Lesson 9-17/10/2022

- Lyapunor theorem for asymptotic stability, with prose.
- Harmonic oscillator with friction: asymptolic stability of $(0,0)$ by an appropiate uyopenar funchibu and by the first lyapiuov method.
- Rabbits / sheep \rightarrow Principle of competitive exclusion.
- $\dot{x}=x^{3}(x-1)(x+3)$
- $\dot{x}=x^{2}+\mu x+1, x \in \mathbb{R}$ end $\mu \in \mathbb{R}$.
lyapunou thea. for asymptotic stability $\bar{x} \in \mathbb{R}^{n}$, equilitium for a v.f. $\dot{x}=X(x)$.
Let suppose that $\exists w \in e^{1}(A ; R)$ on $A \supset \bar{x}$ (open neigh. of \bar{x}) such that:
(1) $\omega(\bar{x})=0$ and $\omega(x)>0 \quad \forall x \in A,\{\bar{x}\}$.
(2) $\left\{\begin{array}{l}L_{x} w(x)<0 \\ L_{x} w(\bar{x})=0\end{array} \quad \forall x \in A,\{\bar{x}\}\right.$

Then $\bar{x} \in \mathbb{R}^{n}$ is esympt. stable.
Propr
Condition (2) \Rightarrow (2) on topological stability of \bar{x}. So \bar{x} is top. stable. This means that fixed a neigh. $u \ni \bar{x}(u \subseteq A)$ then $\exists V \geqslant \bar{x}(V \subseteq A)$ such that

$$
x_{0} \in V \Rightarrow \varphi_{t}\left(x_{0}\right) \in u \quad \forall t \geqslant 0
$$

But - in order to pave top espupt. slablity -
$\lim _{t \rightarrow+\infty} 4 P_{t}\left(x_{0}\right)=\bar{x}$

$\Leftrightarrow \omega\left(\lim _{t \rightarrow+\infty} \varphi_{t}\left(x_{0}\right)\right)=\omega(\bar{x})<\Rightarrow$
\downarrow fire w is continuous

$$
\Leftrightarrow \lim _{t \rightarrow t \infty} \omega\left(\varphi_{t}\left(x_{0}\right)\right)=\omega(\bar{x})=0
$$

By assump.
By control. suppose that the previous limit doesn't hold. since $\omega(x)>0 \quad \forall x \in A \backslash\{\bar{x}\}$, this means that
$\lim \omega\left(\varphi_{t}\left(x_{0}\right)\right)=\lambda>0$ $t \rightarrow+\infty$
Now we write this epuality by uring the def. of limt of a real function for $t \rightarrow+\infty$,
equals to :
$\forall \varepsilon>0 \quad \exists T_{\varepsilon} \geqslant 0$ such thet

$$
\text { if } t \geqslant T_{\varepsilon} \Rightarrow\left|\omega\left(\varphi_{t}\left(x_{0}\right)\right)-\lambda\right| \leqslant \varepsilon
$$

thet is
If $t \geqslant T_{\varepsilon} \Rightarrow \lambda-\varepsilon \leqslant \omega\left(\varphi_{t}\left(x_{0}\right)\right) \leqslant \lambda+\varepsilon$
But, recall that $t \mapsto \omega\left(\varphi_{t}\left(x_{0}\right)\right)$ is stricty deccoring!
Then

$$
(f) t \geqslant T_{\varepsilon} \Rightarrow \quad \lambda \leqslant w\left(\varphi_{t}\left(x_{0}\right)\right) \leqslant \lambda+\varepsilon
$$

λ is the " limit" volue. So $t \mapsto w\left(\varphi_{t}(x, 1)\right.$ cennot assume sudler valuey that A.
Thet is $\{$ fixed $\varepsilon>0\}$.

$$
\begin{aligned}
& \text { Thet is } \sum_{t}^{0}\left(x_{0}\right) \in B:=\left\{x \in \mathbb{R}^{n}: \lambda^{\top} \leqslant \omega(x) \leqslant \lambda+\varepsilon\right\} \\
& \forall t \geqslant T_{\varepsilon}
\end{aligned}
$$

B is a compect set.

$$
\bar{x} \notin B!
$$

As a consepronce :

$$
\begin{aligned}
& \max _{x \in B} L_{x} w(x) \leqslant-\alpha<0 \\
& x \in B \quad \downarrow \text { By cond. 2)! } \\
& \Rightarrow L_{x}{ }_{\|}^{w}(x) \leqslant-\alpha<0 \quad \forall x \in B \text {. } \\
& \frac{d}{d t} w\left(\varphi_{t}\left(x_{0}\right)\right) \\
& \Rightarrow \omega\left(\varphi^{T_{\varepsilon}+\tau}\left(x_{0}\right)\right)-\omega\left(\varphi^{T_{\varepsilon}}\left(x_{0}\right)\right) \leqslant-\alpha \tau \quad \forall \tau>0 \\
& \Rightarrow \omega\left(\varphi^{T_{\varepsilon}+\tau}\left(x_{0}\right)\right) \leqslant \underbrace{\omega\left(\varphi^{\top} \varepsilon\left(x_{0}\right)\right.}_{\leqslant \lambda+\varepsilon})-\alpha \tau \quad \forall \tau>0
\end{aligned}
$$

$\left.\Rightarrow \omega \mid \varphi^{T_{\varepsilon}+\tau}\left(x_{0}\right)\right) \leqslant \lambda^{\lambda+\varepsilon-\alpha \tau} \quad \forall r>0$
But observe now the t

$$
\lambda+\varepsilon-\alpha \tau<\lambda \lll / \alpha \quad \downarrow \text { Since }
$$

$$
\varphi^{t}\left(x_{0}\right) \in B \quad \forall t \geqslant T \varepsilon
$$

This is the desireal contraddiclion. So

$$
\operatorname{lime}_{t \rightarrow+\infty} w\left(\varphi^{t}\left(x_{0}\right)\right)=\lambda_{>0} \eta
$$

\Rightarrow THE CIT MUST $B E=0$. So V is also a basin of altrection $\Rightarrow \Delta$ we have the esympt. stability.

- $[0,0)$ is an asympt. stable opuilithium for the harmonic oscillator with fiction

$$
\left\{\begin{array}{l}
\dot{x}=v \\
\dot{v}=-w^{2} x-2 \mu v
\end{array}\right.
$$

By using (last week) $E(x, v)=\frac{1}{2} v^{2}+\frac{1}{2} \omega^{2} x^{2}$
we stained
$L_{x} \omega(x)=-2 \mu v^{2} \leqslant 0$ on every neigh of $(0,0)$.
x v.f. with fiction
$E(x, v)$ proves only simple stability.

$$
F(x, v)=\underbrace{\frac{1}{2} v^{2}+\frac{1}{2} \omega^{2} x^{2}}_{E(x, v)}+\frac{1}{2}(v+2 \mu x)^{2}+\frac{1}{2} \omega^{2} x^{2}
$$

$F(x, v)>0$ on a neigh. of $(0,0)$.

$$
\begin{aligned}
& F(0,0)=0 \\
& L_{x} F(x, v)= {\left[w^{2} x+(v+2 \mu x) 2 \mu+w^{2} x\right] \dot{x}+} \\
&+[v+(v+2 \mu x)] \dot{v}=
\end{aligned}
$$

$$
=\ldots=-2 \mu\left(v^{2}+\omega^{2} x^{2}\right) \leqslant 0 \quad B u T=0 \operatorname{IFF}(x, v)=(0,0) \text {. }
$$

sub. the exp. for $\left\{\begin{array}{l}\dot{x}=v \\ \dot{v}=-\omega^{2} x-2 \mu x\end{array}\right.$
$=D \quad(0,0)$ is ASyMP. STABLE for the herm. sail. with friction.
other way: Fist lop, method!!

$$
\begin{aligned}
& J x(x, y)=\left(\begin{array}{cc}
0 & 1 \\
-\omega^{2} & -2 \mu
\end{array}\right) \\
& \operatorname{det}\left(\begin{array}{cc}
-\lambda & 1 \\
-\omega^{2} & -2 \mu-\lambda
\end{array}\right)=0 \\
& \Leftrightarrow \frac{2 \mu \lambda+\lambda^{2}+\omega^{2}=0}{2}=-\mu \pm \sqrt{\mu^{2}-\omega^{2}} \\
& \lambda_{1,2}=\frac{2 \mu \pm \sqrt{4 \mu^{2}-4 \omega^{2}}}{2}
\end{aligned}
$$

- $\mu^{2}-\omega^{2}>0$ in such a case $\sqrt{\mu^{2}-\omega^{2}}<\mu$ $=02$ real <0 eigenvalues!

$$
\mu^{2}=\omega^{2} \Rightarrow x_{1,2}=-\mu<0
$$

- $\mu^{2}-\omega^{2}<0 \Rightarrow 2$ couples conjug. eigenvalues with <0 real pert. yopunov METHOD Always Hold!!?

ASyMP. STABILLTY!
-x-
When rabbits and sheep encounter each other, trouble starts. Since The two populations ere in competition for food. We assume the the conflicts occur at a rate proportional to the site of each population.

Furthemare, we assume that the conflicts reduce the growth bate for each species, but the effect is nome several for rabtrits.

$$
\left\{\begin{array}{l}
\dot{x}=x(3-x-2 y) \\
\dot{y}=y(2-y-x)
\end{array}\right.
$$

Study the dynamics.
solution
First step. EQUILIBRIA

$$
\left\{\begin{array}{l}
x(3-x-2 y)=0 \\
y(2-y-x)=0
\end{array}\right.
$$

First case

$$
\left\{\begin{array}{l}
x=0 \\
y(2-y)=0
\end{array} \rightarrow(0,0) \text { OR }(0,2)\right.
$$

other cess

$$
\begin{aligned}
& 3-x-2 y=0 \rightarrow x=3-2 y \\
& y(2-y-3+2 y)=0
\end{aligned} \quad \Leftrightarrow\left\{\begin{array}{l}
x=3-2 y \\
y(y-1)=0
\end{array}\right.
$$

Four epulitivia for the nou-liveer V.f.

$$
\begin{aligned}
& (0,0),(0,2),(3,0),(1,1) \\
& A=\left(\begin{array}{cc}
3-x-2 y-x & -2 x \\
-y & 2-x-y-y
\end{array}\right)=\left(\begin{array}{cc}
3-2 x-2 y & -2 x \\
-y & 2-x-2 y
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& A(0,0)=\left(\begin{array}{cc}
3 & 0 \\
0 & 2
\end{array}\right) \rightarrow \begin{array}{l}
(0,0) \text { is an } \\
\text { unstable node }
\end{array} \\
& \lambda_{1}=2 \rightarrow v_{1}=(0,1) \\
& \lambda_{2}=3 \rightarrow v_{2}=(1,0)
\end{aligned}
$$

$$
A(0,2)=\left(\begin{array}{cc}
-1 & 0 \\
-2 & -2
\end{array}\right)
$$

with eigenvalues

$$
\begin{aligned}
& \lambda_{1}=-1, v_{1}=(1,-2) \\
& \lambda_{2}=-2, v_{2}=(0,1)
\end{aligned}
$$

$(0,2)$ is a stable node!

$$
A(3,0)=\left(\begin{array}{cc}
-3 & -6 \\
0 & -1
\end{array}\right)
$$

$$
\lambda_{1}=-3 \text { and } v_{1}=(1,0)
$$

$$
\lambda_{2}=-1 \text { and } v_{2}=(3,-1)
$$

$(3,>)$ is a stable node.

$$
A(1,1)=\left(\begin{array}{ll}
-1 & -2 \\
-1 & -1
\end{array}\right)
$$

$\operatorname{det}=1-2<0 \Rightarrow$ saddle point! $\quad\left(\lambda_{1,2}=-1 \pm \sqrt{2}\right)$

Essentially in every core, one species arises the other to extinction! \rightarrow BIOLOGCAL interpretation.
\downarrow
Principle of competitive exclusion:
2 species Coupetiting for the SAME limited resource cennot coexist!!

EX 1

$$
\dot{x}=x^{3}(x-1)(x+3)
$$

1) Find epulitria
2) Lineerite the v.f. round the ep, $x_{0}>0$ end discs its stability.
3) Cen we use x^{2} as lyop. function to pave the stability of $x_{0}=0$?
SOL

$$
\begin{aligned}
& x^{3}(x-1)(x+3)=0 \rightarrow \begin{array}{l}
x=0 \\
\\
x=1 \\
x=-3
\end{array} \\
& x^{\prime}(x)=3 x^{2}(x-1)(x+3)+x^{3}(x+3)+x^{3}(x-1) \\
& \Rightarrow x^{\prime}(1)=(4) \Rightarrow \dot{x}=4(x-1) \\
& \Rightarrow 1 \text { is unstable. }
\end{aligned}
$$

$x^{\prime}(0)=0 \Rightarrow$ vo infos on 0 by the first derivative.
$\omega(x)=x^{2}$ is a pood coledidete Lypunov.
funclion for $x_{0}=0$.

$$
L_{x} \omega(x)=2 x \dot{x}=\underbrace{2 x^{4}}_{x}(\underbrace{(x-1)(x+3)<0}_{\text {prabala. }} \text { in }
$$

$\Rightarrow 0$ is ASYMP. STABLE !
EX2 Bifurcation diagrem for $\dot{x}=x^{2}+\mu x+1$, $x \in R, \mu \in R$.
SoL $\quad X_{\mu}(x)=x^{2}+\mu x+1=0$.

$$
\begin{aligned}
& x_{1,2}=\frac{-\mu \pm \sqrt{\mu^{2}-4}}{2} \Leftrightarrow \mu^{2}-4 \geqslant 0 \\
& \Leftrightarrow \mu \leqslant-2 \text { or } \mu \geqslant 2 .
\end{aligned}
$$

In perliculer,
If $\mu \in(-\infty,-2) \cup(2,+\infty): 2$ real, dislinct
if $\mu= \pm 2$, we hove $x_{1}=x_{2}$
If $\mu \in(-2,2)$, No epvilitina.

