Neural Networks (Derivatives)
 Machine Learning, A.Y. 2022/23, Padova

Fabio Aiolli

October 26th, 2022

Derivative Rules

The derivative tells us the slope of a function at any point.
Given a point. Positive derivative means the function increases at that point. Negative derivative means the function decreases at that point. Null derivative means there is a stationary point (minimum, maximum, or saddle point)!

There are rules we can follow to find many derivatives.

- constant $y=c, c \in \mathbb{R} \Rightarrow y^{\prime}=0$
- line $y=c \cdot x, c \in \mathbb{R} \Rightarrow y^{\prime}=c$
- power $y=x^{n}, n \in \mathbb{N} \Rightarrow y^{\prime}=n x^{n-1}$
- exponential $y=e^{x} \Rightarrow y^{\prime}=e^{x}$

Derivative Rules

- Multiplication by constant $D(k \cdot f(x))=k \cdot f^{\prime}(x)$
- Sum $D\left(\sum_{i} f_{i}(x)\right)=\sum_{i} f^{\prime}(x)$
- Product $D(f(x) \cdot g(x))=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$
- Quotient $D\left(\frac{f(x)}{g(x)}\right)=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{g(x)^{2}}$
- Reciprocal $D\left(\frac{1}{g(x)}\right)=-\frac{g^{\prime}(x)}{g(x)^{2}}$
- Composition/Chain $D\left(g(f(x))=g^{\prime}(f(x)) \cdot f^{\prime}(x)\right.$

Gradient and its properties

Definition of Gradient

In vector calculus, the gradient of a scalar-valued differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a vector-valued function $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ whose value at point p is the vector whose components are the partial derivatives of f at p.

$$
\nabla f(p)=\left(\begin{array}{c}
\frac{\partial f}{\partial x}(p) \\
\frac{\partial f}{\partial x_{2}}(p) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(p)
\end{array}\right)
$$

- The gradient vector can be interpreted as the direction and rate of fastest increase;
- The gradient is the zero vector at a point if and only if the point is a stationary point (where the derivative vanishes);
- The gradient thus plays a fundamental role in optimization theory.

Minimization with gradient descent

Minimization problem
Let $f(\mathbf{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a vector-valued function, find the vector $\mathbf{x}^{*} \in \mathbb{R}^{n}$ that minimizes the function f, that is:

$$
\mathbf{x}^{*}=\arg \min _{\mathbf{x}} f(\mathbf{x})
$$

Gradient descent algorithm

- $k \leftarrow 0, \mathbf{x}_{0} \in \mathbb{R}^{n}$
- while $\nabla f\left(x_{k}\right) \neq 0$
- Compute the descent direction $\mathbf{p}_{k}:=-\nabla f\left(\mathbf{x}_{k}\right)$
- Compute the step of descent η_{k}
- Update $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_{k}+\eta_{k} \mathbf{p}_{k}$
- $k \leftarrow k+1$

Minimization with gradient descent

Note: It is not guaranteed that it converges to a global minimum!

