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Linear Predictors

The design of a ML strategy requires 2 main steps: 
• Select a hypothesis class 
• Select an algorithm to find the predictor

Hypotheses Classes
• Halfspaces (classification)
• Linear Regression (regression)
• Logistic Regression (classification modeled as a regression problem)

Algorithms
• Linear Programming (for halfspaces)
• Perceptron (for halfspaces)
• Least Squares (for regression)



Affine Function Model
 

     



Geometric Interpretation 
(2D)

• The bias is proportional to the offset of the line from the origin
• The weights determine the slope of the line
• The weight vector is perpendicular to the line

 
 



Homogeneous 
Linear Functions

 



Halfspaces Hypotheses Class

 
     



Linear Classification:
Halfspaces Hypotheses Class



Examples: Halfspaces

 



Realizability:
Linearly Separable



Linear Programming
(not part of the course)



Find ERM Halfspace: 
Perceptron

❑ Iterative algorithm (introduce by Rosenblatt in 1958)

❑ Target: find separating hyperplane

❑ Find vector w representing separating hyperplane (in homogeneous 
coordinates) 

❑ At each step focus on a misclassified sample and guide the algorithm 
to be "more correct" on it

❑ In the realizable case always converge to a (ERM) solution correctly 
classifying all points 

❑ Simple and fast in most cases (but there exists critical situations)



Find ERM Halfspace: 
Perceptron

At each iteration find a 
misclassified sample and add 

the sample multiplied by its label

 

 



Perceptron on Linearly 
Separable Data

Halfspaces: realizability assumption corresponds to linearly 
separable data

Theorem:

 

 



Theorem: proof

 



Theorem: proof
(Numerator)

❑  

 (perceptron update rule)



Theorem: proof
(Denominator)

 

 (perceptron update condition:
select missclassified sample)

 



Perceptron: Notes

It is simple to implement !

On separable data:
❑  Convergence is guaranteed
❑  Convergence depends on B, which can be exponential in d

• If the input vectors are not normalized and arranged in some unfavorable 
ways the running time can be very long

• A Linear Programming (LP) approach may be better to find ERM solution in 
some cases

❑  Potentially multiple solutions, which one is picked depends on
     starting values

On non separable data:
❑ Run for some time and keep best solution found up to that point 

(pocket algorithm)
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Learning rate
 (also denoted with λ)

Initial line 
position

green:correct
red: error
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+ :  class 1
o :  class -1
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previous w
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previous w
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All samples correctly classified →perceptron algorithm 

stops !

previous w



 

  

 

VC Dimension of Halfspaces



 

VC Dimension of Halfspaces:
Demonstration (1)



 

VC Dimension of Halfspaces:
Demonstration (2)



Linear Regression

 



Linear Regression



Example: 
Linear Regression (1)

Online
Store

Monthly Sales
(in 1000 $)

Online Advertising 
Dollars (1000 $)

1 368 1.7

2 340 1.5

3 665 2.8

4 954 5.0

5 331 1.3

6 556 2.2

7 376 1.3



Example:
Linear Regression (2)

Car Age
 (years)

Price
 (€)

4 6300

4 5800

5 5700

5 4500

7 4500

7 4200

8 4100

9 3100

10 2100

11 2500

12 2200



Example:
Linear Regression (3)



36

1. Linear regression gets us a 
good prediction

2. We have a good prediction 
of the average, but a high 
error variance

3. E[Y|X]=E[Y] (linear 
regression does not tell us 
much…)

4. Linear regression is 
misleading

We can intuitively see the 
good candidates for (simple) 
linear regression

Prediction quality



Least Squares

❑ The least squares algorithm solves the ERM problem 
for linear regression predictors with the squared loss

❑ Find the parameters vector that minimize the MSE 
between the estimated and training values

❑ To solve the problem: calculate gradient w.r.t vector w 
and set to 0

 



Least Squares: Solution

 
 



Polynomial Regression

 



Logistic Regression

 

pass

not pass



Sigmoid Function

 

❑ Bigger than ½ for positive values and smaller for negative ones

❑ Tends to 1 for large positive values and to -1 for negative ones

❑ Can be viewed as a scaled and shifted "soft" sign function



Loss for Logistic Regression

 



Logistic Loss Function

 



Maximum Likelihood 
Estimation (MLE)

❑  

Not part of 
the course



MLE and Logistic Regression

 Not part of the 
course



Example: MLE for 
Gaussian PDF (1)

 

f1 ∼ N (10, 2.25)   f2 ∼ N (10, 9),
 f3 ∼ N (10, 0.25)    f4 ∼ N (8, 2.25)Assume that the data is produced 

by a Gaussian distribution

Not part of the 
course



Example: MLE for 
Gaussian PDF (2)

log

 

set derivative to 0

Assume 
3 samples:
 9, 9.5, 11

Joint
probability

Log
likelihood

Recall
log(ab)=log(a)+log(b)

 Get 
optimal 
mean

=0

Not part of 
the course


