A.A. 2022/23 - Mathematical Physics Control Systems Engineering

Self-evaluation questions and exercises, October 232022

- Define solutions and orbits for a differential equation.
- What is a vector field on an open set of \mathbb{R}^{n} ? What does it mean that the vector field is complete?
- Define equilibria of a vector field. How can you dynamically characterize equilibria?
- How do you construct the phase portrait of $\dot{z}=X(z), z \in \mathbb{R}$?
- What is the "Allee effect" in population dynamics? Can you write a model including this effect in the logistic equation?
- Explain consequences of Existence and Uniqueness Theorem on orbits of differential equations.
- What can you say about a point x^{*} in the phase space if there is a solution of a differential equations converging to x^{*} for $t \rightarrow+\infty$ (or $-\infty)$?
- Be sure to draw all the phase portraits studied during the lectures.
- Enumerate the properties of the flow for a vector field.
- What is the linearization of a vector field around an equilibrium?
- What does it mean that a second order differential equation is equivalent to a system of first order differential equations?
- For a second order differential equation, write the general form of equilibria and explain the difference between equilibrium and equilibrium configuration.
- Let $k \in \mathbb{R}$. Draw the phase portrait of $\dot{z}=z^{2}+k, z \in \mathbb{R}$, for $k<0$, $k=0$ and $k<0$. In each case, compare the phase portrait near every equilibrium with the one of the linearization around the equilibrium.
- Determine equilibria of the system

$$
\left\{\begin{array}{l}
\dot{x}=x-2 y+x y \\
\dot{y}=2 x+y-y^{2}
\end{array}\right.
$$

and linearize the system around one of the equilibria.

- Determine equilibria of the system

$$
\left\{\begin{array}{l}
\dot{x}=2(x-1)+y+(x-1) y \\
\dot{y}=1-x+2 y+(x-1) y^{2}
\end{array}\right.
$$

and linearize the system around one of the equilibria.

- Is it possible that the differential equation $\dot{z}=X(z)$ with $z \in \mathbb{R}$ has periodic solutions? Justify the answer.
- Claim and proof of the theorem on the exponential divergence of solutions. Is this estimate "optimal"?
- What does it mean "sensitive dependence" on initial data? Introduce some models showing this behavior.
- How solutions of a differential equations depend on parameters?
- Define the matrix exponential.
- Be sure to deduce the phase portraits of linear systems on the plane, with diagonalizable matrix.
- Be sure to remind and interpret the bifurcation diagram of linear systems on the plane, with diagonalizable matrix.
- Draw the phase portrait of the linear system associated to the matrix $\left(\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right)$.
- Draw the phase portraits of the linear systems associated to

$$
\left(\begin{array}{cc}
3 & -1 \\
2 & 2
\end{array}\right),\left(\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right),\left(\begin{array}{cc}
1 & 1 \\
1 & -3
\end{array}\right),\left(\begin{array}{cc}
3 & -1 \\
1 & 3
\end{array}\right) .
$$

In the case of nodes and saddles, determine also the stable and unstable eigenspaces.

- Define elliptic and hyperbolic equilibria. What can we say for the phase portrai, locally around these equilibria, for a non-linear differential equation?
- Define first integrals for a differential equation.
- Define the Lie derivative of a function f along a vector field X.
- What does it mean that $c \in \mathbb{R}$ is a regular value for a function f ? Explain consequences of this property on the corresponding level set.
- Define (topological) stability, unstability and asymptotic stability for an equilibrium.
- Claim and prove Lyapunov Theorems on simple and asymptotic stability.
- How do you draw the phase portrait for a 1-dim Newton equation $m \ddot{x}=-V^{\prime}(x)$? Where energy levels are regular manifolds? How these levels intersect the x-axis? Explain in details.
- Be sure to deduce all the phase portraits of 1-dim Newton equations $m \ddot{x}=-V^{\prime}(x)$ studied during lectures.
- Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Which is the difference between the phase portrait of

$$
\dot{z}=f(z), \quad z \in \mathbb{R}
$$

and the phase portrait of

$$
\ddot{x}=f(x), \quad x \in \mathbb{R} ?
$$

- Let consider the system

$$
\left\{\begin{array}{l}
\dot{x}=x(1-x-y) \\
\dot{y}=y(2-x-y)
\end{array}\right.
$$

1. Determine equilibria, linearize the system around each equilibrium and draw the phase portraits of the linearized systems.
2. In such a case, is it possible to deduce the phase portrait of the original system?

- Describe qualitatively the motion of a point of mass m subjected to a 1-dim conservative force with potential:

$$
V(x)=\left(2 x^{2}-x\right) e^{-x / 2}
$$

or

$$
V(x)=x \sin x .
$$

- Let consider a point of mass $m=1$ subjected to a 1-dim conservative force with potential $V(x)=-\left(x^{2}-1\right)^{2}$. For the energy level $E=0$, calculate the time needed to go from $x_{0}=0$ to $x_{1}=1$, assuming that the initial velocity is positive.
- What does it mean that a dynamical system has a bifurcation?
- Other interesting exercises, you can have a curious look to: From 3.1.1 to 3.1.5 (pages 79-80), from 3.2.1 to 3.2.4 (page 80), from 3.4.1 to 3.4.10 (pages 82-83), from 5.1.1 to 5.1.9 (pages 140-141), from 5.2.1 to 5.2.10 (pages 142-143), Example 6.5.2 in "Nonlinear Dynamics and Chaos", S.H. Strogatz.

