descon
$$g = 47/10/2022$$

Lyapunov theorem for asymptotic stability, with prof.
Harmonic oscillator with friction: asymptotic stability of
(0,0) by an appropriate hypernov quarkov and by the
first lyapunov method.
Rabbits / sheep = or Principle of competitive exclusion.
 $i = x^{2} + \mu x + 1$, x and and $\mu \in \mathbb{R}$.
LYAPUNOV THEO. For Asymptotic STABILITY
 $\bar{x} \in \mathbb{R}^{n}$, equilibrium for a u.f. $\dot{x} = X(x)$.
Let suppose that $\exists w \in \mathbb{C}^{4}(A; \mathbb{R})$ on $A \ni \bar{z}$ (spen neighb.
of \bar{z}) such that:
 $[T] w(\bar{z}) = 0$ and $w(x) > 0$ $\forall x \in A \setminus \{\bar{z}\}$.
 $[T] w(\bar{z}) = 0$ and $w(x) > 0$ $\forall x \in A \setminus \{\bar{z}\}$.
 $[T] here $\bar{x} \in \mathbb{C}^{n}$ is asympt. Stable.
Proof
Condition $[C]' = D$ $[C]$ on topological stability of \bar{z} .
So \bar{z} is top. stable. This means that fixed a neight.
 $U \ni \bar{z}$ ($u \in A$) then $\exists \forall \ni \bar{z}$ ($v \in A$) such that
 $x_{0} \in V = D$ $Q_{0}(x_{0}) \in U$ $\forall t \ge 0$.
But - u order to pose top asympt. stable ity -
 $\lim_{x \to \infty} L_{p}(x_{0}) = \bar{z}$
 $t \Rightarrow vo$
 $(z) = \lim_{x \to \infty} w(\bar{z}) = \bar{z}$
 $t \Rightarrow vo$
 $(z) = \lim_{x \to \infty} w(\bar{z}) = \bar{z}$
 $t \Rightarrow vo$
 $(z) = \lim_{x \to \infty} w(\bar{z}) = w(\bar{z})$ (z)
 $(z) = \lim_{x \to \infty} w(\bar{z}) = w(\bar{z})$ (z)
 $(z) = \lim_{x \to \infty} w(q_{1}(x_{0})) = w(\bar{z})$ (z)
 $(z) = \lim_{x \to \infty} w(q_{1}(x_{0})) = w(\bar{z})$ (z)
 $(z) = \lim_{x \to \infty} w(q_{1}(x_{0})) = w(\bar{z})$ (z)
 $(z) = \lim_{x \to \infty} w(q_{1}(x_{0})) = w(\bar{z})$ (z)
 $(z) = \lim_{x \to \infty} w(q_{1}(x_{0})) = w(\bar{z})$ (z)
 $(z) = \lim_{x \to \infty} w(q_{1}(x_{0})) = w(\bar{z})$ (z)
 $(z) = \lim_{x \to \infty} w(q_{1}(x_{0})) = w(\bar{z})$ (z)
 $(z) = \lim_{x \to \infty} w(q_{1}(x_{0})) = w(\bar{z})$ (z)
 $(z) = \lim_{x \to \infty} w(q_{1}(x_{0})) = w(\bar{z})$ (z)
 $(z) = \lim_{x \to \infty} w(q_{1}(x_{0})) = w(\bar{z})$ (z)
 $(z) = \lim_{x \to \infty} w(q_{1}(x_{0})) = w(\bar{z})$ (z)
 $(z) = \lim_{x \to \infty} w(q_{1}(x_{0})) = w(\bar{z})$ (z)
 $(z) = \lim_{x \to \infty} w(q_{1}(x_{0})) = w(\bar{z})$ (z)
 $(z) = \lim_{x \to \infty} w(q_{1}(x_{0})) = w(\bar{z})$ (z)
 $(z) = \lim_{x \to \infty} w(q_{1}(z_{0})) = w(\bar{z})$ (z)
 $(z) = \lim_{x \to \infty} w(q_{1}(z_{0})) = w(\bar{z})$ $(z)$$

By controd. suppose that the previous -limit doesn't hold, Since w(2)>0 & × ∈ A \{2}, this means that

line
$$\omega(\varphi_{t}(z_{0})) = \lambda > 0$$

to the two when this quality by uning the dep. of
New we write this quality by uning the dep. of
Rent of a real function for $t \to +\infty$.
FEWALS TO:
 $\forall E>0 \exists T_{E} \ge 0$ for that
 $\forall E>0 \exists T_{E} \ge 0$ for that
 $\forall E>0 \exists T_{E} \ge 0$ for $(\varphi_{t}(z_{0})) - \lambda | \leq E$
that is
 $if t \ge T_{E} \Longrightarrow \lambda - E \le \omega(\varphi_{t}(z_{0})) \le \lambda + E$
But, Perall that $t \mapsto \omega(\varphi_{t}(z_{0})) \le \lambda + E$
 $\lambda is the "Annt" value. So $t \mapsto \omega(\varphi_{t}(z_{0}))$
cannot assume scaller value that λ .
That is (fixed E>0}.
 $\varphi_{t}(z_{0}) \in B := \{x \in \mathbb{R}^{n} : \lambda \le \omega(z) \le \lambda + E\}$
 $\forall t \ge T_{E}$
B is a compact ret.
 $\overline{x \notin B!}$
As a consequence:
 $\max L_{x} \omega(z) \le -d < 0 \quad \forall x \in B$.
 $d \quad \omega(\varphi_{t}(z_{0}))$
 $d \quad \omega(\varphi_{T_{E}}^{T_{E}}(z_{0})) \le \omega(\varphi_{T_{E}}^{T_{E}}(z_{0})) = d\tau \quad \forall \tau > 0$
 $\Rightarrow \omega(\varphi_{T_{E}}^{T_{E}}(z_{0})) \le \omega(\varphi_{T_{E}}^{T_{E}}(z_{0})) = d\tau \quad \forall \tau > 0$$

=0 W |
$$\psi^{T} e^{+x} (z_0) \leq \lambda + e - \alpha \tau$$
, $\forall \tau > 0$
But observe now that
 $\lambda + e - \alpha \tau \leq \lambda \iff \tau > E/\alpha$ \forall Fince
 $\psi^{\pm} (z_0) \in B \forall t \geq Te$.
This is the defined contradiction. So
Nome $W(\psi^{\pm} (z_0)) = \lambda$ \forall
 $\pm -3 + is$
=0 THE UNIT NUET BE =0. So \forall is
also a barin of attraction =0 we have the
asympt. Stability. \square
bosillator with fiction
 $\int z = v$
 $\int z = v$
 $\int z = v = 2\mu v^2 \leq 0$ on every neigh of (9.0).
 $\chi v.p.$ with fiction
 $E(x, \sigma) = \frac{1}{2}v^2 + \frac{1}{2}w^2x^2 + \frac{1}{2}(v^2x^2)$
 $E(x, \sigma) = \frac{1}{2}v^2 + \frac{1}{2}w^2x^2 + \frac{1}{2}(v^2x^2)$
 $E(x, \sigma) = [w^2x + (v+2\mu x)^2 + \frac{1}{2}w^2x^2] + \frac{1}{2}(v^2x^2)$

 $= \dots = \left(2\mu \left(v^2 + \omega^2 x^2 \right) \right) = 0$ But = 0 IFF (x, y) = (0, 0). sub, the exp. for) x= y bis = - w2x - 2ux =D (0,0) is AsyMP. STABLE for the horm. ase. W. with friction. OTHER WAY ; First lypp, method !! $JX(x,\eta) = \begin{pmatrix} 0 & 1 \\ -\omega^2 & -2\mu \end{pmatrix}$ $det \begin{pmatrix} -\lambda & 1 \\ -\omega^2 & -2\mu - \lambda \end{pmatrix} = 0$ $< 32\mu\lambda + \lambda^2 + \omega^2 = 0$ $\lambda_{1,2} = -\frac{2\mu \pm \sqrt{4\mu^2 - 4\omega^2}}{2} = -\mu \pm \sqrt{\mu^2 - \omega^2}$ $\mu^2 - \omega^2 > 0$ in such a case $\sqrt{\mu^2 - \omega^2} < \mu$ = 0 2 real < 0 Ripenvalues! · u² - w² <0 = 0 2 couples coujup. eigenvalues hETHOD with <0 real port. ASYMP. STABILITY !

-xwhen rabbits and sheep encounter each other, trouble storts, since The two populations are in competition for food, we assume that the complicits occur at a rate proportional to the site of each population.

Furthermore, we essure that the carplity reduce
the powher where for each species, but the effect is
here solved for address.

$$\begin{cases}
x = z(3-x-2y) \\
y(t) = pp. of robbits. \\
y(t) = pp. of robbits.$$

$$A(o_{j}\circ) = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \rightarrow (j \circ) \text{ is } \Omega n$$

$$(j \circ) = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}$$

$$\lambda_{1} = 2 \rightarrow v_{2} = (0, 1)$$

$$\lambda_{2} = 3 \rightarrow v_{2} = (4, 0)$$

$$A(o_{j}2) = \begin{pmatrix} -1 & 0 \\ -2 & -2 \end{pmatrix}$$

$$(j \circ) = (-1 & 0)$$

$$\lambda_{1} = -1 , v_{2} = (4, -2)$$

$$\lambda_{2} = -2 , v_{2} = (0, 1)$$

$$(o_{j}2) \text{ is } \alpha \text{ stable node } !$$

$$A(3, 0) = \begin{pmatrix} -3 & -6 \\ 0 & -1 \end{pmatrix}$$

$$\lambda_{1} = -3 \text{ and } v_{1} = (4, 0)$$

$$\lambda_{2} = -2 , v_{2} = (0, 1)$$

$$A(3, 0) = \begin{pmatrix} -3 & -6 \\ 0 & -1 \end{pmatrix}$$

$$\lambda_{1} = -3 \text{ and } v_{2} = (3, -1)$$

$$(3, 0) \text{ is } \alpha \text{ stable node}.$$

$$A(4, 1) = \begin{pmatrix} -4 & -2 \\ -4 & -4 \end{pmatrix}$$

$$det = 4 - 2 < 0 = 0 \text{ soddle point } (-3 + 2\sqrt{2})$$

sheep =
$$\frac{1}{2} \int_{(0,2)}^{(0,2)} = basin of attraction of (3,0)$$

= basin of attraction of (3,0)
= basin of attraction of (0,2)
= tabhity
Essentially in every core, one spects s
and so the other to extinction ! = D Biological
INTERPETATION.
I
PRINCIPLE of Competitive Exclusion:
2 species Competitive Exclusion:
2 species Competitive for the same limited
instance Connot Coexist!!
[EX 1 $\dot{x} = x^3(x-1)(x+3)$
i) Find quilitia
2) Linearise the v.f. should the qp. 2070 and
discuss its stability.
3) Can we use x^2 as hype, function to prove the
slability of $x_{0}=0$?
Sole $x^3(x-1)(x+3) + x^3(x+3) + x^3(x-1)$
=D $x^1(1) = (4) = 0$ $\dot{x} = 4(x-1)$
 >0
=D 1 is instable.
 $x^1(0) = 0$ =D No in fission 0 by the
first deviative.

$$W(x) = x^{2} \text{ is a point caudidate Lypponov.}$$

Function for $x_{0} = 0$.

$$L_{x} W(x) = 2x \dot{x} = 2x^{4} (x-t)(x+3) < 0 \text{ in}$$

$$I_{x} W(x) = 2x \dot{x} = 2x^{4} (x-t)(x+3) < 0 \text{ in}$$

$$I_{x} = 2x \dot{x} = 2x^{4} (x-t)(x+3) < 0 \text{ in}$$

$$I_{x} = 0 \text{ is Asymp. stable!}$$

$$Ex2 \quad Beforeation \ diagram \ for \dot{x} = x^{2} + \mu x + 4,$$

$$x \in \mathcal{R}, \ \mu \in \mathcal{R}.$$

Sol $X_{\mu}(x) = x^{2} + \mu x + 4 = 0.$

$$x_{t}, 2 = -\mu \pm \sqrt{\mu^{2} - 4} \quad (=) \ \mu^{2} - 4 \ge 0$$

$$x_{t}, 2 = -\mu \pm \sqrt{\mu^{2} - 4} \quad (=) \ \mu^{2} - 4 \ge 0$$

$$x = 2 \quad \mu \leq -2 \quad \text{or} \quad \mu \geqslant 2.$$

In perticular,

$$P \quad \mu \in (-\infty, -2) \cup (2, +\infty) : 2 \text{ real, distinct} = 2 \quad \text{or } \mu \geqslant 2.$$

$$I_{x} \quad \mu \in (-2, 2), \ \text{No equilibria.}$$

$$I_{x} \quad \mu \in (-2, 2), \ \text{No equilibria.}$$