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Lyapunov theorem for asymptotic stability with proof
Harmonic oscillator with friction asymptotic stability of
10,0 by an appropriate Lyapunov function and by the
first Lyapunov method

Rabbits sheep a Principle of competitive exclusion
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When rabbits and sheep encounter each other trouble

starts Since the tuo populations era in competition
for food we assume that the conflicts occur at

a rate proportional to the site of each population



Furthermore we assume that the conflicts reduce
the growth rate for each species but theft
more several for rabbits
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PRINCIPLE of COMPETITIVE EXCLUSION
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resourse cannot coexist
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