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The Delta rule

The Perceptron algorithm finds a weight vector (hyperplane) capable
to separate the data (iff they are linearly separable);

The Delta rule is a weight update rule different from the Perceptron
rule that allows to obtain a best-fit solution approximating the target
concept;

In particular, it exploits gradient descent to explore the hypothesis
space and select the hypothesis that best approximates the target
concept (by minimizing an error function, appropriately defined).
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The Delta rule

Consider a perceptron WITHOUT hard threshold (linear activation):

o(x) =
n∑

i=0

wixi = w · x

and let define a measure of the committed error (mean square error) given
a specific weight vector w as:

E [w] =
1

2N

∑
(x(s),t(s))∈S

(t(s) − o(x(s)))2

where N is the cardinality of the training set S .

∀(x(s), t(s)) ∈ S , o(x(s)) = t(s) ⇒ E [w] = 0 then... we need to MINIMIZE
E [w] with respect to the parameters w!
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Minimization with gradient descent

Basic idea: start from a random w and update it in the opposite direction
of the gradient (that indicates the direction of maximal increase of E [w]).

∇E [w] ≡ [ ∂E∂w0
, ∂E
∂w1

, . . . , ∂E
∂wn

], ∆w = −η∇E [w], ∆wi = −η ∂E
∂wi

.
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Gradient computation (linear activation)

∂E

∂wi
=

∂

∂wi

[
1

2N

N∑
s=1

(t(s) − o(s))2

]

=
1

2N

N∑
s=1

∂

∂wi

[
(t(s) − o(s))2

]
=

1

2N

N∑
s=1

2(t(s) − o(s))
∂

∂wi

[
t(s) − o(s)

]
=

1

N

N∑
s=1

(t(s) − o(s))
∂

∂wi

[
t(s) −w · x(s)

]

Fabio Aiolli Neural Networks (Part II) October 26th, 2022 5 / 13



Gradient computation (linear activation)

∂E

∂wi
=

1

N

N∑
s=1

(t(s) − o(s))
∂

∂wi

[
t(s) −w · x(s)

]
=

1

N

N∑
s=1

(t(s) − o(s))

(
− ∂

∂wi

[
w · x(s)

])

= − 1

N

N∑
s=1

(t(s) − o(s))
∂

∂wi

 n∑
j=1

wjx
(s)
j


= − 1

N

N∑
s=1

(t(s) − o(s))x
(s)
i
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Algorithm with gradient descent

Gradient-Descent(S ,η):
Each training example is a pair (x, t) where x is the vector of input values
and t is the target value in output. η is the learning rate (that
encompasses the constant term 1/N).

1 Initialize the wi ’s with small random values
2 Until the termination condition is met:

(a) ∆wi ← 0
(b) For each (x, t) ∈ S :

(i) Present x to the neuron and compute the output o(x) = w · x
(ii) For each i ∈ {1, . . . , n}:

∆wi ← ∆wi + η(t − o)xi

(c) For each i ∈ {1, . . . , n}:

wi ← wi +∆wi
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Sigmoidal activation
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Sigmoidal activation

Consider now a perceptron with sigmoidal activation function:

o(x) = σ(
n∑

i=0

wixi ) = σ(w · x) = σ(y)

where y = w · x and σ(y) = 1
1+e−y .

Following the same approach as before. We want to find the weight vector
that minimizes the mean square error in the training set using a
gradient-descent based algorithm.

To this aim, first we note that for the function σ() defined above the
following relation holds (verify as exercise):

∂σ(y)

∂y
= σ(y)(1− σ(y))
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Gradient computation (sigmoidal activation)

∂E

∂wi
=

∂

∂wi

[
1

2N

N∑
s=1

(t(s) − o(s))2

]

=
1

2N

N∑
s=1

∂

∂wi

[
(t(s) − o(s))2

]
=

1

2N

N∑
s=1

2(t(s) − o(s))
∂

∂wi

[
t(s) − o(s)

]
=

1

N

N∑
s=1

(t(s) − o(s))
∂

∂wi

[
t(s) − σ(y (s))

]
= − 1

N

N∑
s=1

(t(s) − o(s))
∂

∂wi

[
σ(y (s))

]
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Gradient computation (sigmoidal activation)

∂E

∂wi
= − 1

N

N∑
s=1

(t(s) − o(s))
∂

∂wi

[
σ(y (s))

]
= − 1

N

N∑
s=1

(t(s) − o(s))
∂σ(y (s))

∂y (s)
∂y (s)

∂wi

= − 1

N

N∑
s=1

(t(s) − o(s))
∂σ(y (s))

∂y (s)
∂

∂wi

[
w · x(s)

]
= − 1

N

N∑
s=1

(t(s) − o(s))σ(y (s))(1− σ(y (s)))x
(s)
i

Hence, the point 2.b.ii of the algorithm given above now becomes:

∆wi ← ∆wi + η(t − o)σ(y)(1− σ(y))xi
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Final remarks about the Delta rule

Note the similarity with the Perceptron rule!

It converges to a valid solution even if the data are NOT linearly
separable (provided a sufficiently small η)

The objective function to minimize is convex. This implies that there
is a unique global minimum!

If η is too large, the gradient descent runs the risk of overstepping the
minimum. If η is too small the convergence will be slow. One
common modification is to gradually decrease η as the number of
gradient descent steps grows.

There exists a stochastic version (stochastic gradient descent)

Other (equivalent) names from literature: LMS rule, Adaline rule,
Widrow-Hoff rule.
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Recap

Notions

Gradient and minimization of vector functions

The Delta rule

Optimization with linear activation

Optimization with sigmoidal activation

Exercises

Show that σ′(y) = σ(y)(1− σ(y))

Implement the Delta rule optimization with linear/sigmoidal activation
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