlinear problem.
This happens however, for the particular conservative Lagrangian systems we are dealing with, in
the most interesting cases:

Proposition 36 For the nonlinear system,

i) if all roots λ1, . . . ,λn are positive, then the equilibrium is stable;
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ii) if at least one of the roots is negative, then the equilibrium is unstable.

The only case in which it is not possible to draw an immediate conclusion, is the (non generic)
one in which none of the λi is negative, but at least one of them is zero. Apart from this case,
we can say that the equilibrium point is stable, for the nonlinear as well as for the linear system,
if and only if the potential energy has there a minimum. On the other hand, the undecided case
is precisely the one in which, looking only at the second derivatives of V , it is not possible to
establish if V has ha minimum or not. We can then conclude, as anticipated above, that if we
restrict ourselves to the case in which the presence or the absence of a minimum of V is decided by
examining the second derivatives of V , then the stability condition entering the Lagrange–Dirichlet
theorem is not only sufficient, but also necessary.

Proof. Point i) is an immediate consequence of the Lagrange-Dirichlet theorem: indeed, if all
roots are positive, then V certainly has a minimum in the equilibrium configuration, and stability
is guaranteed. Concerning point ii), it is a consequence of proposition 10 of Chapter 1 (section
1.4.3). To apply the proposition, we must give the equations of motion the form of a system of
2n first order equations, but since the stability properties do not depend on the choice of the
coordinates, we are free to choose the most convenient ones, which in our case turn out to be
the normal coordinates. In such coordinates the second order equations are the (2.7.10), and the
corresponding first order system is

ẋi = vi , v̇i = −λixi , i = 1, . . . , n .

If we order coordinates as (x1, v1, . . . , xn, vn), then the 2n× 2n Jacobian matrix of the system is





0 1
−λ1 0

.
.

0 1
−λn 0





and with evidence, its 2n eigenvalues are

µ±
i = ±

√
−λi , i = 1, . . . , n . (2.7.11)

As a consequence, if for an index i it is λi < 0, then we have a pair of real opposite eigenvalues µ±
i ,

and the presence of µ+
i , real and positive, implies the instability of equilibrium.

• As already remarked, proposition 36 is the analog of proposition 10 of Chapter 1, which we
also used in the proof of point ii) of proposition 36. One might wonder, however, about point
i) of proposition 36, which not only cannot be deduced from proposition 10, but might even
appear in conflict, if not with its statement, with some comments we there made. Indeed, from
(2.7.11) we see that if all roots λi are positive, then all eigenvalues µ±

i are purely imaginary,
and such a situation was indicated as an uncertain one, while instead point i) of proposition
36 ensures stability. The reason of such an enhanced stability, is that the loss of stability
of the nonlinear system, in presence of eigenvalues with vanishing linear part, requires the
presence of non conservative forces, which instead, in the conservative Lagrangian context we
have restricted, are a priori excluded.



2.7.6 — Nonlinearity and chaotic motions 125

2.7.6 Nonlinearity and chaotic motions

Consider a stable equilibrium point, with λ1, . . . ,λn > 0. Although stability, as ensured by propo-
sition 36, persists in the nonlinear system too, the motions of the nonlinear system, if observed for
a sufficiently long time, may differ in a significative way from those of the linearized system. Let
us refer to normal coordinates, and assume, for simplicity, that forces do not depend on velocities.
Then the Lagrangian of the nonlinear system has the form

L(x, ẋ) =
n∑

i=1

Li(xi, ẋi)− V int(x1, . . . , xn) ,

with Li(xi, ẋi) = 1
2(ẋ

2
i − ω2

i x
2
i ), while the interaction potential V int includes terms at least cubic

in x, which couple the otherwise independent harmonic oscillators forming the linearized system.
Although small for motions of small amplitude, such terms can nevertheless produce, on long
times, important energy exchanges among oscillators. There is indeed no reason why the individual
energies Ei =

1
2(ẋ

2
i + ω2

i x
2
i ) are conserved, and correspondingly, motions of the nonlinear system

can can get substantially more complicated.

An interesting example, quite important also hystorically because it was the first one in which
chaotic motions have been observed, is provided by the so-called Hénon–Heiles model (1964).26

This is an apparently simple system, consisting of two harmonic oscillators of equal frequency,
which in an adapted time unit can be set equal to one, coupled by a cubic interaction potential of
the form27 V int = x21x2 − 1

3x
3
2; the Lagrangian is then

L =
1

2
(ẋ21 + ẋ22)−

1

2
(x21 + x22)− x21x2 +

1

3
x32 ,

and the corresponding nonlinear equations of motion are

ẍ1 = −x1 − 2x1x2 , ẍ2 = −x2 + x21 − x22 . (2.7.12)

In the uncoupled linear model (V int = 0), there are two constants of motion: the total energy
and the energy of any of the two oscillators. In the nonlinear model, the total energy is certainly
conserved as well, and the question naturally arises whether there still esists a second conserved
quantity, that is a convenient function F (x1, x2, ẋ1, ẋ2) that ramains constant along motions.

Hénon and Heiles solved numerically the equations of motion (2.7.12), and represented motions
by means of a suitable Poincaré section. We already introduced the notion of Poincaré section

26The motivation, which we cannot go into, comes from Celestial Mechanics, more precisely from stellar dynamics:
in a certain approximation, x1 and x2 represent the deviations of the motion of a star from a circular motion, in
a cylindrically symmetric galaxy. To understand the distribution of stars in a galaxy, it is important to know the
number of constants of motion in the problem.

27If V int is homegeneous of degree 2 + s (here s = 1), then the rescaling x = εx̃, followed by the (always allowed)
division of the Lagrangian by ε2, gives a new Lagrangian of the form

L̃(x̃, ˙̃x) =
n
∑

i=1

Li(x̃i, ˙̃xi)− εsV int(x̃1, . . . , x̃n) ,

identical to the previous one but for the coefficient εs in front of V int. Motions that were previously confined in a
neighborhood of radius ε of the equilibrium point, and correspondingly had small energy E = O(ε2), now take place
in a neighborhood of radius one, and have energy Ẽ = E/ε2 of order one. So, considering motions of small energy
E = ε2Ẽ is exactly the same as considering motions with energy Ẽ and small interaction term εsV int. If V int is not
homogeneous, but is the sum of homogeneous terms V (2+s) of degree 2 + s, then the interaction term in the rescaled
system is

∑

s ε
sV (2+s).
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in Chapter 1, in connection with the forced pendulum. Here we follow the same idea: the four-
dimensional space of states is sectioned with a convenient “surface” Σ of dimension three; a good
choice here is the plane x1 = 0. For any initial datum on such a plane, to be definite with
ẋ > 0, consider the subsequent intersections of the trajectory with Σ, with ẋ > 0. Due to energy
conservation, these cannot stay anywhere on Σ, but must satisfy the condition

1

2
(ẋ21 + ẋ22 + x22)−

1

3
x32 = E

(we already kept into account that x1 = 0). We then see that coordinates x2, ẋ2 are sufficient to
locate the intersection point, ẋ1 being determined by

ẋ1 =
√
2E − ẋ22 − x22 +

2
3x

3
2 . (2.7.13)

So, the subsequent intersections can be represented graphically on an ordinary plane, the Cartesian
plane x2, ẋ2. For any value E of the energy, a map ΦE : R2 → R2 is then defined, namely the
map that sends each intersection into the next one. For any E, the radicand in (2.7.13) must be
positive, so the map is defined in the domain DE given by

1

2
ẋ22 +

1

2
x22 − 1

3x
3
2 < E ;

DE is easily seen to be a bounded domain (actually an egg-shaped one, elongated the direction of
positive x2) for E ≤ 1/6, unbounded instead for E > 1/6.

Let us denote z = (x2, ẋ2). As for the forced pendulum, to each motion of the system there
corresponds, for the map, a discrete trajectory, that is a sequence z1, z2, . . . with zk+1 = ΦE(zk). If
the motion is periodic, then the trajectory for the map is composed by a finite sequence of points,
that repeats. If in the original system there is, in addition to E, a further constant of motion
F (x1, x2, ẋ2, ẋ2), then for the map ΦE , too, there is a constant of motion, mamely

GE(x2, ẋ2) = F (0, x2, ẋ1(E, x2, ẋ2), ẋ2) ,

with ẋ1(E, x2, ẋ2) defined by (2.7.13); as a consequence, the subsequent zk are confined to a level
curve GE(x2, ẋ2) = const. If instead there are no constants of motion besides E, then the intersec-
tions zk can wander on a two-dimensional region of DE .

Figure 2.8, panel (a), shows the Poincaré section for a small value of E, namely E = 0.08. The
different curves (actually resolved in points) correspond to different trajectories of the map. The
clear impression is that a constant of motion GE does exist, the curves appearing in the figure
being the level curves of G. It is however enough to raise a little the energy (this means, looking
at motions of larger amplitude, for which nonlinear terms in the equations of motion are relatively
larger), to observe a drastically different picture. Panel (b) of figure 2.8 shows the Poincaré section
of the system for E = 0.125: we can see that for some initial data the sequence of intersections
are still aligned in well defined invariant curves, as if there was a constant of motion GE . But for
other initial data, subsequent intersections appear to fill a definitely two-dimensional region of the
domain: all points that in panel (b) of figure 2.8 do not appear to stay aligned on curves, belong
to a single trajectory. Such a region is commonly called the chaotic region, while the region filled
by invariant curves is called the regular (or ordered) region. By increasing E, the chaotic region
becomes dominant, as is shown by panel (c) of the figure, which refers to E = 0.1666, and by panel
(d), where a rough estimate of the selative size of the regular region is reported vs. E.
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(a) (b)

(c) (d)

Figure 2.8: The Poincaré section of the Hénon–Heiles system, for E =
0.08 (a), E = 0.125 (b), E = 0.1666 (c); a rough estimate of the size of
the regular region (d).
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The phenomenology, on the whole, is rather similar to that of the forced pendulum and of
the Standard map, that we discussed in Chapter 1, section 1.6.1. Here too, the chaotic region is
characterized by the presence of exponential divergence of nearby trajectories, more precisely by
the fact that the Lyapunov exponent χmax, in such a region, is positive.

2.8 The variational principles of mechanics

The way we followed so far to investigate the laws of motion of a system of point masses, could
be called the “differential way”, in the sense that we assumed, as the starting point, Newton’s
differential equation ma = F, and from it we deduced, still in the form of differential equations,
the general laws of motion of a mechanical system (the Lagrange equations). The central idea,
underlying the discussion we have done till now, is that true or natural motions of a mechanical
system are, among all those we could conceive, the ones that satisfy, point by point, a certain
differential relation, characteristic of the system.

In this section we will explore a different way, though in fact equivalent, to formulate the general
laws of mechanics, in which the true motion distinguishes, among the conceivable ones, for a global
integral property, in the same sense the straight line distinguishes, among all curves of the plane,
as the shortest one between two given points, or the trajectory of a ray of light, in a medium with
variable refraction index, distinguishes (Fermat’s principle) by the fact it minimizes the travel time
between two assigned points.

This new way, more geometric, can be called the “variational way”, as it refers to that sector of
mathematical analysis called variational calculus; the point of arrival are the so-called variational
principles of mechanics, which bear the name “principles” precisely because from them, taken as
principles, the whole mechanics can be deduced. A further reason to be interested in the variational
formulation of mechanics is that it is especially suitable for passing from classical mechanics to
relativistic theories, where global geometric aspects have great importance. It is not hazardous to
say that the variational formulation of any problem is, at least in the language, the most geernal
one, and possibly also the deepest one.

The next three subsections are devoted to a quick introduction to variational calculus, which
is not assumed to be known, so as to frame our study of the variational principles of mechanics in
the general context of variational calculus. Our study here will not be as rigorous as the subject
would require, and occasionally we shall proceed by intuition, on the basis of examples; for a more
complete and rigorous treatment, we demand to dedicated textbooks.

2.8.1 Functionals

The elementary problem from which variational calculus originates, is the search for maxima and
minima, more generally for stationarity points, of ordinary functions of several real variables. As is
well known, for any regular function F : Rn → R, the condition for which x = (x1, . . . , xn) ∈ Rn is a
stationary point, is that the differential of F vanishes in x, or equivalently ∂F

∂xi
(x) = 0, i = 1, . . . , n.

We could mention other variational problems for functions defined in Rn (or in an open domain
of Rn), like the search for constrained maxima or minima: variational calculus however, in the
proper sense, begins when the domain of F is not Rn, nor any other finite-dimensional space, but a
space of functions. Consider a set U of functions, for example the set Ua,b of (regular) real functions
defined in the interval [a, b].
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Definition 14 An application F : U → R, which associates to any function u ∈ U a real number,
is said to be a functional with domain U .

A common notation for functionals is F [u]. Simple examples of functionals defined in Ua,b are the
average

F [u] =
1

b− a

∫ b

a
u(x)dx , (2.8.1)

any norm like the Euclidean norm or the sup-norm, respectively

F [u] =
(∫ b

a
u2(x)dx

)1/2
, F [u] = max

x∈[a,b]
|u(x)| , (2.8.2)

or the value of u, or of its derivative u′, in any given point x̄:

F [u] = u(x̄) , F [u] = u′(x̄) . (2.8.3)

Let us remark that in the notion of functional, the function u replaces the n–tuple (x1, . . . , xn),
while the continuous variable x ∈ [a, b], at argument of u, replaces the discrete index i = 1, . . . , n
which labels the arguments of F .

Let us now assume that the domain U , as the above example Ua,b, is a linear vector space (so
that inside U it is meaningful to sum functions and to multiply functions by a real number).

Definition 15 A functional F on U is said to be linear, if for any u1, u2 ∈ U and c1, c2 ∈ R it is
F [c1u1 + c2u2] = c1F [u1] + c2F [u2].

The average and the examples in (2.8.3) are linear, the examples in (2.8.2) are clearly not.

A functional of great interest in geometry and in mechanics is the one giving the length of a
curve. Consider the simple case of curves in the xy plane, which are the graph of a function, that
is are of the form y = u(x), a ≤ x ≤ b. The length functional, defined in Ua,b, is then

F [u] =

∫ b

a

√
1 + u′ 2(x) dx . (2.8.4)

If instead, for example to study curves which go around the origin, we use polar coordinates r and
ϑ, and write the curve in the form r = u(ϑ), ϑ0 ≤ ϑ ≤ ϑ1, then the length functional, defined in
Uϑ0,ϑ1 , has the form, as is immediately checked,

F [u] =

∫ ϑ1

ϑ0

√
u2(ϑ) + u′2(ϑ) dϑ .

Other expressions are found for other systems of coordinates, or for non flat surfaces.

Exercise 37 Consider a cone of semi-aperture β; for a generic point P on it, use as coordinates
the distance r of P from the vertex and the angle ϕ between the half-plane issuing from the cone
axis, passing through P , and some assigned half-plane also issuing from the axis (polar spherical
coordinates of P , with fixed colatitude); see figure 2.9. Write the functional which gives the length
of a curve of equation r = u(ϕ), between given ϕ0 and ϕ1. [Answer: F [u] =

∫ ϕ1

ϕ0
[u2(ϕ) sin2 β +

u′2(ϕ)]
1
2dϕ)]. Write again the functional, using instead the polar coordinates r,ϑ of the plane

development of the cone. [Answer: if r = u(ϑ), then F [u] =
∫ ϑ1
ϑ0

[u2(ϑ) + u′2(ϑ)]
1
2dϑ, as for the

curves of the plane written in polar coordinates.]
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Figure 2.9: A curve on a cone, represented in two different ways.

A classical problem is finding, for any surface, the geodesics, that is the curves of minimal length
(more generally of stationary length, see below) between two given points; these are the curves
assumed by a stretched flexible wire, and also (it can be shown) the trajectories of the inertial
motion of a point mass confined on the surface.

An important problem in mechanics and optics is computing the travel time on an assigned
trajectory γ by a point mass, or a ray of light, whose velocity depends in a known way on the
position. Restricting ourselves, for simplicity, to planar motions, and to trajectories which are the
graphic of a function y = u(x) between two fixed abscissas a and b, the travel time is given by

T [u] =

∫

γ

ds

v
=

∫ b

a

√
1 + u′2(x)

v(x, u(x))
dx ,

where v(x, y) is the modulus of the velocity in (x, y). In optics, the velocity is directly given by the
ratio c/n(x, y), where c is the speed of light in vacuum and n is the refraction index of the medium,
so that

T [u] =
1

c

∫ b

a
n(x, u(x))

√
1 + u′2(x)dx ; (2.8.5)

the Fermat’s principle states that the effective trajectories are, among the a priori conceivable
curves connecting two given points, those for which T [u] is minimal (more generally is stationary).
For a point mass on an assigned curve, in absence of active forces v is constant, and the computation
of T reduces to the computation of the length of the curve. More generally, if the system is
conservative and V (x, y) is its potential energy, the function v(x, y) depends on the energy E,

v(x, y) =
√

2
m(E − V (x, y)) .

For example, for a point mass that descends along a curve y = u(x) through the origin, starting
from the origin with zero velocity (E = 0), we have v(x, y) =

√
2gy (vertical descending y axis),

and thus

T [u] =
1√
2g

∫ b

0

√
1 + u′2(x)

u(x)
dx . (2.8.6)

One among the very classical problems of mechanics is determining the curve connecting the origin
to an assigned point A of the plain, such that the travel time of P on it is minimal; the curve is
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called the brachistocrone (which means the curve “of the shortest time”, from the greek βραχύς =
short, χρóνoς = time).

We could introduce functionals which depend explicitly on derivatives of u of order higher than
one (for example, the functional giving the maximal convexity of a curve), but they are not relevant
for the variational principles of mechanics we aim to study, so we will not consider them, and restrict
instead our attention to functionals F [u] which depend explicitely on u, on its first derivative u′,
and on the independent variable x, as in example (2.8.6).

The notion of functional extends naturally to the case of dependence on two or more functions:
for example, the scalar product

F [u, v] =

∫ b

a
u(x)v(x)dx

is a functional which depends on two functions u e v (and is linear in both of them, or bilinear);
the length of a curve in the three-dimensional space, defined by the parametric equations x = u(t),
y = v(t), z = w(t), a ≤ t ≤ b, is the functional

F [u, v, w] =

∫ b

a

[
u′2(t) + v′2(t) + w′2(t)

] 1
2dt .

2.8.2 Variation of a functional

The notion of variation of a functional we are going to introduce, is the analog of the notion of
directional derivative for functions of a finite number of variables, that we quickly recall.28

Le F be a regular function of n real variables, and u = (u1, . . . , un) an internal point of its
domain of definition U ⊂ Rn (the independent variables have been denoted ui, rather than xi, to
stress the analogy with functionals). Fix any n–tuple δu = (δu1, . . . , δun) ∈ Rn, and consider the
values of F in the varied points u + αδu, for real α in a neighborhood of the origin (observe that
for small α, the varied point certainly belongs to U). The directional derivative (or variation) δF
of function F at point u, relative to the vector (or variation) δu, is then defined by

δF (u, δu) =
d

dα
F (u+ αδu)

∣∣∣
α=0

;

if F is regular, then δF is linear in δu, as we see by computing the above derivative:

δF (u, δu) =
n∑

i=1

∂F

∂ui
(u) δui .

Making reference to the directional derivative, we can say F is stationary in u, if and only if δF
vanishes in u for any choice of the variation δu.

Consider now a functional F , let U be its domain of definition, and assume U is a linear vector
space; the example to have in mind is the domain Ua,b we introduced above. Let u be a “point”

28The notion of directional derivative, as is known, is somehow poor, and sometimes insufficient to understand the
behavior of a function in a neighborhood of a given point, which requires the deeper notion of differential. Critical
examples are F (x, y) = x2y/[(y− x2) + y2], or also F (x, y) = x3y/[(y− x2)2 + y2], with in both cases F (0, 0) = 0. In
the first example, F is regular on all lines through the origin, but as a function of two variables is not even continuous
in the origin; in the second one the function, restricted to any line through the origin, is stationary in the origin, but
it is not stationary as a function of two variables. Similar pathologies, however, disappear for differentiable functions.
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(that is, a function) inside U ; fix any variation δu, namely any function belonging to U , and consider
the one–parameter family of varied functions

u(x) + αδu(x) ,

with real α in a neighborhood of the origin. By analogy with the finite–dimensional case, we give
the following definition:

Definition 16 The variation of functional F in u, relative to the variation δu, is the functional

δF [u, δu] =
d

dα
F [u+ αδu]

∣∣∣
α=0

.

If δF [u, δu] esists for any δu and is linear in δu, F is said to be Gateau–differentiable in u; in
turn, δF is said to be the Gateaux–derivative of F .

It is important to observe, as a support to the definition, that F [u+ αδu], for any fixed u and δu,
is an ordinary function of the single real variable α (well defined in a neighborhood of zero): so,
for functionals too, as in the above example of functions of several variables, we are reduced to the
familiar notion of derivative for a function of a single variable.

• Proceeding intuitively, we could avoid the use of the small parameter α, and think instead the
variation δu to be, in a convenient sense, small. It is then spontaneous to define the variation
δF of the functional, as the linear part in δu of the finite increment ∆F = F [u+ δu]− F [u];
think of a Taylor expansion truncated to the linear term, in which higher order terms in
δu (or in its derivatives that, as we shall see, naturally enter the calculation of δF ) are
disregarded. The directional derivative (reflect on the finite-dimensional case) is precisely a
simple procedure to separate the linear part from higher order terms (which contain α at a
power larger than one, and thus vanish when, after taking the derivative, we set α = 0). Such
intuitive considerations could be formalized in a deeper notion of derivative of a functional,
called the Fréchet derivative, which appropriately transports to functionals the deep notion
of differential of a function, rather than the notion of directional derivative. We shall not
enter such more complex definition, which is not necessary to our purposes. It is a useful
exercise to see, in the next few examples, that the intuitive procedure and the precise notion
we gave lead to the same result.

A few examples are useful to practise the notion of variation of a functional. If F [u] is the
average (2.8.1), then

F [u+ αδu] =
1

b− a

∫ b

a
(u(x) + αδu(x))dx , δF [u, δu] =

1

b− a

∫ b

a
δu(x)dx

(F being linear, the variation δF depends only on the variation δu and not on u; for the same

reason, it was not necessary to set α = 0 in the calculus of δF ). For F [u] =
∫ b
a u2(x)dx it is instead

δF [u, δu] =
d

dα

∫ b

a
[u(x) + αδu(x)]2dx

∣∣∣
α=0

=

∫ b

a
2[u(x) + αδu(x)]δu(x)dx

∣∣∣
α=0

= 2

∫ b

a
u(x)δu(x)dx
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(now δF also depends on the “point” u at which the variation is computed).

Let us consider now a functional like the length of a curve (2.8.4), or the travel time (2.8.5),
(2.8.6), in which the derivative u′ of u appears explicitly; more generally, let us consider the
important case of functionals F : Ua,b → R, of the form

F [u] =

∫ b

a
L(u(x), u′(x), x)dx , (2.8.7)

where L : R3 → R is a regular function of the three real variables u, u′ and x. So, for the length
functional (2.8.4) it is L(u, u′, x) = (1 + u′2)1/2 (L depends in fact only on u′); for the functional
(2.8.6) it is instead L(u, u′, x) = (2g)−1/2[(1 + u′2)/u]1/2.

Computing the variation of a generic functional of the form (2.8.7), is not difficult: indeed, we
have

F [u+ αδu] =

∫ b

a
L(u(x) + αδu(x), u′(x) + αδu′(x), x) dx ,

where δu′ denotes the derivative of δu with respect to x; by applying the definition we then find

δF [u, δu] =
d

dα

∫ b

a
L
(
u(x) + αδu(x), u′(x) + αδu′(x), x) dx

∣∣∣
α=0

=

∫ b

a

[∂L
∂u

(u(x), u′(x), x) δu(x) +
∂L

∂u′
(u(x), u′(x), x) δu′(x)

]
dx .

With an integration by parts, we can eliminate δu′ = d
dxδu, and conclude with the following

proposition:

Proposition 37 The variation of the functional (2.8.7) is

δF [u, δu] =
∂L

∂u′
δu
]b
a
−
∫ b

a

( d

dx

∂L

∂u′
−
∂L

∂u

)
δu dx .

(to make the expression more readable, we omitted the arguments of L and the argument x in δu;
it is suggested to write in detail the complete expression).

In many cases, sensible problems require we restrict the attention to functions u with fixed
estremes, that is funtions such that u(a) = ua, u(b) = ub, with assigned ua, ub; correspondingly, we
must restrict ourselves to variations which vanish at the extremes, δu(a) = δu(b) = 0. If we denote

UA,B
a,b =

{
u ∈ Ua,b;u(a) = A, u(b) = B

}
,

then u ∈ Uua,ub
a,b and δu ∈ U0,0

a,b . Problems like the search of a geodesic, or of the brachistochone,
between two fixed end points, as we discussed above, obviously require a similar restriction. For
variations that vanish at the extremes, it is clearly

δF [u, δu] = −
∫ b

a

(
d

dx

∂L

∂u′
−
∂L

∂u

)
δu(x) dx . (2.8.8)

Exercise 38 Write the variation of the functional expressing the length of a curve in Cartesian
coordinates, F [u] =

∫ b
a [1 + u′2(x)]1/2dx.
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Figure 2.10: To illustrate the proof of proposition 38.

2.8.3 Stationariety of a functional and Euler–Lagrange equation

Let us restrict the attention to functionals of the form (2.8.7), defined in a domain Uua,ub
a,b with

fixed extremes, and correspondingly, to variations in U0,0
a,b , that is δu(a) = δu(b) = 0. The following

definition is spontaneous:

Definition 17 A functional F of the form (2.8.7) in Uua,ub
a,b is said to be stationary in u, and

correspondingly u is said to be a stationarity point for F , if δF [u, δu] = 0 for any choice of δu ∈ U0,0
a,b .

The following easy but fundamental lemma holds:

Proposizione 38 Consider a functional F of the form (2.8.7), defined in Uua,ub
a,b ; F is stationary

in u, if and only if u satisfies the differential equation

d

dx

∂L

∂u′
−
∂L

∂u
= 0 .

Such an equation is called the Euler–Lagrange equation associated to the function L.

Proof. Consider the expression (2.8.8) of δF . Quite trivially, if u satisfies the Euler–Lagrange
equation, then δF vanishes for any choice of δu. Conversely, let us suppose F is stationary in u,
and show that the quantity

f =
d

dx

∂L

∂u′
−
∂L

∂u
,

which for any given u inside d
dx

∂L
∂u′ − ∂L

∂u is an ordinary function of x, identically vanishes in [a, b].
Indeed, assume by absurd f &= 0 at some point c ∈ [a, b]. By continuity, there exists a neighborhood
I of c (a right or left neighborhood if, respectively, c = a or c = b) where f has constant sign, for
example is positive. Then by choosing a particular regular variation δu, with δu(x) = 0 for x /∈ I
and δu(x) > 0 inside I (if I = (x0, x1), a possible choice is δu(x) = (x− x0)3(x1 − x)3 inside I), we
obtain, by integration, δF > 0, against the assumption δF [u, δu] = 0 for any δu (see figure 2.10).
Therefore, f identically vanishes in [a, b].29

29What we did, is generalizing to the case of a continuous “index” x the property, obvious for a discrete index i,
that if

∑

i figi = 0 for any n-tuple (g1, . . . , gn), then fi = 0 for any i. In the discrete case the very obvious procedure
is taking n tuples (g1, . . . , gn) of the form (0, . . . , 0, 1, 0, . . . , 0), so as to “filter” the single components fi, and show
one by one they vanish. Here, with continuous x, although we could not take δu different from zero only in one point,
we followed exactly the same idea.
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So, the stationarity of F =
∫ b
a L(u(x), u′(x), x)dx for arbitrary variations, vanishing at the

extremes, is seen to be equivalent to a differential equation for the stationarity “point” u, namely
to the Euler–Lagrange equation associated to L(u, u′, x), with the condition of fixed extremes u(a),
u(b).30

For example, if the functional F represents the lenght of a curve in the plane, then we have

L(u, u′, x) =
√
1 + u′ 2 , (2.8.9)

and the Euler–Lagrange equation writes

d

dx

u′√
1 + u′ 2

= 0 ;

by computing the derivative we find u′′(1+u′ 2)−3/2 = 0, and thus u′′ = 0. The equation is solved by
straight lines. This is not surprising, nevertheless it is a proof that straight lines are the geodesics
of the plane, that is the two elementary notions of line—the curve with constant slope (differential
notion) and the curve of the stretched wire (variational notion)—do coincide.

• Take the Lagrangian (2.8.9). Even without writing its Euler–Lagrange equation, we can
observe that u does not appear explicitly in L, and consequently its “conjugated momen-
tum” p = ∂L

∂u′ must be conserved (that is, must be constant in x). We find immediately

p = u′/
√
1 + u′ 2, and correspondingly deduce u′ itself is constant—another way to see u rep-

resents a line. A further possibility: L does not depend explicitly on the independent variable
x; consequently, the quantity E(u, u′) = u′ ∂L∂u′ − L (though in no way does it represent an

energy) must be constant. We easily find E = −1/
√

1 + u′ 2, which also leads to u′ being
constant.

Exercise 39 Prove the lines are the geodesics of the plain, using polar coordinates (r,ϑ); assume

r = u(ϑ). [Answere: The Lagrangian is L(u, u′) =
√
u2 + u′2, and the corresponding Euler–

Lagrange equation is uu′′ − 2u′2 − u2 = 0. The equation is solved by the function which expresses
lines in polar coordinates, that is r = a/ sin(ϑ − ϕ), where a > 0 is the distance of the line from
the origin and ϕ is its inclination with respect to the polar axis].

Exercise 40 Prove the geodesics of the cylinder and of the cone appear as lines in the planar
development of the surfaces. Find the condition on the aperture of the cone, such that a geodesic
can have a double point (that is: a lace, with a single point fixed on the conical surface, can stay
stretched on the surface without slipping off the tip). [Hint: think of the plane development of the
cone, obtained by cutting the cone along the generatrix passing through the double point.]

Exercise 41 Verify that the arcs of a great circle are the geodesics of the sphere (it is enough to
check it for the equator, or a meridian).

Exercise 42 Write the equation of the brachistochrone, and show it is solved by the cycloid. [Look,
for the solution, at Appendix E, where another nice property of the cycloid is studied: a point
mass constrained on a cycloid, and subject to gravity (“cycloidal pendulum”), at variance with the
usual circular pendulum, is exactly isochronous.]

30The associated problem, however, is not the classical initial values Cauchy problem, that we would have if u(a)
and u′(a), instead of u(a) and u(b), were assigned. Rather, it is the so-called Sturm–Liouville problem, in which the
position data at the two extremes are given. At variance with the Cauchy problem, the Sturm–Liouville problem
does not always admit a solution, nor in general the solution is unique.
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It is not difficult to generalize the above considerations to the case of a functional F which
depends not on a single function, but on an n-tuple of functions u = (u1, . . . , un), with uh : [a, b] →
R, h = 1, . . . , n. Indeed, let L be a function: R2n+1 → R, and consider a functional of the form

F [u] =

∫ b

a
L(u(x),u′(x), x)dt ; (2.8.10)

proceeding as above, for any arbitrary variation δu : [a, b] → Rn, we define the variation δF [u, δu]
as a directional derivative, that is

δF [u, δu] =
d

dα
F [u+ αδu]

∣∣∣
α=0

.

By computing the derivative we get

δF [u, δu] =
n∑

h=1

∂L

∂u′h
δuh

]b

a

−
∫ b

a

n∑

h=1

( d

dx

∂L

∂u′h
−

∂L

∂uh

)
δuhdx .

If we restrict ourselves to fixed extremes, and correspondingly to variations which vanish at the
extremes, we finally get

δF [u, δu] = −
∫ b

a

n∑

h=1

( d

dx

∂L

∂u′h
−
∂L

∂uh

)
δuhdx .

With obvious generalization of the notion of stationarity of a functional, proposition 38 generalizes
into

Proposition 38’ Consider a functional F of the form (2.8.10); F is stationary in u, with the
restriction of fixed extremes, if and only if u1, . . . , un satisfy the Euler–Lagrange equations

d

dx

∂L

∂u′h
−

∂L

∂uh
= 0 , h = 1, . . . , n .

Proof. Proceeding as for proposition 38, we easily see that each of the n functions fi =
d
dt

∂L
∂u′

i
− ∂L
∂ui

must vanish. To show fi vanishes, it is enough to take δuj = 0 for j &= i and δui as in the proof of
proposition 38.

2.8.4 The Hamilton principle

The Hamilton principle, actually the simplest among the variational principles of mechanics, is
nothing but the transposition to Lagrangian mechanics of what we learned above, with no change
at all but language and notation.

Consider a Lagrangian system with n degrees of freedom, of Lagrangian L(q, q̇, t), and for any
movement31 q(t) between two fixed times t0 and t1, denote by S[q] the functional

S[q] =

∫ t1

t0

L(q(t), q̇(t), t)dt ;

31With little abuse, we are here denoting the movement (a function of t) with the same symbol of the variable q in
the configuration space; the improperty is useful, since it makes the notation lighter, but attention should be payed
not to get confused.



2.8.4 — The Hamilton principle 137

S is called the Hamilton integral, or also the Hamiltonian action. By translating into the language of
mechanics what we already learned, we can say that, for variations δq(t) vanishing at the extremes,
the variation of the functional is

δS[q, δq] = −
∫ t1

t0

[ n∑

h=1

(d
dt

∂L

∂q̇h
−
∂L

∂qh

)
δqh
]
dt ;

correspondingly the following proposition, known as the Hamilton principle, does hold:

Proposition 39 The movement q(t), t ∈ [t0, t1], makes stationary the action functional S, with the
restriction of variations δq(t) vanishing at the extremes, if and only if it is a natural movement,
that is it solves the Lagrange equations

d

dt

∂L

∂q̇h
−
∂L

∂qh
= 0 , h = 1, . . . , n .

So, the Hamilton principle represents the variational formulation of the laws of mechanics.

It is interesting to see how simple, and natural, is deducing from the Hamilton principle the
two invariance properties of the Lagrange equations, that we discussed in section 2.4.6. Consider
first the invariance of the equations for changes of coordinates, and recall that for any change of
coordinates (diffeomorphism) q = q(q̃, t), L̃ is defined by replacement of variables:

L̃(q̃, ˙̃q, t) = L(q(q̃, t), q̇(q̃, ˙̃q, t), t) .

Then for movements q(t), q̃(t) that correspond to each other, at any time t it is

L̃(q̃(t), ˙̃q(t), t) = L(q(t), q̇(t), t) ,

and thus

S̃[q̃] =

∫ t1

t0

L̃(q̃(t), ˙̃q(t), t)dt =

∫ t1

t0

L(q(t), q̇(t), t)dt = S[q] .

As a consequence, one integral is stationary if and only if the other is. Since, as we have seen, the
stationariety of the integrals is equivalent to their respective Lagrange equations, we conclude that
the Lagrange equations in the new variables are satisfied, if and only if they are satisfied in the old
variables.

It is similarly easy and natural to deduce the gauge invariance. Indeed, let

S[q] =

∫ t1

t0

L(q(t), q̇(t), t)dt , S′[q] =

∫ t1

t0

[
L(q(t), q̇(t), t) + L0(q(t), q̇(t), t)

]
dt ,

with L0 =
dF
dt . With evidence, it is

S′[q] = S[q] + F (q(t1), t1)− F (q(t0), t0) ;

so for fixes extremes (just apply the definition of variation), although S′[q] &= S[q], we get δS′ = δS.
The conclusion is immediate.
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APPENDICES

A Examples of non-holonomic constraints

A simple example of a non-holonomic constraint is the “ski which does not drift”. The configuration
of a ski which is free to slide on a plain, can be identified by three coordinates: the position of a
given point, say the point P at the center of the binding, and the angle ϕ the ski forms with a fixed
direction, for example the x-axis (figure 2.11). By saying the ski does not drift, we mean the velocity
v = ẋ ex + ẏ ey of P is necessarily parallel to the ski, that is to the versor e = cosϕ ex + sinϕ ey;
it is then ẋ sinϕ− ẏ cosϕ = 0, or equivalently in differential form

sinϕdx− cosϕdy = 0 .

By comparing with a generic differential form in the three variables x, y,ϕ

fx(x, y,ϕ)dx+ fy(x, y,ϕ)dy + fϕ(x, y,ϕ)dϕ = 0 ,

we see that
fx = sinϕ , fy = − cosϕ , fϕ = 0 .

It is easy to verify that the closure conditions are not satisfied, no matter how the “integrating
factor” λ(x, y,ϕ) is chosen: indeed if we pose

gx = λ(x, y,ϕ)fx , gy = λ(x, y,ϕ)fy , gϕ = λ(x, y,ϕ)fϕ ,

it is gϕ = 0, and consequently the closure conditions ∂gx
∂ϕ = ∂gϕ

∂x , ∂gy∂ϕ = ∂gϕ
∂y , lead to the system

λ cosϕ+
∂λ

∂ϕ
sinϕ = 0 , −λ sinϕ+

∂λ

∂ϕ
cosϕ = 0 ,

which is homogeneous and solved only by λ = 0.

In this example we made, as an exercise, a detailed analytic treatment. But the fact the
constraint is non-holonomic can be seen a priori, in a quite immediate way: take any configuration
(x, y,ϕ); with evidence, starting from it we are able to reach any other configuration (x′, y′,ϕ′), by
performing only displacement which respect the constraint: for example, we can (i) rotate the ski,
orienting it towards (x′, y′); then (ii) reach (x′, y′) with velocity parallel to the ski; finally (iii) rotate
again the ski, so as it assumes the desired orientation ϕ′. This excludes there exists F (non-trivial)
such that F (x′, y′,ϕ′) = F (x, y,ϕ), i.e. the constraint cannot be written in integer form.

Esercizio 43 (The unicycle) Proof that the constraint of pure rolling, for a wheel on the plain, is
not holonomic (assume the wheel stays orthogonal to the plane). [Hint: identify the configuration
of the wheel with the four coordinates x, y, ϕ and ϑ, where x, y are the coordinates of the wheel
hub, ϕ is the angle formed by the plane of the wheel with the x axis, and ϑ is the angle formed
by an assigned radius of the wheel with the vertical direction. The constraint that the contact
point between wheel and floor has zero velocity, can be expressed by the two relations, including
velocities, ẋ+Rϑ̇ cosϕ = 0 and ẏ +Rϑ̇ sinϕ = 0.]



B — Cardinal equations, ideality of the constraint... 139

Figure 2.11: A non-holonomic constraint: the “ski which does not drift”.

B Cardinal equations, ideality of the constraint
and Lagrange equations for a rigid body

The ideality of a constraint, for a system of N point masses P1, . . . , Pn, using the virtual velocities
ui can be written

N∑

i=1

Φi · ui = 0 ; (B.1)

virtual velocities, we recall, are arbitrary velocities compatible with the constraint.

On the other hand, the rigidity constraint implies that for any motion compatible with the
constraint, at any time, there exists a vector ω ∈ R3, such that

ui = uO + ω × (Pi −O) , (B.2)

where O is any assigned point, fixed in the body frame: for example, but not necessarily, any of
its points. By varying uO and ω, we find all possible choices of the virtual velocities ui. (For the
justification of such claims, which would require too much space, we demand to any textbook of
rational mechanics.)

From these premises, it is easy to deduce that

Proposition 40 For a rigid body, the ideality of the constraint is equivalent to the pair of equations

N∑

i=1

Φi = 0 ,
N∑

i=1

(Pi −O)×Φi = 0 . (B.3)

Proof. If we substitute expression (B.2) of ui inside (B.1), and make a cyclic permutation of
vectors in the mixed vector product, we find

u0 ·
N∑

i=1

Φi + ω ·
N∑

i=1

(Pi −O)×Φi = 0 .

For the arbitrariness of uO and ω, the conclusion is immediate.

In turn, equations (B.3) express the fact that the resultant and the resultant moment of the
internal forces, inside the system, do vanish, and thus such equations are equivalent to the cardinal
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Figure 2.12: The Larmor motion and its stabilizing effect.

Figure 2.13: Illustrating the phenomenon of the magnetic stabilization.

equations (if they are satisfied, then the cardinal equations hold, and conversely). We conclude
that the ideality of the rigidity constraint is equivalent to the cardinal equations.

Finally, as we have seen in chapter 2.4.1, the assumption of ideality of the constraint, for any
holonomic system, implies the Lagrange equations are satisfied: as a consequence, for a rigid body
the cardinal equations imply the Lagrange equations are satisfied, and consequently they univocally
determine the motion. Let us recall that in general, for a non-rigid system, the cardinal equations
are satisfied along any motion, and thus are implied by the Lagrange equations, but are not sufficient
to determine it. Instead, for rigid bodies, cardinal equations and Lagrange equations are equivalent.
This implies, in particular, the six scalar equations corresponding to the cardinal equations are
independent.

C The magnetic stabilization

We show here that in some cases, by adding a suitable magnetic field, an unstable equilibrium
configuration can become stable.

Consider a two-dimensional harmonic repulsor, that is a point particle of mass m which is free
to move in a plain and is subject to a conservative repulsive force F = krer, with r2 = x2+ y2; the
system is described by the Lagrangian

L0(x, y, ẋ, ẏ) =
1

2
m(ẋ2 + ẏ2)− V0(r) , V0(r) = −

1

2
kr2 .

Quite evidently, the origin is an unstable equilibrium configuration for any k ≥ 0 (for k = 0, we
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have the usual instability of the free particle).

Let us now assume the particle has an electric charge e, and is immersed in a constant magnetic
field orthogonal to the plain, B = Bez; the corresponding Lorentz force is

F = eB v × ez .

It is not difficult to see that if B is sufficiently large, then the origin gets stable. This is evident,
first of all, for k = 0: indeed in such a case the particle, as is known, moves uniformly on a circle
passing through the initial point (x0, y0), tangent to the initial velocity, of radius equal to the
Larmor radius

R =
mv

|eB|
,

where v is the modulus of the velocity (see figure 2.12). We clearly see that for any B &= 0, if
(x0, y0) is sufficiently close to the origin and v is sufficiently small, the particle stays arbitrarily
close to the origin (and velocity stays close to zero); according to the definition, the origin is a stable
equilibrium point. For k = 0, of course, the origin is any point of the plane: that is in absence
of active forces, but in presence of a magnetic field, all points of the plain are stable equilibrium
points.

For k > 0, it is not difficult to see that if the magnetic field is sufficiently strong, namely if

B2 > 4
km

e2
, (C.1)

then the origin is stable. A possible way to prove stability is to write explicitly the equations of
motion, which are linear and can be solved, and observe stability directly on the solutions. A
nicer way, which does not require to solve the equations of motion and indeed does not require any
calculation, is the following one: the velocity dependent potential associated to the Lorentz force
is, in the present notations,

V1 =
1

2
e B× v · r ,

and the Lagrangian is
L = K − V0 − V1 .

If we make the position

ω =
eB

2m
,

and add and subtract to L the quantity 1
2mω

2r2, we obtain

L = K −W0 − Vc − V1 ,

where

W0(r) = V0(r) +
1

2
mω2r2 , Vc = −

1

2
mω2r2 , V1 = m ω × v · r .

Formally, L is the Lagrangian of a particle initially described by Lagrangian L0 = K −W0, then
observed in a coordinate system which rotates with angular velocity ω with respect to it. This
means the terms Vc and V1 disappear if, formally, we “come back to the initial system”, that is in
reality we pass from our frame to new frame which rotates with angular velocity −ω. In such a
frame the potential energy is W0, and clearly (Lagrange–Dirichlet theorem), if condition (C.1) is
satisfied, then the origin is stable. The stability does not change by passing from one system to
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Figure 2.14: The discrete vibrating string with fixed ends.

the other (r does not change, v changes by quantities small with r). For generic central repulsive
potentials, condition (C.1) is replaced by the more general condition

e2B2

4m
> V ′′

0 (0) .

It is also easy to understand qualitatively how the particle moves: any central potential like W0

produces rosette motions (exceptionally, closed trajectories); in the original system a rotation is
added, and motions remain of rosette type.

There is a curious aspect in the magnetic stabilization, which in a sense reveales its fragility:
while in general adding a little friction improves stability (in the future), in such a case friction
destroys stability. The idea is illustrated in figure 2.13: if the potential V0 has a maximum in the
origin, then for any value of E, the motion must stay outside the curve of intersection between
the plane of constant energy E and the graphic of the potential energy, that is, outside the circle
drawn in the figure (simply because E = K + V0 with K ≥ 0; remember V1 does not contribute
to the energy). Now any small friction inexorably consumes energy: correspondingly the plane of
constant energy lowers, the circle gets larger, and the particle moves away from the equilibrium
point. Such a behavior should not surprise: friction lowers velocity, the magnetic force decreases,
its stabilizing effect reduces.

D The discrete vibrating string

Consider a system of n point masses of equal mass m, staying on a line as in figure 2.14; denote
by x1, . . . , xn their abscissas, and assume that nearby points interact with a potential energy V(r),
having the typical profile of molecular potentials, as schematically drawn in figure 2.15. The
function V is assumed to have a minimum in r = a; a Taylor expansion gives then

V(r) = cost +
k

2
(r − a)2 + O((r − a)3) ,

with k = V′′(a). Let us suppose the chain is closed by fixed ends (or “rigid walls”), that is by two
fixed particles in x0 = 0 and xn+1 = L; let us assume for simplicity (but it is not really important)
L = (n+ 1)a. In such conditions it is evident that the configuration

x∗h = h a , h = 1, . . . , n ,

is a minimum of the overall potential energy, and thus is a stable equilibrium configration.

Let us choose as Lagrangian coordinates the displacements from equilibrium qh = xh − x∗h.
With evidence, the Lagrangian of the system has the form

L(q, q̇) =
m

2

n∑

h=1

q̇2h +
k

2

n∑

h=0

(qh+1 − qh)
2 + O(‖q‖3) ,
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Figure 2.15: A typical molecular potential.

where it is understood q0 = qn+1 = 0. If we truncate the Lagrangian to its quadratic part and
divide it by m (multiplying by a constant does not change the equations of motion), we finally
obtain the Lagrangian

L∗(q, q̇) =
1

2

n∑

h=1

q̇2h −
Ω2

2

n∑

h=0

(qh+1 − qh)
2 , (D.1)

with Ω2 = k/m; the corresponding equations of motion are

q̈h = Ω2(qh+1 − 2qh + qh−1) , h = 1, . . . , n . (D.2)

Exercise 44 Verify that even without assuming xn+1 = (n+1)a, the truncated Lagrangian has the
form D.1; what is in this case Ω2?

A. The analogy with the continuous vibrating string. We can think of growing the number n of
points at fixed overall length L, mantaining however constant the density µ, that is posing m = µa,
as well as the elastic constant per unit length κ, that is posing k = κ/a. It is then

Ω2 =
c2

a2
with c2 =

κ

µ
.

Let us observe the constant c has the physical dimension of a velocity.

We now replace the integer index h by the corresponding equilibrium coordinate x∗h = ha,
dropping however the asterisk (there is no risk of confusion with the coordinate xh of the h–th
point, a symbol that we abandoned); we can then use the notation q(xh, t) in place of qh(t). With
trivial algebric manipulation, the equation of motion can be rewritten

∂2q

∂t2
(xh, t) = c2

q(xh+a,t)−q(xh,t)
a − q(xh,t)−q(xh−a,t)

a

a
.

Proceeding heuristically, in the limit a → 0 (at fixed x, not h) we recognize, at the right hand side,
the second partial derivative of q with respect to the x; we “deduce” in this way the wave equation
for a continuous chain,

∂2q

∂t2
− c2

∂2q

∂x2
= 0 . (D.3)



144

The deduction is independent on the conditions we imposed at the ends, and is also meaningful (as
an heuristic deduction!) for an infinite string. If the string in infinite, as is well known, equation
(D.2) is solved by any q(x, t) of the type

q(x, t) = f1(x− ct) + f2(x+ ct) ,

with any f1, f2; f1 e f2 represent profiles that propagate, respectively, with velocity c and −c.

For a string with fixed ends, that is q(0, t) = q(L, t) = 0 for any t, (D.3) can be solved by
recalling that an orthonormal basis for functions [0,L] → R which vanish at the extremes, is
provided by

u(j)(x) = C sin
jπx

L
, 1 ≤ j < ∞ , C =

√
2

L
; (D.4)

orthonormal means ∫ L

0
u(j)(x)u(l)(x) dx = δjl .

Any solution q(x, t) can then be written in the form

q(x, t) =
∞∑

j=1

ξj(t)u
(j)(x) .

By substituting such an expression in the equation of motion (D.3), we find

∞∑

j=1

(ξ̈j + ω2
j ξj) sin

jπx

L
= 0 ,

with

ωj =
jcπ

L
. (D.5)

Each coefficient of the series must vanish, so each coefficient ξj must satisfy the equation

ξ̈j + ω2
j ξj = 0 , 1 ≤ j < ∞ ,

namely that of the harmonic oscillator. As a conclusion, the general solution of the string with
fixed ends can be written

q(x, t) =
∑

j

Aj cos(ωjt+ ϕj)u
(j)(x) .

It is interesting to observe that all angular frequencies ωj are multiples of a fundamental one ω1:

ωj = j ω1 .

B. Normal modes of the discrete chain. Let us go back to the discrete chain, with Lagrangian
(D.1) and equations of motion (D.2). We are dealing with a system with many degrees of freedom,
so to find the normal modes of oscillation we cannot apply the general method, which would require
solving an algebric equation of degree n. Proceeding however in analogy with the continuous case,
it is not difficult to see that u(j)(x) in (D.4) should be replaced by the corresponding discrete
quantities

u(j)h = C sin
hjπ

n+ 1
, 1 ≤ j ≤ n , C =

√
2

n+ 1
.

The n vectors u(j) = (u(j)1 , . . . , u(j)n ) defined in this way are orthonormal: indeed,
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Lemma 41 For any j and l, 1 ≤ j, l ≤ n, it is

u(j) · u(l) = δjl .

Proof. We must show that

n∑

h=1

sin
hjπ

n+ 1
sin

hlπ

n+ 1
=

n+ 1

2
δjl . (D.6)

Elementary trigonometric identities give the left hand side the expression

1

2

n∑

h=1

[
cos

h(j − l)π

n+ 1
− cos

h(j + l)π

n+ 1

]
. (D.7)

(a) Case j + l and j − l odd: posing m = j + l or j − l, we find

cos
hmπ

n+ 1
= − cos

(n+ 1− h)mπ

n+ 1
,

so the terms in the sum cancel out two by two; the central one with h = (n + 1)/2, which does
exist for odd n, also vanishes.

(b) Case j+ l and j− l even: it is convenient to start the sums in (D.6) and (D.7) from zero (zeros
are added). Posing r = m/2, with m as above, it is evidently

n∑

h=0

cos
hmπ

n+ 1
= Re

n∑

h=0

e2πihr/(n+1) .

But for r &= 0, the sum at the right hand side runs for an integer number of times on the roots of
unity (it runs once, on the (n+1)th roots, if r and n+1 are relatively primes, otherwise, if s is the
common divisor, it runs s times on the n+1

s th roots), so it vanishes. For m = 0 the sum is instead
n+ 1. This happens only in the first term in (D.7), when j = l; the conclusion follows.

It is now spontaneous to introduce new coordinates ξ1, . . . , ξn, actually the normal coordinates
which decouple the equations of motion, by posing

qh =
n∑

j=1

ξj u
(j)
h = C

n∑

j=1

ξj sin
hjπ

n+ 1
. (D.8)

If we substitute this expression inside the equations of motion (D.2), we find

C
n∑

j=1

ξ̈j sin
hjπ

n+ 1
= C

n∑

j=1

ξj
(
sin

(h+ 1)jπ

n+ 1
− 2 sin

hjπ

n+ 1
+ sin

(h− 1)jπ

n+ 1

)
,

and since

sin
(h+ 1)jπ

n+ 1
+ sin

(h− 1)jπ

n+ 1
= 2 sin

hjπ

n+ 1
cos

jπ

n+ 1
,

the right hand side assumes the form

2C
n∑

j=1

ξj sin
hjπ

n+ 1

(
cos

jπ

n+ 1
− 1
)
.
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Using the identity

cos
jπ

n+ 1
− 1 = −2 sin2

jπ

2(n+ 1)
,

we then obtain for the equations of motion, the expression

n∑

j=1

(ξ̈j + ω2
j ξj)u

(j)
h = 0 , h = 1, . . . , n , (D.9)

having denoted

ωj = 2Ω sin
jπ

2(n+ 1)
. (D.10)

From (D.9), which is perhaps more clear in the vector notation
∑n

j=1(ξ̈j + ω2
j ξj)u

(j) = 0, thanks

to the linear independence of the n vectors u(j) (which for lemma 41 are indeed orthogonal), we
obtain for each ξj the equation of the harmonic oscillator:

ξ̈j + ω2
j ξj = 0 , j = 1, . . . , n .

The general solution of the system is then

qh(t) =
n∑

j=1

Aj cos(ωjt+ ϕj) sin
hjπ

n+ 1
.

• It is interesting to compare (D.10) with (D.5). It clearly appears that for any fixed j and
large n, it is

ωj = jω1 + O((j/n)3) ,

and also

ωj = j
Ωπ

n+ 1
+ O((j/n)3) =

jcπ

L
+ O((j/n)3) .

Therefore, as was to be expected, in the limit n → ∞ expressions (D.10) and (D.5) do
coincide.

• With evidence, (D.8) is a discrete Fourier transform; in vector notation it can be written

q = Uξ , Uhj = C sin
hjπ

n+ 1
.

Thanks to lemma 41 and to the simmetry of matrix U , it is easy to see that the inverse of U
is U itself, that it the transformation is involutory.

E The brachistochrone

As discussed in section 2.8.1, a point mass which descends from the origin to a point of abscissa b,
along an assigned curve y = u(x), takes a time

T [u] =
1√
2g

∫ b

0
L(u(x), u′(x)) dx ,
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Figure 2.16: La cicloide (a); una famiglia di cicloidi con diverso r,
passanti per l’origine (b).

where

L(u, u′) =

√
1 + u′ 2

u
.

The curve that minimizes the functional T between the fixed extremes (0, 0) and (b, yb) is called
the brachistocrone.

To find such a curve, let us first determine the Euler–Lagrange equation associated to T . From
the expression of L we have

∂L

∂u
= −

1

2L

1 + u′ 2

u2
= −

L

2u
,

∂L

∂u′
=

u′

Lu
,

d

dx

∂L

∂u′
=

Luu′′ − u′(Lu′ + udL
dx )

L2u2
,

and using dL
dx = u′ ∂L∂u + u′′ ∂L∂u′ we also get, after a few simplifications,

d

dx

∂L

∂u′
=

u′′ − 1
2L

2u′2

L3u2
.

We then easily obtain for the Euler–Lagrange equation the expression

2uu′′ + u′ 2 + 1 = 0 .

It is not difficult to verify the equation is solved by the cycloid. The cycloid is the plane curve
described by an assigned point at the border of a wheel, which rolls without slipping on a linear
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guide (figure 2.16a). It is easy to provide a parametric description x(ϕ), y(ϕ) of the curve, namely
(look at the figure)

x(ϕ) = a+ r(ϕ− sinϕ) , y(ϕ) = r(1− cosϕ) , 0 ≤ ϕ ≤ 2π ;

for a = 0 the curve passes, as we wish, through the origin. From the parametric equations we
obtain u′ and u′′ as functions of ϕ: namely

u′ =

dy
dϕ
dx
dϕ

=
sinϕ

1− cosϕ

(observe u′ → ∞ for ϕ→ 0,π), and

u′′ =
du′

dϕ
dx
dϕ

= −
1

r(1− cosϕ)2
.

It is then immediate to verify that 2uu′′ + u′ 2 + 1 vanishes identically in ϕ, that is, the cycloid
solves the Euler–Lagrange equation. It is worthwhile to observe that the parametric equations of
the cycloid contain two arbitrary constants a e r, which can be used to fit the boundary conditions.
From the requirement the curve passes through the origin we deduce, as already remarked, a = 0; r
is instead determined by imposing the curve passes through (b, yb). If we trace a family of cycloids
with a = 0 and different r, we easily see that, in this problem, there is a solution for any yb ≥ 0
(figure 2.16b).

What we did is not completely satisfying: we checked the cycloid solves the Euler–Lagrange
equation, but we did not really construct the solution starting from the equation. The best way
to do is to exploit the property that, since L does not depend explicitly on x, then the quantity
E = u′ ∂L∂u′ − L (though not having the meaning of an energy) is conserved. Computation gives

E(x) = −
1√
C(x)

, with C(x) = u(x)(1 + u′(x)2) ;

C itself is evidently constant for any solution u, and it is convenient to use it in place of E.32 For
any choice of the value c of the constant, the expression C(x) = c is a differential equation of the
first order, precisely u(1 + u′ 2) = c, that is

u′ = ±
√

c− u

u
.

By separating the variables we obtain, for example for the sign ‘+’,

dx =

√
u

c− u
du , x = a+

∫ u

0

√
v

c− v
dv ;

the integration gives

x(u) = a+ c arctan

√
u

c− u
−
√

u(c− u) , (E.1)

32It is an useful exercise to check that C(x) is effectively constant. Indeed,

C′ = u′(1 + u′ 2) + 2uu′u′′ = u′(1 + u′ 2 + 2uu′′) = 0 .
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and by inversion we obtain, in principle, the solution u(x) we were searching for. The inversion
cannot be written explicitly, but it is spontaneous to introduce the parameter

ϑ = arctan

√
u

c− u
.

Indeed from the very definition of ϑ we get (c− u) tan2 ϑ = u, which in turn gives

u =
c tan2 ϑ

1 + tan2 ϑ
= c sin2 ϑ ;

from (E.1) it then follows

x = a+ cϑ− c
√
sin2 ϑ(1− sin2 ϑ) = a+ c(ϑ− sinϑ cosϑ) .

Passing to ϕ = 2ϑ we finally get

x = a+
c

2
(ϕ− sinϕ) , u =

c

2
(1− cosϕ) ,

which are the parametric equations of the cycloid with r = c/2.

The cycloidal pendulum

The cycloid has several interesting geometric and mechanical properties. One of them is that
the cycloidal pendulum, that is the problem of a point mass constrained to a cycloid, subject to
gravity, is exactly isochronous: the period of oscillation (at variance with respect to the usual
circular pendulum) is independent of the amplitude.

It is convenient to represent the curve with the point of minimum in the origin, as in figure
2.17a (the wheel rolls on the line y = 2r; the y axis points upwards). If s denotes the arc length
from the origin, then the Lagrangian of the cycloidal pendulum33 is

L(s, ṡ) =
1

2
mṡ2 −mgy(s) ,

with y(s) to be determined. For a generic curve, we would not be able to write y(s) explicitly, but
for the cycloid we can do:

Lemma 42 For the cycloid it is

y(s) =
s2

8r
. (E.2)

The proof is below. The isochronicity of the cycloidal pendulum immediately follows: using (E.2),
the Lagrangian becomes

L(s, ṡ) =
1

2
mṡ2 −

1

2

mg

4r
s2 ,

that is the Lagrangian of a harmonic osillator with angular frequency

ω =

√
g

4r
.

This means the motion is exactly harmonic.

33Which has nothing to do with the Lagrangian of the above considered Euler–Lagrange problem!
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Figure 2.17: The cycloidal pendulum.
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• A curious consequence is this: whatever is the position on which we leave the point mass
free to move (with zero initial velocity), the time necessary to reach the origin is a fourth of
period, that is exactly 1

2πω = π
√
r/g, regardless of the starting point. So, two masses started

simultaneously (with zero velocity) from positions like in figure 2.17b, will always collide in
the origin.

• A cycloidal pendulum can be practically constructed by realizing a platform as smooth as
possible, having the profile of a cycloid. But there is a better way, illustrated in figure 2.17c:
we can modify the trajectory of a pendulum, by letting the wire lean against a conveniently
profiled wall, that is a convenient curve C1. A little reflection shows that to generate in such
a way a curve C0 — the cycloid or another one — C1 must be the locus of the centers of
curvature of C0. The curve C1 is called the evolute of C0, and conversely, C0 is called the
evolvent of C1 (in the limit situation of the circle, which has constant center of curvature,
the evolute degenerates in a point). A nice property of the cycloid, that we will not prove
(though it would not be difficult), is that evolvent and evolute do coincide: precisely, if the
wall against which the wire leans has a cycloidal profile, and the length of the wire is 4r,
an identical cycloid is obtained. By exploiting this property, it is not difficult to realize a
cycloidal pendulum with much smaller friction.

Proof of the Lemma. It is convenient to write the parametric equations of the cycloid, making
reference to the coordinates x, y and to the angle α represented in figure 2.17. The equations are

x = r(α+ sinα) , y = r(1− cosα) ;

from them it follows
dx = r(1 + cosα)dα , dy = r sinαdα ,

and thus

ds2 = r[(1 + cosα)2 + sin2 α] dα2 = 2r(1 + cosα) dα2 = 2
1 + cosα

sin2 α
dy .

But
1 + cosα

sin2 α
=

1

1− cosα
=

r

y
,

and so

ds =
√
2r

dy
√
y
= d

√
8ry ;

taking into account that s = 0 for y = 0, we deduce s =
√
8ry, which gives (E.2).


