
Neural Networks (Part II)
Machine Learning, A.Y. 2022/23, Padova

Fabio Aiolli

October 26th, 2022

Fabio Aiolli Neural Networks (Part II) October 26th, 2022 1 / 13

The Delta rule

The Perceptron algorithm finds a weight vector (hyperplane) capable
to separate the data (iff they are linearly separable);

The Delta rule is a weight update rule different from the Perceptron
rule that allows to obtain a best-fit solution approximating the target
concept;

In particular, it exploits gradient descent to explore the hypothesis
space and select the hypothesis that best approximates the target
concept (by minimizing an error function, appropriately defined).

Fabio Aiolli Neural Networks (Part II) October 26th, 2022 2 / 13

The Delta rule

Consider a perceptron WITHOUT hard threshold (linear activation):

o(x) =
n∑

i=0

wixi = w · x

and let define a measure of the committed error (mean square error) given
a specific weight vector w as:

E [w] =
1

2N

∑
(x(s),t(s))∈S

(t(s) − o(x(s)))2

where N is the cardinality of the training set S .

∀(x(s), t(s)) ∈ S , o(x(s)) = t(s) ⇒ E [w] = 0 then... we need to MINIMIZE
E [w] with respect to the parameters w!

Fabio Aiolli Neural Networks (Part II) October 26th, 2022 3 / 13

Minimization with gradient descent

Basic idea: start from a random w and update it in the opposite direction
of the gradient (that indicates the direction of maximal increase of E [w]).

∇E [w] ≡ [∂E∂w0
, ∂E
∂w1

, . . . , ∂E
∂wn

], ∆w = −η∇E [w], ∆wi = −η ∂E
∂wi

.

Fabio Aiolli Neural Networks (Part II) October 26th, 2022 4 / 13

Gradient computation (linear activation)

∂E

∂wi
=

∂

∂wi

[
1

2N

N∑
s=1

(t(s) − o(s))2

]

=
1

2N

N∑
s=1

∂

∂wi

[
(t(s) − o(s))2

]
=

1

2N

N∑
s=1

2(t(s) − o(s))
∂

∂wi

[
t(s) − o(s)

]
=

1

N

N∑
s=1

(t(s) − o(s))
∂

∂wi

[
t(s) −w · x(s)

]

Fabio Aiolli Neural Networks (Part II) October 26th, 2022 5 / 13

Gradient computation (linear activation)

∂E

∂wi
=

1

N

N∑
s=1

(t(s) − o(s))
∂

∂wi

[
t(s) −w · x(s)

]
=

1

N

N∑
s=1

(t(s) − o(s))

(
− ∂

∂wi

[
w · x(s)

])

= − 1

N

N∑
s=1

(t(s) − o(s))
∂

∂wi

 n∑
j=1

wjx
(s)
j

= − 1

N

N∑
s=1

(t(s) − o(s))x
(s)
i

Fabio Aiolli Neural Networks (Part II) October 26th, 2022 6 / 13

Algorithm with gradient descent

Gradient-Descent(S ,η):
Each training example is a pair (x, t) where x is the vector of input values
and t is the target value in output. η is the learning rate (that
encompasses the constant term 1/N).

1 Initialize the wi ’s with small random values
2 Until the termination condition is met:

(a) ∆wi ← 0
(b) For each (x, t) ∈ S :

(i) Present x to the neuron and compute the output o(x) = w · x
(ii) For each i ∈ {1, . . . , n}:

∆wi ← ∆wi + η(t − o)xi

(c) For each i ∈ {1, . . . , n}:

wi ← wi +∆wi

Fabio Aiolli Neural Networks (Part II) October 26th, 2022 7 / 13

Sigmoidal activation

Fabio Aiolli Neural Networks (Part II) October 26th, 2022 8 / 13

Sigmoidal activation

Consider now a perceptron with sigmoidal activation function:

o(x) = σ(
n∑

i=0

wixi) = σ(w · x) = σ(y)

where y = w · x and σ(y) = 1
1+e−y .

Following the same approach as before. We want to find the weight vector
that minimizes the mean square error in the training set using a
gradient-descent based algorithm.

To this aim, first we note that for the function σ() defined above the
following relation holds (verify as exercise):

∂σ(y)

∂y
= σ(y)(1− σ(y))

Fabio Aiolli Neural Networks (Part II) October 26th, 2022 9 / 13

Gradient computation (sigmoidal activation)

∂E

∂wi
=

∂

∂wi

[
1

2N

N∑
s=1

(t(s) − o(s))2

]

=
1

2N

N∑
s=1

∂

∂wi

[
(t(s) − o(s))2

]
=

1

2N

N∑
s=1

2(t(s) − o(s))
∂

∂wi

[
t(s) − o(s)

]
=

1

N

N∑
s=1

(t(s) − o(s))
∂

∂wi

[
t(s) − σ(y (s))

]
= − 1

N

N∑
s=1

(t(s) − o(s))
∂

∂wi

[
σ(y (s))

]
Fabio Aiolli Neural Networks (Part II) October 26th, 2022 10 / 13

Gradient computation (sigmoidal activation)

∂E

∂wi
= − 1

N

N∑
s=1

(t(s) − o(s))
∂

∂wi

[
σ(y (s))

]
= − 1

N

N∑
s=1

(t(s) − o(s))
∂σ(y (s))

∂y (s)
∂y (s)

∂wi

= − 1

N

N∑
s=1

(t(s) − o(s))
∂σ(y (s))

∂y (s)
∂

∂wi

[
w · x(s)

]
= − 1

N

N∑
s=1

(t(s) − o(s))σ(y (s))(1− σ(y (s)))x
(s)
i

Hence, the point 2.b.ii of the algorithm given above now becomes:

∆wi ← ∆wi + η(t − o)σ(y)(1− σ(y))xi

Fabio Aiolli Neural Networks (Part II) October 26th, 2022 11 / 13

Final remarks about the Delta rule

Note the similarity with the Perceptron rule!

It converges to a valid solution even if the data are NOT linearly
separable (provided a sufficiently small η)

The objective function to minimize is convex. This implies that there
is a unique global minimum!

If η is too large, the gradient descent runs the risk of overstepping the
minimum. If η is too small the convergence will be slow. One
common modification is to gradually decrease η as the number of
gradient descent steps grows.

There exists a stochastic version (stochastic gradient descent)

Other (equivalent) names from literature: LMS rule, Adaline rule,
Widrow-Hoff rule.

Fabio Aiolli Neural Networks (Part II) October 26th, 2022 12 / 13

Recap

Notions

Gradient and minimization of vector functions

The Delta rule

Optimization with linear activation

Optimization with sigmoidal activation

Exercises

Show that σ′(y) = σ(y)(1− σ(y))

Implement the Delta rule optimization with linear/sigmoidal activation

Fabio Aiolli Neural Networks (Part II) October 26th, 2022 13 / 13

