

The Bias-Complexity Trade-Off

Machine Learning 2022-23

UML Book Chapter 5

Slides: F. Chiariotti, P. Zanuttigh, F. Vandin

Recall: Agnostic PAC Learnability

- ☐ Idea: We drop the requirement of finding the best predictor
 - > but we do not want to be too far from it
- ☐ Recall definition of *Agnostic PAC Learnability*:

A hypothesis class \mathcal{H} is agnostic PAC learnable if there exist a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ and a learning algorithm such that for every $\delta, \epsilon \in (0,1)$ and for every distribution D over $\mathcal{X}x\mathcal{Y}$, when running the algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by D the algorithm returns a hypothesis h such that, with probability $\geq 1 - \delta$ (over the choice of the m training examples):

$$L_D(h) \le \min_{h' \in \mathcal{H}} L_D(h') + \epsilon$$

A Universal Learner?

Given a training set S and a loss function we'd like to find a function \hat{h} for which $L_d(\hat{h})$ is small

Pick a learning algorithm A that given S produces function \hat{h}

It depends on two components:

- 1. the hypothesis set ${\cal H}$
- 2. the procedure to pick \hat{h} from ${\cal H}$

Is there a universal learner, i.e., an algorithm A that predicts the best \hat{h} for any distribution D ?

What about using the set of all functions from \mathcal{X} to \mathcal{Y} as the hypothesis class?

No Free Lunch Theorem

Theorem (No-Free Lunch)

Let A be any learning algorithm for the task of binary classification with respect to the 0-1 loss over a domain X. Let m be any number smaller than $\frac{|X|}{2}$, representing a training set size. Then there exist a distribution D over $X \times \{0,1\}$ such that:

- 1. There exist a function $f: X \to \{0,1\}$ with $L_D(f) = 0$
- 2. With probability of at least 1/7 over the choice of $S \sim D^m$ we have that $L_D(A(S)) \ge \frac{1}{8}$

Corollary (No-Free Lunch)

Let X be an infinite domain set and let H be the set of all functions from X to $\{0,1\}$. Then, H is not PAC learnable

No Free Lunch: Notes

Key message: for every ML algorithm there exist a task on which it fails even if another ML algorithm is able to solve it

- □ *Idea of the proof*: our training set is smaller than half of the domain \rightarrow no information on what happens on the other half \rightarrow there exist some target function f that works on the other half in a way that contradicts our estimated labels
 - Full demonstration not part of the course
- \square Class \mathcal{H} of all possible functions from \mathcal{X} to $\{0,1\}$ (i.e., assuming *no prior knowledge*) is not a good idea

Corollary: Demonstration

Proceed by contradiction

Assume PAC Learnable

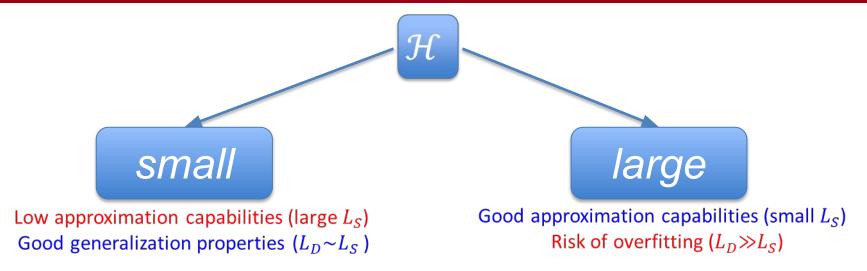
Corollary (No-Free Lunch)

Let X be an infinite domain set and let H be the set of all functions from X to $\{0,1\}$. Then, H is not PAC learnable

- Choose $\epsilon < \frac{1}{8}$, $\delta < \frac{1}{7}$, and recall that \mathcal{H} includes all functions (*)
- O By definition of PAC: it exists an algorithm A and such that for every distribution D, if realizable*, when running the algorithm on m i.i.d. examples generated by D the algorithm returns a hypothesis h such that, with probability $\geq 1 \delta$, $L_D(A(S)) \leq \epsilon$
- Apply No-Free Lunch theorem to A
 - o $|\mathcal{X}| > 2m$ (it is ∞): for any ML algorithm (including A!) there exist a distribution D for which with probability $\geq \frac{1}{7} > \delta$, $L_D(A_S) \geq \frac{1}{8} > \epsilon$
- The two blue results are in contradiction (sum of probabilities is bigger than one!) $\frac{0}{\delta} = \frac{\delta}{\delta}$

Proof: not part of the course

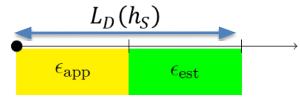
Choose a Good Hypothesis Set



- We need to use our prior knowledge about D to pick a good hypothesis set
- We would like ${\mathcal H}$ to be large, so that it may contain a function h with small $L_S(h)$ and hopefully a small $L_D(h)$
- No free lunch: ${\cal H}$ cannot be too large!
 - ightarrow A Too large ${\mathcal H}$ leads to the risk of overfitting

Error Decomposition (1)

Consider an $ERM_{\mathcal{H}}$ hypothesis $h_{\mathcal{S}}$:



The true error of $ERM_{\mathcal{H}}$ can be decomposed as:

$$L_D(h_S) = \boxed{\epsilon_{app}} + \boxed{\epsilon_{est}}$$

$$\epsilon_{app} = \min_{h \in \mathcal{H}} L_D(h)$$

Approximation error

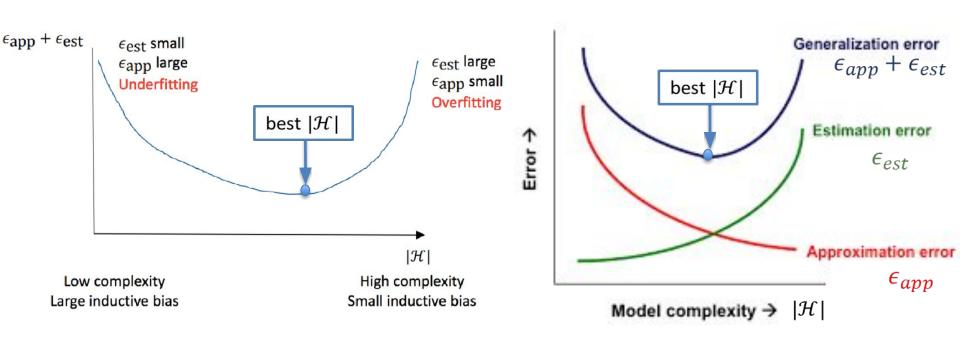
- Minimum true risk achievable by a predictor in H
- Depends on the choice of H (but not on S)
- Once \mathcal{H} is selected it is fixed
- Larger $\mathcal{H} \to \text{smaller } \epsilon_{app}$
- ϵ_{app} = 0 if realizability holds
- Otherwise bounded by Bayes predictor

$$\epsilon_{est} = L_D(h_s) - \min_{h \in \mathcal{H}} L_D(h)$$

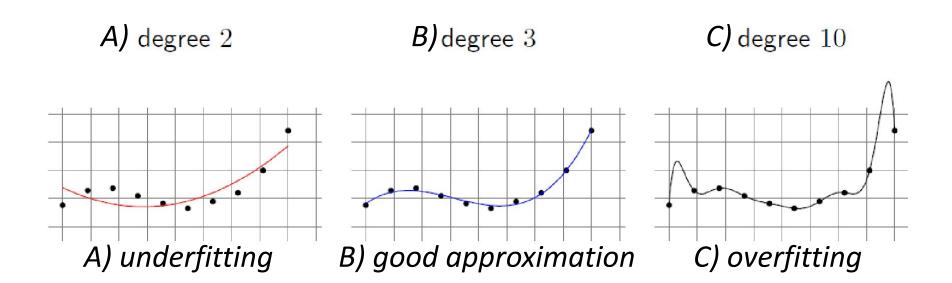
Estimation error

- Difference between true error of ERM predictor and approximation error
- Due to the not-optimal ML algorithm not able to find the best h* using ERM
- Depends on S (typically smaller for larger S)
- To decrease we need a smaller \mathcal{H} so the training error is a good estimate of true error

Error Decomposition (2)

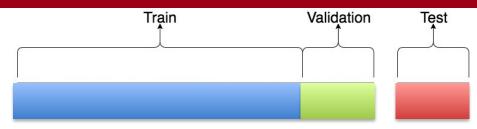


Example: Polynomial Fitting



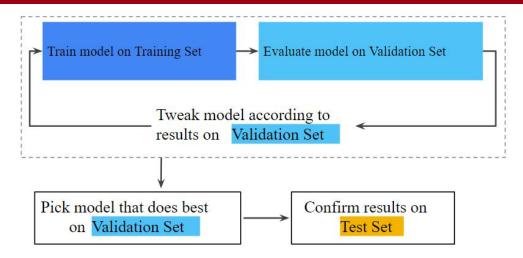
- A. Degree 2: large ϵ_{app} , small ϵ_{est} (underfitting)
- B. Degree 10: $\epsilon_{app} = 0$, large ϵ_{est} (overfitting)
- c. Degree 3: good compromise (best solution?)

Train, Test and Validation Sets



- We need to estimate the generalization error $L_D(h)$ for a function h (e.g., the one we selected with ERM)
- Use a test set: a new set of samples not used for picking h
 - It must be different (disjoint) from the training set
 - \circ More reliable estimation of $L_D(h)$ (but still an estimation!!)
 - The test must not be looked at until we have picked our final hypothesis!
 - In practice: we have 1 set of samples and we split it in training set and test set
- Sometimes the training set is further divided into a training set and a validation set
 - The validation set is used for selecting the hyper-parameters of the algorithm
 - Can be used to evaluate error while iterative training procedures are running

Iterative Training Procedure with Validation Set

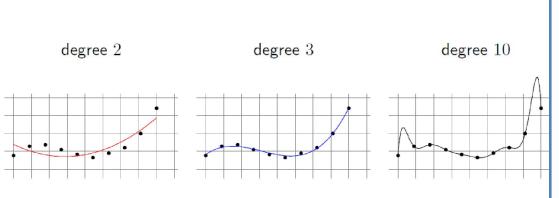


Train a ML algorithm parametrized by some Hyper-Parameters (HP):

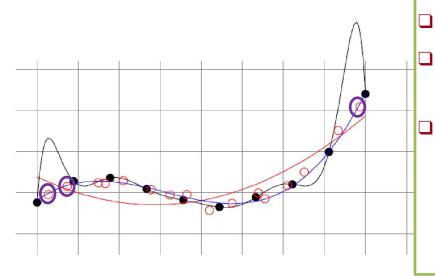
- Select Hyper-Parameters values
- Train on the training set
- 3. Evaluate performances on the validation set
- 4. Go back to 1 (select new HP values)
- 5. Select HP leading to smallest validation error
- 6. Compute error estimation on the test set

Example

(with validation set)

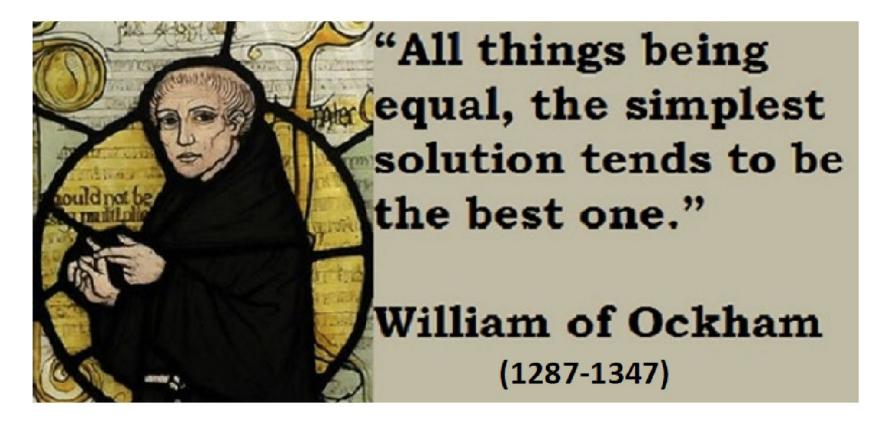


- Training set S : black circles
 - Hyper-parameter = degree of the model (2, 3 or 10)
- Perform ERM minimization over training set S:
 - O Degree 10 is the best solution $(L_s(h_s) = 0)$!



- Introduce a validation set (red circles)
- Train on training set for each of the 3 HP values (2,3 and 10)
 - Select solution with lower error on validation set
 - Degree 3 is the best solution
 - Degree 10 has low error on training set but high on validation set

Occam's Razor



A short explanation (that is, a hypothesis that has a short length) tends to be more valid than a long explanation