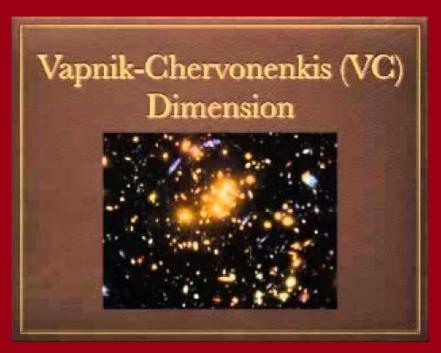


Università degli Studi di Padova



VC Dimension

Machine Learning 2022-23 UML Book Chapter 6 Slides: F. Chiariotti, P. Zanuttigh, F. Vandin

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Which hypothesis classes are PAC learnable ?

Simplification: focus on binary classification and 0-1 loss

- 1. Theorem (uniform convergence): finite classes are agnostic PAC learnable
- 2. Theorem (*corollary of NFL*): The set of all functions from an infinite domain set to {0,1} is not PAC learnable
- ▶ Up to now, if $|\mathcal{H}| < \infty \Rightarrow \mathcal{H}$ is PAC learnable (finite size classes are agnostic PAC learnable)
- ▶ What about infinite size classes $(|\mathcal{H}| = \infty)$?
- \rightarrow We'll demonstrate that the finite size is a sufficient but not necessary condition

 $\mathcal{H} = \{h_a : a \in \mathbb{R}\}$ $h_a : \mathbb{R} \to \{0,1\}$ $h_a : \mathbb{R} \to \{0,1\}$ $h_A(x) = \begin{cases} 1 \text{ if } x < a \\ 0 \text{ if } x \ge a \end{cases}$ $complexity m_{\mathcal{H}}(\epsilon, \delta) = \left[\frac{\log\left(\frac{2}{\delta}\right)}{\epsilon}\right]$ $X_1 \quad a \\ A_1 \quad A_2 \quad A_2 \quad A_3 \quad A_4 \quad$

Restriction of a Function

Definition: Restriction of ${\mathcal H}$ to ${\mathcal C}$

- Let \mathcal{H} be a class of functions from \mathcal{X} to $\{0,1\}$
- Let $C = \{c_1, \dots, c_m\} \subset \mathcal{X}$

The restriction \mathcal{H}_c of \mathcal{H} to \mathcal{C} is the set of functions from \mathcal{C} to $\{0,1\}$ that can be derived from \mathcal{H} :

$$\mathcal{H}_{c} = \{ \begin{bmatrix} h(c_{1}), \dots, h(c_{m}) \end{bmatrix} : h \in \mathcal{H} \}$$

Each entry: A vector of 0s and 1s of
length *m* with the output for each c_{i}

Notes:

- We can represent each function from C to {0,1} as a vector in {0,1}^{|C|}
- No Free Lunch theorem: the idea is to select a distribution concentrated on a set C (→restriction) on which the algorithm A fails

Shattering

Definition (Shattering)

Given $C \subset X, \mathcal{H}$ shatters C if \mathcal{H}_c contains all the $2^{|C|}$ functions from C to $\{0,1\}$

Corollary (of No Free Lunch)

Let \mathcal{H} be a hypothesis class of functions from \mathcal{X} to {0,1}. Let mbe a training set size. Assume that there exist a set $\mathcal{C} \subset \mathcal{X}$ of size 2m that is shattered by \mathcal{H} . Then for any learning algorithm A there exist a distribution D over $\mathcal{X} \times \{0,1\}$ and a predictor $h \in \mathcal{H}$ such that $L_d(h) = 0$ but with probability at least 1/7 over the choice of S we have that $L_D(A(S)) \geq \frac{1}{8}$

Demonstration (intuition): on set C all functions from C to {0,1} can be chosen and we fall back into the situation of the NFL corollary

VC Dimension (1)

Definition (VC-dimension)

The VC-dimension $VCdim(\mathcal{H})$ of a hypothesis class \mathcal{H} , is the maximal size of a set $C \subset X$ that can be shattered by \mathcal{H}

Note: if \mathcal{H} can shatter sets of arbitrarily large size then we say that $VCdim(\mathcal{H}) = +\infty$

VC Dimension (2)

Definition (VC-dimension): The VC-dimension $VCdim(\mathcal{H})$ of a hypothesis class \mathcal{H} , is the maximal size of a set $C \subset X$ that can be shattered by \mathcal{H}

□ In the case of *finite* class hypotheses:

- 1. They are agnostic PAC learnable (already demonstrated)
- 2. To shatter a set of size $|C| \rightarrow$ at least $2^{|C|}$ functions (need all combinations)
- 3. With $|\mathcal{H}|$ functions \rightarrow the largest set that can be shattered has size $\log_2 |\mathcal{H}|$
- 4. To have $VCdim(\mathcal{H}) = d \Longrightarrow$ shatter a set of size $d \Longrightarrow VCdim(\mathcal{H}) \le \log_2 |\mathcal{H}|$

□ If *H* has an *infinite* VC dimension: it is not PAC learnable

- 1. $VCdim(\mathcal{H}) = \infty \implies \forall m: \exists a \text{ shattered set of size } 2m \text{ (can shatter any size)}$
- 2. Apply NFL corollary: $\exists D$ on which A does not work (for any possible A)
- 3. $\exists D \text{ with probability} \geq \frac{1}{7} L_D \geq \frac{1}{8} \Longrightarrow \text{ it is not PAC learnable (for } \forall A)$

Compute VC Dimension

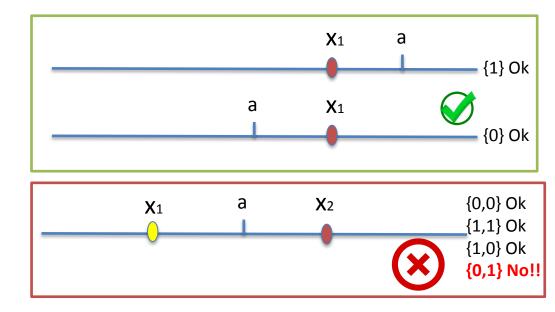
VC-dimension: The VC-dimension $VCdim(\mathcal{H})$ of a hypothesis class \mathcal{H} , is the maximal size of a set $C \subset X$ that can be shattered by \mathcal{H}

To show that $VCdim(\mathcal{H}) = d$ we need to show that:

- 1. $VCdim(\mathcal{H}) \ge d$: there exists a set C of size d which is shattered by \mathcal{H}
- 2. $VCdim(\mathcal{H}) < (d + 1)$: every set of size d + 1 is not shattered by \mathcal{H}

Compute VC Dimension: Example (1)

Threshold function
$\mathcal{H} = \{h_a : a \in \mathbb{R} \}$
$h_a: \mathbb{R} \to \{0,1\}$ is:
$h_A(x) = \begin{cases} 1 & \text{if } x < a \\ 0 & \text{if } x \ge a \end{cases}$



 $VCdim(\mathcal{H}) \geq 1$ $VCdim(\mathcal{H}) < 2$ $\mathbf{VCdim}(\mathcal{H}) = 1$

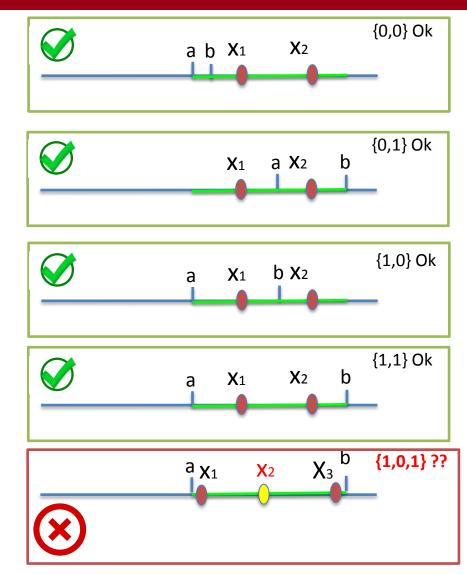
DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Compute VC Dimension: Example (2)

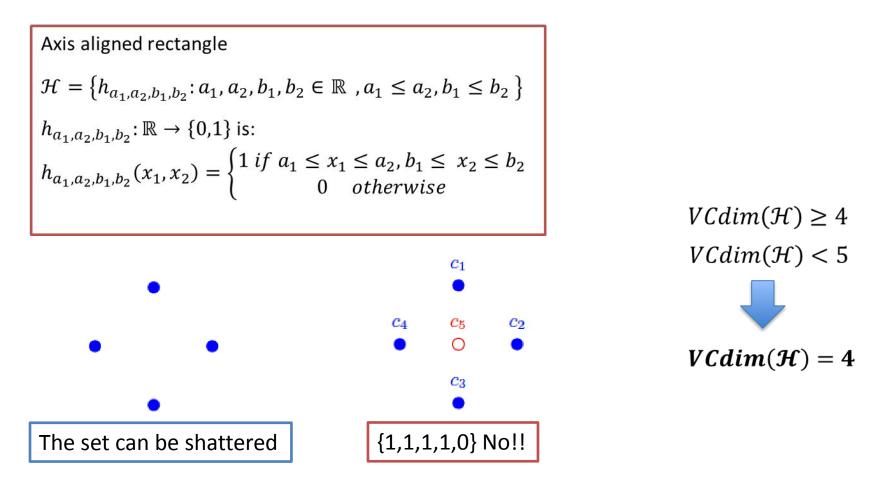
Interval

$$\begin{aligned} \mathcal{H} &= \left\{ h_{a,b} \colon a, b \in \mathbb{R} \ , a < b \right\} \\ h_{a,b} \colon \mathbb{R} \to \{0,1\} \text{ is:} \\ h_{a,b}(x) &= \begin{cases} 1 \ if \ a < x < b \\ 0 \ otherwise \end{cases} \end{aligned}$$

 $VCdim(\mathcal{H}) \geq 2$ $VCdim(\mathcal{H}) < 3$ $\mathbf{VCdim}(\mathcal{H}) = 2$



Compute VC Dimension: Example (3)

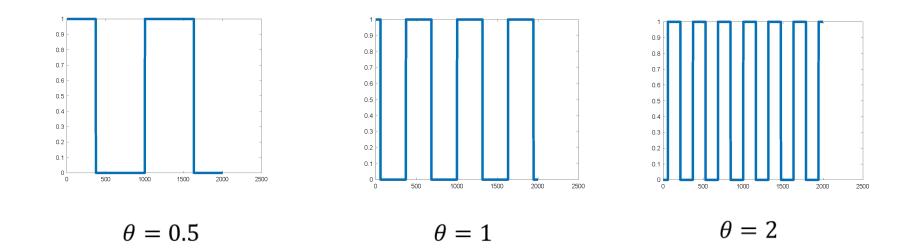


Case 5 points: define c1 top point, c2 rightmost, c3 bottom, c4 leftmost, c5 the reamaining one. If different labeling just swaps the case that can not be obtained.

Compute VC Dimension: Example (4)

- □ *Recall*: for finite classes: $VCdim(\mathcal{H}) \leq \log_2(|\mathcal{H}|) \dots$
- Image: Image: second second
- □ Example $\mathcal{H} = \{h_{\theta} : \theta \in \mathbb{R}\}, h_{\theta} : \mathcal{X} \to \{0,1\} h_{\theta} = [0.5 \sin(\theta x)]$

It has infinite VC dimension !!



Fundamental Theorem of Statistical Learning

Let H be a hypothesis class h: $X \rightarrow [0,1]$, and let the loss function be the 0-1 loss.

The following statements are equivalent:

- 1. H has the **uniform convergence** property
- 2. Any ERM rule is a successful **agnostic PAC learner** for H
- 3. H is agnostic PAC learnable
- 4. H is **PAC learnable**
- 5. Any ERM rule is a **successful PAC learner** for H
- 6. H has a finite VC dimension

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

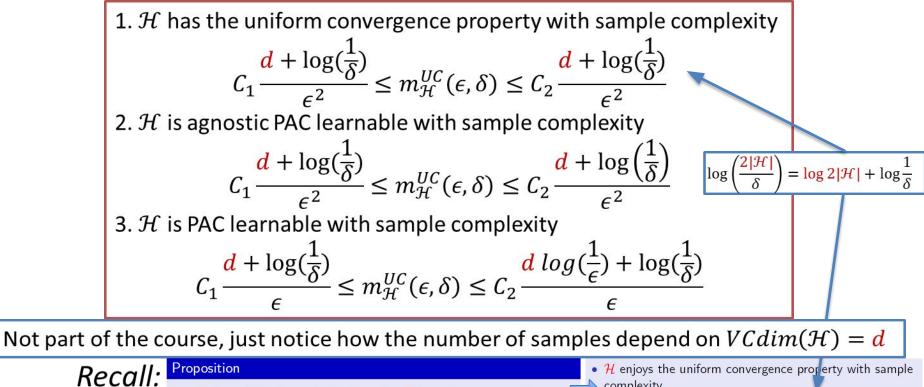
Theorem of Statistical Learning: Notes on the demonstration

- We have already seen that 1 → 2 → 3 (uniform convergence implies agnostic PAC learnable and ERM rule is PAC learner)
- 2. $3 \rightarrow 4$ is trivial (if realizable they are the same if not PAC condition does not apply)
- 3. $2 \rightarrow 5$ also trivial (ERM rule, if realizable same target)
- 4. $4 \rightarrow 6$ and $5 \rightarrow 6$ follow from corollary of No-Free-Lunch (by contradiction, infinite VC is not PAC learnable)
- 5. The key part is how to close the loop (6 → 1, from finite VC dimension to uniform convergence)

The proof 6 \rightarrow 1 (not part of the course) can be divided in two main parts:

- If VCdim(ℋ) = d, then even though |ℋ| might be infinite, when restricting ℋ to a finite set C, its "effective size" |ℋ_C|, is only O(|C|^d). That is, |ℋ_C| grows polynomially rather than exponentially with |C| (Sauer's lemma)
- Recall that finite hypothesis classes enjoy the uniform convergence property. This result can be generalized by showing that uniform convergence holds whenever the hypothesis class has a "small effective size" (i.e., classes for which |H_C| grows polynomially with |C|)

Let \mathcal{H} be a hypothesis class of functions from \mathcal{X} to {0,1} and let the loss function be the 0-1 loss. Assume that $VCdim(\mathcal{H}) = d < \infty$ Then, there are absolute constants C_1 and C_2 such that:



(notice the role of $|\mathcal{H}|$ and of the VC dimension d)

Let ${\mathcal H}$ be a finite hypothesis class, let Z be a domain, and let $\ell: \mathcal{H} \times Z \to [0,1]$ be a loss function. Then:

• \mathcal{H} enjoys the uniform convergence property with sample complexity

 $m_{\mathcal{H}}^{UC}(\varepsilon,\delta) \leq \left\lceil \frac{\log(2|\mathcal{H}|/\delta)}{2c^2} \right\rceil$