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Simplification: focus on binary classification and 0-1 loss

1. Theorem (uniform convergence): finite classes are agnostic PAC learnable

2. Theorem (corollary of NFL): The set of all functions from an infinite domain set
to {0,1} is not PAC learnable

> Uptonow,if |H| < oo = H is PAC learnable (finite size classes are agnostic PAC
learnable)

> What about infinite size classes (|H| = o) ?
—> We'll demonstrate that the finite size is a sufficient but not necessary condition

Size Lea rnabe '

0 ={hg:a €R} Example: threshold function it is PAC learnable with sample
hg:R - {0,1} log(2)

_Jlifx<a complexity my(€,8) = [—8‘ X1 a
'hA(x)_{Oifoa ¢ 4 :
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Definition: Restriction of H to C

 Let H be aclass of functions from X to {0,1}
¢ LetC ={cq, ..., C X

The restriction H . of H to C is the set of functions from C to {0,1} that
can be derived from H :

K. = {[[h(cl), . hcy)]:lheH)

Each entry: A vector of Os and 1s of
length m with the output for each ¢;

Notes:

« We can represent each function from C to {0,1} as a vector in {0,1}/¢l

* No Free Lunch theorem: the idea is to select a distribution
concentrated on a set C (—restriction) on which the algorithm A fails
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Definition (Shattering)
Given C c X, H shatters Cif H . contains
all the 2!€! functions from C to {0,1}

Corollary (of No Free Lunch)

Let H be a hypothesis class of functions from X to {0,1}. Let m
be a training set size. Assume that there exist a set C € X of size
2m that is shattered by H'. Then for any learning algorithm A
there exist a distribution D over X x {0,1} and a predictor h € H
such that L;(h) = 0 but with probability at least 1/7 over the

choice of S we have that L (4(S)) = %

Demonstration (intuition): on set C all functions from C to {0,1} can be
chosen and we fall back into the situation of the NFL corollary
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Definition (VC-dimension)
The VC-dimension VCdim(H) of a hypothesis class H, is the
maximal size of a set C < X that can be shattered by H

Note: if H can shatter sets of arbitrarily large size
then we say that VCdim(H') = +eo
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Definition (VC-dimension): The VC-dimension VCdim(H) of a hypothesis
class H, is the maximal size of a set C < X that can be shattered by H

O Inthe case of finite class hypotheses:

1.

2.
3.
4

They are agnostic PAC learnable (already demonstrated)

To shatter a set of size |C| — at least 2/¢lfunctions (need all combinations)
With || functions — the largest set that can be shattered has size log, ||
To have VCdim(H) = d = shatteraset of sized= VCdim(H) < log,|H|

O If H has an infinite VC dimension: it is not PAC learnable
1. VCdim(H) = co = V¥m: 3 a shattered set of size 2m (can shatter any size)

2.

Apply NFL corollary: 3D on which A does not work (for any possible A)

3. 3D with probability > % Lp = % = it is not PAC learnable (for V A)



@ : :
> ORRTHENTO Compute VC Dimension

DI INGEGNERIA
DELL'INFORMAZIONE

VC-dimension: The VC-dimension VCdim(H) of a hypothesis class
H, is the maximal size of a set C < X that can be shattered by H

To show that VCdim(H') = d we need to show that:

1. VCdim(H) = d : there exists a set C of size d which is
shattered by H

2. VCdim(H) < (d + 1) : every set of size d + 1 is not shattered
by H
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Threshold function ;1 ; 2o
H ={hg:a €€R} I o
hy:R — {0,1}is:
lifx<a b 1 s (5) 0

hy(x) = {

) B {1,0} Ok
0 lf X =a ® {0,1} No!!

Vedim(H) > 1
Vedim(H) < 2

-

vedim(#) = 1
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{0,0} Ok

ab X1 X2

Lie 8

Interval

H ={hgp:a,bER ,a<b}
hap:R - {0,1} is:

lifa<x<b
h —
ab () {O otherwise

VCdim(H) = 2
Vedim(H) < 3

{1,1} Ok
@ a X1 X2 b
| 1 |

VCdim(¥) = 2
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Axis aligned rectangle

H = {ha11a2;b1;b2:a1' a,, bll b2 e R , Aq < az,bl < b2 }
hayay 0., R = {0,1}is:

h Gy, o) = {2 A S % S G, By S %5 5By
aq,az,b1,b; \ A1 A2 0 otherwise

VCdim(H) = 4

- Vedim(H) <5
° o
C4 Cy Ca @
° * ¢ o ¢ vedim(F) = 4
. .
The set can be shattered {1,1,1,1,0} No!!

Case 5 points: define c1 top point, c2 rightmost, c3 bottom, c4 leftmost, c5 the reamaining one.
If different labeling just swaps the case that can not be obtained.
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0 Recall: for finite classes: VCdim(H) < log, (|H]) ...

Q ... but VC dimension does not always correspond to the
number of parameters !!

0 Example # = {hy:0 € R}, hy: X > {0,1} hy = [0.5sin(6x)]
o It has infinite VC dimension !!
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Let H be a hypothesis class h:X—[0,1], and let the loss function be
the 0-1 loss.

The following statements are equivalent:

H has the uniform convergence property

Any ERM rule is a successful agnostic PAC learner for H
H is agnostic PAC learnable

H is PAC learnable

Any ERM rule is a successful PAC learner for H

H has a finite VC dimension

ok wnNE
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LN ORIIONE Notes on the demonstration

1. We have already seen that 1 - 2 - 3 (uniform convergence implies agnostic PAC
learnable and ERM rule is PAC learner)

2. 3> 4istrivial (if realizable they are the same if not PAC condition does not apply)
3. 2> 5also trivial (ERM rule, if realizable same target)

2. 4> 6and5 - 6 follow from corollary of No-Free-Lunch (by contradiction, infinite
VC is not PAC learnable)

5. The key partis how to close the loop (6 = 1, from finite VC dimension to uniform
convergence)
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—}et H be a hypothesis class of functions from X to {0,1} and let the
loss function be the 0-1 loss. Assume that VCdim(H) = d < o
Then, there are absolute constants C; and C, such that:

1. H has the uniform convergence property with sample complexity

1 1
d+ log(g) Ue d+ log(g)
o2 < Mmar (E, 6) < Cz =2

2. H is agnostic PAC learnable with sample complexity

1

d+ log(%) d +log (%) 1 (M) => :
Cy 2 < mgfc(e, §) <G, = 8\ —5 0g 2|H| + log
3. H is PAC learnable with sample complexity
& i l;)g(%) <m¥f(e6) <C, ; log(%): log(%)

Not part of the course, just notice how the number of samples depend on VCdim(H) = d
Recall. e 7 enjoys the uniform convergence proglerty with sample

- . . complexity ;
(notice the role of || lf_étrHbe;a_fl?(l)tel]h)époti}esmfclas? let ihbe.a domain, and let é L FOng"/OW
and of the VC dimensiond) —° : et bkl il i - 2¢2




