Sunday, 16 October 2022 11:54

1) QUESTIONS ABOUT PREVLOUS EXERCISES
2) EQUATIONS WITH COMPLEX NUMBERS
3) $\underbrace{\log \left(\frac{1-3 x}{x+2}\right)} \rightarrow$ find k s.t. $\log \left(\frac{1-3 x}{0+2}\right)$ is odd leven function

$$
\begin{aligned}
\operatorname{lo} \frac{1-3 x}{x+2}>0 \quad \text { e.g. } \exists k \text { s.t. } f(0)=0 ? \\
f(x)= \pm f(-x)
\end{aligned}
$$

10) $\sum_{k=0}^{n} \frac{1}{k^{2}}<2$ hint: verify that $<2-\frac{1}{n}<2$

COMPLEX NUMBER

12) $z^{2}-\frac{1}{4}(z-\bar{z})^{2}-4=8 i$
$\left\{\begin{array}{l}z=x+i y \rightarrow 0 \\ (x+i y)^{2}-\frac{1}{4}(2 i y)^{2}=4+8 i y-(y-i y)=2 i y\end{array}\right.$
$x^{2} y^{2}+2 i x y-\frac{1}{4}\left(-4 y^{2}\right)=4+8 i$
$x^{2}+2 i x y=4+8 i$

$$
\left\{\begin{aligned}
\left\{\begin{array}{ll}
\operatorname{Re}(I)=\operatorname{Re}(I) \\
\operatorname{Im}(I)=\operatorname{In}(I)
\end{array} \rightarrow\right. & \begin{cases}x^{2}=4 & x= \pm 2 \\
2 x y=8 & y=\frac{4}{x}= \pm 2\end{cases} \\
& \{z \in \mathbb{C}: z=2+2 i,-2-2 i\}
\end{aligned}\right.
$$

13) $z^{3}(4)=-2 z^{2}$
$\left\{\begin{array}{l}z=\rho e^{i \theta} \\ \rho^{3} e^{-i 3 \theta} \cdot \rho^{4} e^{i 4 \theta}=-2 \rho^{2} e^{i 2 \theta}\end{array}\right.$
$\rho^{7} e^{i \theta}=0 r e^{2} e^{i(\theta+\pi)}$
$\left\{\begin{array}{l}|I|=|I I| \\ \left\langle I=\frac{\text { III }}{|c|}+2 k \pi\right.\end{array} \Rightarrow\left\{\begin{array}{l}\rho^{7}=2 \rho^{2} \& \\ \theta=2 \theta+\pi+2 k \pi \\ \underbrace{}_{\theta=-\pi+2 k \pi}=\pi+2 k \pi\end{array}\right.\right.$

$$
\begin{array}{ccc}
p=0 & p^{5}=2 & \theta=-\pi+ \\
\vdots \\
z=0 & p^{\$ 5}=\sqrt[5]{2} & \theta=\frac{-\pi}{5}+2 k \pi \\
5
\end{array}
$$

14) $\underbrace{|z+2|}=\bar{z}^{2}-1$
$z=x+i y$
$|(x+2)+i y|=(x-i y)^{2}-1$
$\sqrt{(x+2)^{2}+y^{2}}=x^{2}-y^{2}-2 i x y-1$
$\left\{\begin{array}{rl}\sqrt{x^{2}+4 x+4+y^{2}}= & x^{2}-y^{2}-1 \\ 2 x y=0 & x\end{array}\right.$

I) $x=0$: $\quad|y|=-y^{2}-1 \quad y^{2}-|y|+1=0$

$$
\begin{aligned}
& y>0: \quad y^{2}-y+1=0 \quad \Delta=1-4<0 \\
& y<0: \quad y^{2}+y+1=0 \quad \Delta<0
\end{aligned}
$$

I) $y=0$: $\quad(x+2 \mid=x^{2}-1 \quad x^{2}-\underbrace{|x+2|}_{x}-1=0$

$$
\begin{aligned}
x>-2: \quad x^{2}-x-3 & =0 \\
x_{12} & =\frac{1 \pm \sqrt{1+12}}{2}=\frac{1 \pm \sqrt{13}}{2}
\end{aligned}
$$

$(|z-6 i|-|z+4 i|)\left(z^{3}-1\right)=0$

II) $z^{3}=\frac{1}{z}$

I) $|z-6 i|=|z+4 i|$
$|x+i(y-6)|=|x+i(y+6)|$
$\sqrt{\underbrace{x^{2}+(y-6)^{2}}_{>0}}=\sqrt{>0}$
$x^{2}+(y-6)^{2}=x^{2}+(y+4)^{2}$
$y^{2}-12 y+36=y^{2}+8 y+16$
$20 y=20 \rightarrow y=1$
$\{z \in \mathbb{R}: z=x+i, x \in \mathbb{R}\}$

$$
\begin{aligned}
z & =x+i y \\
& =\rho e^{i \theta} \\
& =p(\cos \theta+i \sin \theta)
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{1234}^{z}=\sqrt[4]{2} \\
& \alpha_{1234}^{z}=\frac{\frac{4}{3} \pi+2 k \pi}{4}=\frac{\pi}{3}+\frac{k \pi}{2}
\end{aligned}
$$

$$
\bar{w}=\frac{-1+i \sqrt{3}}{z} \rightarrow \omega=\frac{-1-i \sqrt{3}}{\bar{z}}=\frac{2 e^{i \frac{4}{3} \pi}}{\rho^{z} e^{-i \alpha} \alpha^{z}}=\frac{2}{\sqrt[4]{2}} e^{i\left(\frac{4}{3} \pi-\alpha^{z}\right)}
$$

$z=0: 1-i \sqrt{3}=0 \quad$ MPOSSIBLE

$$
\begin{array}{r}
\text { Fa: } \begin{array}{r}
\text { fur }
\end{array} \begin{array}{r}
z=0 \text { is not a } \\
\text { solution of } \\
\text { the system }
\end{array} \\
\{(z, w) \in \mathbb{C}\}
\end{array}
$$

$$
S:\left\{(2, \omega) \in \mathbb{C} \text { sit. } z \in\left\{\sqrt[4]{2} e^{i \pi / 3}, \sqrt[4]{2} e^{i \frac{5}{6} \pi}, \sqrt[4]{2} e^{i \frac{2}{3} \pi}, \sqrt[4]{2} e^{-i \frac{\pi}{6}}\right\}\right.
$$

$$
\left.w=\sqrt[4]{8} e^{i\left(\frac{4}{3} \pi-\angle z\right)}\right\}
$$

$$
\{(z, w) \in\{(\cdots, \cdots),(\cdots, \ldots),(\ldots, \ldots),(\ldots, \ldots)\}\}
$$

Ruftinis rule / formula

$$
2 x^{4}+b x^{3}+c x^{2}+d x+e=0
$$

$$
\begin{aligned}
& \text { 3) }\left\{\begin{array}{l}
\frac{\sigma}{\omega} z+1-i \sqrt{3}=0 \\
z^{3}|z|^{2}-\bar{z}^{2} w=0 \\
\dot{\omega} \bar{\omega} z=-1+i \sqrt{3}
\end{array} \quad \bar{z} \cdot \bar{z} \omega, \overline{\bar{\omega} z}=\bar{\omega}=-1-i \sqrt{3}=\overline{(-1+i \sqrt{3})}\right. \\
& \left\{\begin{array}{c}
z^{3}|z|^{2}+(1+i \sqrt{3}) \bar{z}=0 \\
C|z|^{2}=z \cdot \bar{z} \\
\bar{z}\left(z^{4}+1+i \sqrt{3}\right)=0
\end{array}\right.
\end{aligned}
$$

7) find $\lambda \mid P(z)=z^{3}+2 i z^{2}-4 i z+\lambda$ has root $z=-2 i+$ find ell the roots

$$
\begin{aligned}
& P(-2 i)=0 \\
& (-2 i)^{3}+2 i(-2 i)^{2}-4 i(-2 i)+\lambda=0 \\
& -8(-i)+2 i(+4(-1))+8(-1)+\lambda=0 \\
& 8 i-8 i-8+\lambda=0 \quad \lambda=8 \quad \in \mathbb{R} \\
& P(z)=z^{3}+2 i z^{2}-4 i z+8 \\
& \left\lvert\, \begin{array}{ccc|c}
1 & 2 i & -4 i & 8 \\
-2 i & + & P \\
\hline & 0 & -4 i & 0
\end{array}\right.
\end{aligned}
$$

$$
\begin{gathered}
P(z)=(z+2 i)\left(z^{2}-4 i\right) \\
\quad{ }^{\infty} \quad z^{2}=4 i=4 e^{i \pi / 2} \\
z=-2 i \quad z=2 e^{i \frac{\pi}{4}}, 2 e^{i \frac{5}{4} \pi}
\end{gathered}
$$

10) $\left\{\begin{array}{l}|z-(3+i)| \leqslant 2 \\ \operatorname{Re}\left(z^{2}+7 i\right)-(\operatorname{Rez})^{2}=0\end{array}\right.$

$$
\begin{aligned}
& \text { I) } \begin{array}{lc}
\operatorname{Re}\left(z^{2}+7 i\right)=(\operatorname{Re} z)^{2} & \\
\begin{array}{ll}
\operatorname{Re}\left(x^{2}-y^{2}+2 i x y+7 i\right)=x^{2}-y^{2} & \rightarrow x^{2}-y^{2}=\not x \\
\operatorname{Re}(x+i y)=x & y=0 \\
z=x, x \in \mathbb{R}\}
\end{array}
\end{array}>\left\{\begin{array}{l}
z
\end{array}\right.
\end{aligned}
$$

II) $\left\{\begin{array}{l}|x+i y-3-i| \leq 2 \\ y=0\end{array}\right.$

$$
\begin{array}{ll}
y=0 & \sqrt{\underbrace{(x-3)^{2}+1}_{x^{2}-6 x+10}} \leqslant 2 \\
|(x-3)-i| \leqslant 2 & D \cdot x^{2}+6 x+10>0 \\
& \frac{\Delta}{2}=9-10<0
\end{array}
$$

13)

$$
\begin{aligned}
& |z|^{2}+i z+i z^{(3)}-i \bar{z}=0 \\
& <z=\rho e^{i \theta} \\
& \rho^{2}+\rho e^{i\left(\theta+\frac{\pi}{2}\right)}+\rho^{3} e^{i\left(3 \theta+\frac{\pi}{2}\right)}+\rho e^{i\left(-\theta-\frac{\pi}{2}\right)}=0 \\
& \quad-:(2 A \cdot \pi \quad i \pi \cdot \pi) 1
\end{aligned}
$$

angles must be multiples of π
\rightarrow the equation has real coefficients otherwise cannot be equal to o
A) $\theta=\frac{\pi}{6} \quad-\rho^{2}+\rho+2\left(\operatorname{Re} e^{i \frac{2}{3} \pi}\right)=0 \quad-\rho^{2}+\rho-1=0 \quad \Delta<0$
B) $\theta=-\frac{\pi}{6} \quad \rho^{2}+\rho+2\left(\operatorname{Re} e^{\frac{i \pi}{3}}\right)=0 \quad \rho^{2}+\rho+1=0 \quad \Delta<0$
c) $\theta=\frac{\pi}{2} \quad \rho^{2}+\rho+2\left(\operatorname{Re} e^{i \pi}\right)=0 \quad \rho^{2}+\rho-2=0 \quad \rho=-2 v=1$
$\begin{array}{lll}\text { D) } \theta=-\frac{\pi}{2} & -\rho^{2}+\rho+2\left(\operatorname{Re} e^{i 0}\right)=0 & -\rho^{2}+\rho+2=0 \\ \text { E) } \theta=\frac{5}{6} \pi & -\rho^{2}+\rho+2\left(\operatorname{Re} e^{i \frac{4}{3} \pi}\right)=0 & -\rho^{2}+\rho-1=0\end{array}$
F) $\theta=-\frac{5}{6} \pi \quad \rho^{2}+\rho+2\left(\operatorname{Re} e^{-i \frac{\pi}{3}}\right)=0 \quad \rho^{2}+\rho+1=0 \quad \Delta<0$

$$
\Longrightarrow S:\{0, i,-2 i\}
$$

EXERCISES
6) $\sqrt[3]{1-i+\sqrt{2 i}}$

$$
\text { 7) } \sqrt[3]{\frac{2}{\sqrt{2}}\left(\left|\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right|-i e^{2 \pi i}\right)}
$$

$$
\begin{aligned}
& \left\{\sqrt[3]{2}, \sqrt[3]{2} e^{ \pm i \frac{2}{3} \pi}, \sqrt[3]{2}: \sqrt[3]{2} e^{\frac{i 7}{6} \pi}, \sqrt[3]{2} e^{\left.i \frac{11}{6} \pi\right\}}\right. \\
& \left\{\sqrt[3]{2} e^{-i \frac{\pi}{12}}, \sqrt[3]{2} e^{i \frac{7}{12} \pi}, \sqrt[3]{2} e^{-i \frac{9}{12} \pi}\right\} \\
& \left\{2^{-7 / 2} e^{-i \frac{\pi}{12}}\right\} \\
& \left\{2^{-4} e^{-i \frac{\pi}{6}}\right\} \\
& \left\{3^{-6}\right\} \\
& \left\{2^{7} 3^{-5} e^{i \frac{2}{3} \pi}\right\} \\
& \{i,-(1+\sqrt{2}) i\}
\end{aligned}
$$

8) $\frac{\left(-\frac{\sqrt{3}}{2}+i \frac{1}{2}\right)^{5}}{(1-i)^{7}}$
g) $\frac{\left(-\frac{1}{2}+\frac{1}{2} i\right)^{6}}{(1-i \sqrt{3})^{4}}$
9) $\frac{(2-2 i)^{4}}{(-3 \sqrt{3}-3 i)^{6}}$
10) $\frac{\left(\frac{1}{3}+i \frac{\sqrt{3}}{3}\right)^{5}}{\left(\frac{1}{2}-\frac{1}{2} i\right)^{4}}$
11) $|z| z-2 z+i=0$
12) $(|z-6 i|-|z+2 i|)\left(z^{3}+1\right)=0$
13) $\left\{\begin{array}{l}\bar{z}^{2}-\omega^{2}=-1 \\ \bar{\omega}^{2}-z=0\end{array}\right.$

$$
\begin{aligned}
& \{x+2 i \mid x \in \mathbb{R}\} \cup\left\{e^{i \frac{\pi}{4}}, e^{i \frac{11 \pi}{12} \pi}, e^{-\frac{5}{12} \pi}\right\} \\
& (z, \omega) \in\left\{\begin{array}{l}
\left(e^{i \frac{5}{3} \pi}, e^{i \frac{\pi}{6}}\right),\left(e^{i \frac{\pi}{3}}, e^{i \frac{5}{6} \pi}\right), \\
\left.\left(e^{i \frac{5}{3} \pi}, e^{-i \frac{\pi}{6}}\right),\left(e^{i \frac{\pi}{3}}, e^{-i \frac{3}{6} \pi}\right)\right\}
\end{array}\right.
\end{aligned}
$$

5) $z^{4}-2 i \sqrt{3} z^{2}-4=0$

$$
\left\{\sqrt{2} e^{i \theta} \left\lvert\, \theta \in\left\{\frac{\pi}{2}, \frac{7}{2}, \frac{\pi}{2}, \frac{4}{2} \pi\right\}\right.\right\}
$$

$$
\begin{aligned}
& \rho^{2}+\rho e^{i\left(\theta+\frac{\pi}{2}\right)}+\rho^{3} e^{i\left(3 \theta+\frac{\pi}{2}\right)}+\rho e^{i\left(-\theta-\frac{\pi}{2}\right)}=0 \\
& P(p+\underbrace{e^{i\left(\theta+\frac{\pi}{2}\right)}}+e^{2} e^{i\left(3 \theta+\frac{\pi}{2}\right)}+e^{-i\left(\theta+\frac{\pi}{2}\right)})=0 \\
& T P=0 \rightarrow z=0 \\
& L \quad \begin{cases}3 \theta+\frac{\pi}{2}=k \pi & \theta=-\frac{\pi}{6}+\frac{k \pi}{3} \\
\theta+\frac{\pi}{2}-\frac{\theta-\pi}{2}=k \pi & \underbrace{\frac{ \pm \pi}{6}, \pm \frac{\pi}{2}, \pm \frac{5 \pi}{6} \pi} \\
e^{i\left(3 \theta+\frac{\pi}{2}\right)}= \pm 1\end{cases}
\end{aligned}
$$

$1 \omega-t=0$
5) $z^{4}-2 i \sqrt{3} z^{2}-4=0$
$\left\{\sqrt{2} e^{i \theta} \left\lvert\, \theta \in\left\{\frac{\pi}{6}, \frac{7}{6} \pi, \frac{\pi}{3}, \frac{4}{3} \pi\right\}\right.\right\}$
6) $i \operatorname{Re}(z)+z^{2}=|z|^{2}-1$
$\left\{ \pm \frac{\sqrt{2}}{2} i\right\}$
8) $(\operatorname{Re}(i \bar{z}(z-2)))^{2}=(\operatorname{Im}(z(\bar{z}-2 i)))^{2}$
$\{x \pm 1 \times 1 i, x \in \mathbb{R}\}$
9) $z^{4}-i|1+i \sqrt{3}| z=0$
$\left\{\sqrt[3]{2} e^{i \theta} \left\lvert\, \theta \in\left\{\frac{\pi}{6}, \frac{5}{6} \pi, \frac{3}{2} \pi\right\}\right.\right\} \cup\{0\}$
11) $(z+2 \bar{z})^{2}+|z-3|^{2}-10(\operatorname{Rez})^{2}=0 \quad\left\{\frac{3}{2}\right\}$
12) $\left.(\mid z-3 i)^{2}+\operatorname{Re}(z+6 \bar{z}) \cdot \operatorname{Im}(z-\bar{z}) i-(7 i+1) z \bar{z}\right) \in \mathbb{R} \quad\{x+x i, x \in \mathbb{R}\}$
14) $\frac{7}{e^{i \pi / 2}} z^{2} \bar{z}+\frac{I_{m} z}{e^{i 3 \pi}}+7 i|z|^{2} \operatorname{Rez}=0 \quad\{x \mid x \in \mathbb{R}\} \cup\left\{x+i y \in \mathbb{C} \left\lvert\, x^{2}+y^{2}=\frac{1}{7}\right.\right\}$
15) $z+1+i=-\frac{3 i+1}{z+i-1}$
$\left\{\sqrt{\frac{3}{2}}-\left(\sqrt{\frac{3}{2}}+1\right) ;,-\sqrt{\frac{3}{2}}-\left(\sqrt{\frac{3}{2}}-1\right) i\right\}$
16) $\left(\frac{z+1}{z-2}\right)^{3}=-8$
$\{1,2+\sqrt{3} i, 2-\sqrt{3} i\}$

