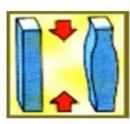
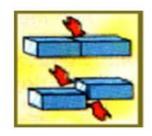
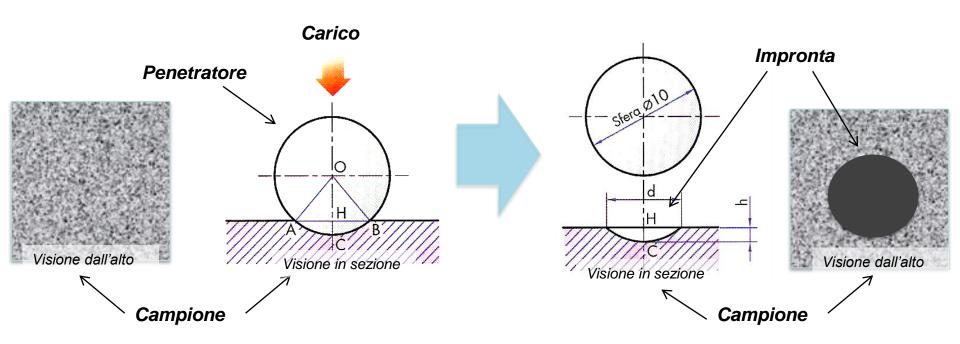

Le prove di durezza e microdurezza






Proprietà meccaniche


• Le proprietà meccaniche descrivono il **comportamento dei materiali quando vengono sottoposti a sollecitazioni esterne**: sono rappresentate dalla resistenza meccanica (che comprende la resistenza a trazione, a compressione, a flessione, a torsione, a taglio e a fatica) oltre che alla durezza.



Le **proprietà meccaniche dei materiali** vengono determinate mediante **prove meccaniche** che vengono eseguite mediante **procedure normalizzate** (ASTM-UNI-ISO).

Durezza

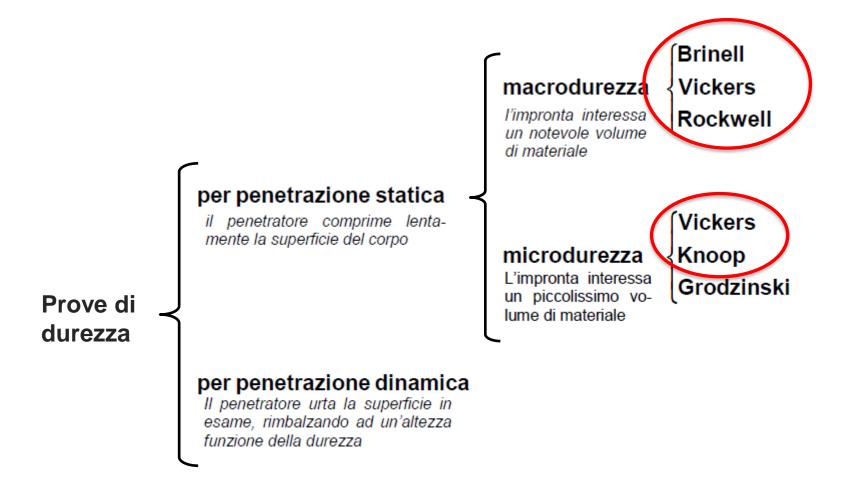
<u>Definizione metallurgica</u>: "**resistenza** che la superficie di un materiale oppone **alla penetrazione di un corpo duro** di forma e dimensioni prestabilite (penetratore)".

La durezza influenza la resistenza all' incisione, all' usura, al taglio e talvolta anche alla corrosione.

Durezza

<u>Definizione metallurgica:</u> "resistenza che la superficie di un materiale oppone alla penetrazione di un corpo duro di forma e dimensioni prestabilite (penetratore)".

<u>Definizione meccanica</u>: per il progettista, rappresenta, anche se indirettamente, la resistenza a trazione.


Definizione tribologica: rappresenta la resistenza ad usura.

Prove di durezza

Vantaggi:

- a) **non richiedono provette**, potendosi eseguire direttamente sul pezzo in esame;
- b) sono **semplici e poco costose**;
- c) sono *prove non distruttive* = non distruggono nè alterano il componente sottoposto alla prova;
- d) forniscono indici di confronto per un *giudizio sulla produzione e qualità* del materiale;
- e) con buona approssimazione, *consentono di valutare la resistenza a trazione* degli acciai.

Prove di durezza

Prove statiche di durezza

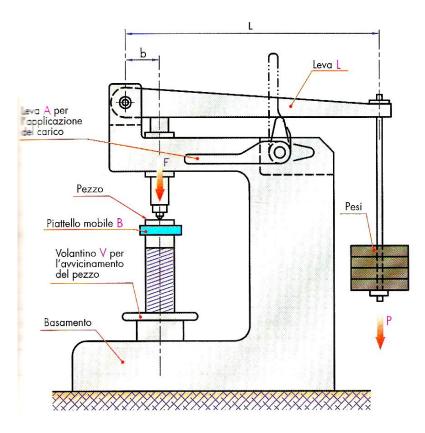
Tecniche standard che prevedono l'impiego di un *penetratore* il quale viene forzato (= applicato un carico) a penetrare attraverso la superficie del materiale da analizzare.

La profondità o la forma dell'impronta viene poi misurata e da queste misure si risale alla valutazione della durezza espressa con un numero.

Più è larga e profonda l'impronta minore è la durezza del materiale.

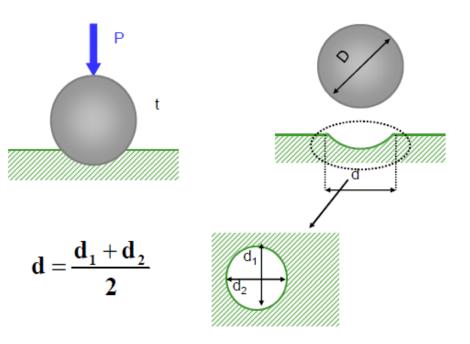
Le prove di durezza si distinguono per:

- a) tipo di penetratore usato,
- b) il carico applicato,
- c) tempo di applicazione del carico,
- d) la tecnica di rilevamento della dimensione dell'impronta lasciata.


Le misure di durezza non sono valori assoluti ma relativi e sono legate al tipo di tecnica impiegata;

Attenzione a paragonare valori ottenuti con metodologie diverse !!!!

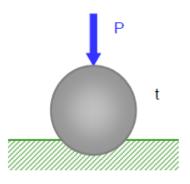
Prove statiche di macrodurezza o più semplicemente Prove di durezza


Gli apparecchi per l'esecuzione della prova sono detti durometri.

(UNI EN ISO 6506)

- a) penetratore = sfera di acciaio temprato o in carburo di tungsteno;
- **b)** diametro sfera = 1 2 2.5 5 10 mm
- c) carico = fisso, si può scegliere da alcuni Kg a 3000 Kg;
- d) tempo di permanenza = da 10 a 30 secondi;
- e) misura dei diametri dell'impronta lasciata sul campione.

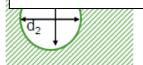
Questa prova richiede l'uso di provini con superfici lucide e piatte.


a) penetratore = sfera di acciaio temprato o in carburo di tungsteno;

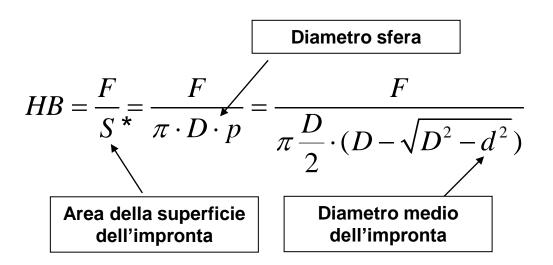
b) diametro sfera = 1 - 2 - 2.5 - 5 - 10 mm

c) carico = fisso, si può scegliere da alcuni Kg a 3000 Kg;

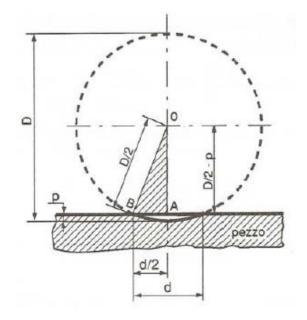
d) tempo di permanenza = da 10 a 30 secondi;


e) misura dei diametri dell'impronta lasciata sul campione

$$\mathbf{d} = \frac{\mathbf{d}_1 + \mathbf{d}_2}{2}$$



I diametri d₁ e d₂ si ricavano per mezzo di una lente e di un proiettore oculare dotato di righello mobile di cui é fornito lo stesso durometro universale.



Questa prova richiede l'uso di provini con superfici lucide e piatte.

Si definisce durezza Brinnell (HB) il rapporto tra il valore del carico F (Kg) applicato e la superficie S (mm²) dell'impronta ottenuta: viene calcolata con la seguente equazione:

^{*} Superficie di una calotta sferica: $S = \pi D h$

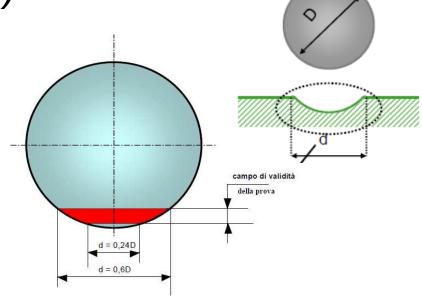
Il valore ottenuto dipende dalla modalità dell'esecuzione (durata, carico, diametro sfera)

CONDIZIONI DI PROVA NORMALI:

- a) diametro penetratore = 10 mm
- **b) carico** = 3000 Kg;
- c) tempo di permanenza = 15 secondi;

ALTRIMENTI:

Si indica con: HB_{diametro-sfera/carico/tempo} (es.: 100 HB _{10/500/30})

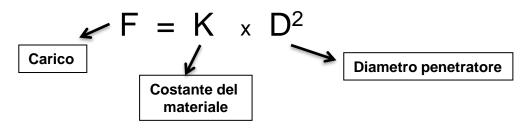

La prova ideale è quella per cui:

d/D = 0.375

Valori di durezza HB accettabili se:

 $d/D = 0.25 \div 0.55$

Se, dopo la prova, il rapporto è fuori dall'intervallo, cambiare carico applicato !!!



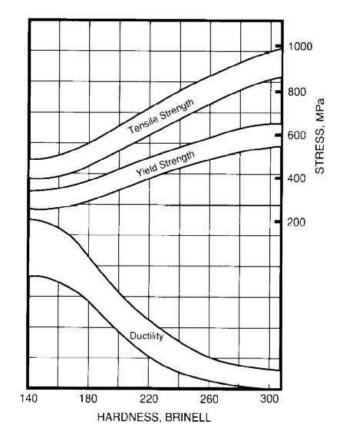
Limiti di tale prova sono i seguenti:

- a) campo di applicazione limitato a causa della durezza del penetratore (N.B.: penetratore Brinell = sfera di acciaio temprato);
- b) possibilità di errori nella misura dell'impronta;
- c) misura indiretta.

HB viene utilizzata per materiali fortemente eterogenei quali le ghise grigie.

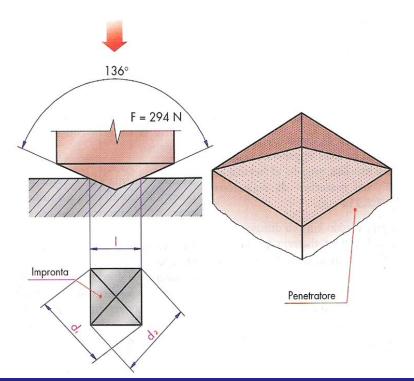
Il *carico che si applica non* è *casuale* ma deve seguire delle determinate regole e relazioni. La relazione a cui ci si deve attenere obbligatoriamente per svolgere una prova accettabile è la seguente:

Diametro D in mm	Spessore provino in mm	Acciai ghise K=30 F(Kg)	Alluminio Leghe leggere K=10 F(Kg)	Ottone K=5 F(Kg)	Materiali teneri K=2.5 F(Kg)	Piombo materiali più teneri K=1 F(Kg)	Materiali tenerissimi K=0.5 F(Kg)
10	>6	3000	1000	1500	100	100	50
5	3-6	750	250	125	25	25	11.5
2.5	1.5-3	187.5	62.5	31.25	6.5	6.5	3.1
2	1.5-3	120	40	20	4	4	2
1	<1.5	30	10	5	1	1	0.5


In pratica, la tabella indica quali sono i carichi d'applicare al penetratore per eseguire la prova HB su una particolare tipologia di materiale, dato il diametro della sfera: Es.: per testare un ottone con una con una sfera da 5 mm, dovrò applicare un carico di 125 Kg.

Pur avendo limitazioni nel campo di utilizzo e' molto importante grazie alla relazione empirica:

carico di rottura di un materiale

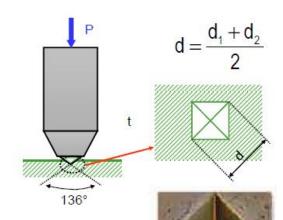

$$R_{m \text{ [N/mm}^2 = Mpa]} \approx 3.3 \text{ x HB}_{\text{[Kgf/mm}^2]}$$

$$HB_{[Kgf/mm^2]} \approx \frac{3 \times R_{m}}{9.8} [N/mm^2 = Mpa]$$

Prova di durezza VICKERS (HV) (UNI EN ISO 6507 e UNI 1955-75)

- a) penetratore = diamante;
- b) dimensione penetratore = piramide retta a base quadrata con angolo al vertice di 136°
- **c) carico** = da 1 a 120 Kg;
- d) Tempo di permanenza = di norma da 10 a 15 secondi;
- e) misura delle diagonali dell'impronta.

Le diagonali d₁ e d₂ si ricavano per mezzo di un microscopio o di una lente l'ingrandimento (dotati di scala graduata).


Essendo l'impronta di forma quadrata, risulta più facile la misurazione rispetto ad una circolare.

Prova di durezza VICKERS (HV)

Si definisce durezza Vickers (HV) il rapporto tra il carico di prova F (Kg) e l'area della superficie S (mm²) dell'impronta.

$$HV = \frac{F}{S^*} \qquad HV = 1.854 \times \frac{F}{d^2} \quad [kg/mm^2]$$

Il valore di durezza Vickers non dipende dal carico applicato ma rimane costante al variare della forza applicata.

^{*} Superficie piramide in funzione della diagonale (d) : $S = 0,539 \times d^2$

Prova di durezza VICKERS (HV)

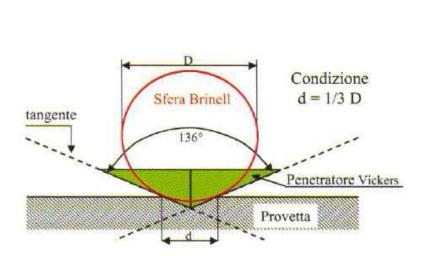
CONDIZIONI DI PROVA NORMALI:

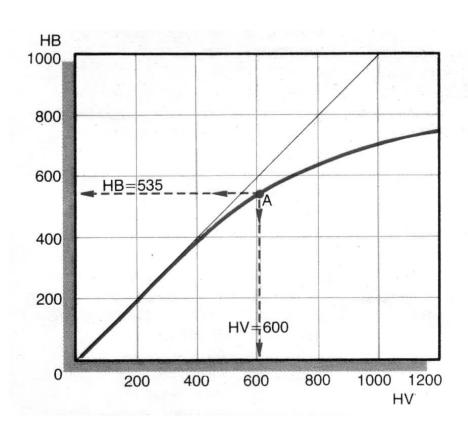
- **a) carico** = 30 Kg;
- b) tempo di permanenza = 15 secondi;

Si indica con: HV_{carico/tempo} (es.: 640 HV _{100/20})

Il valore di durezza Vickers non dipende dal carico applicato.

Poiché al variare della forza applicata si ha una **proporzionale variazione** dell'area dell'impronta, il valore della durezza Vickers si mantiene costante.


Prova di durezza VICKERS (HV)


Limiti di tale prova:

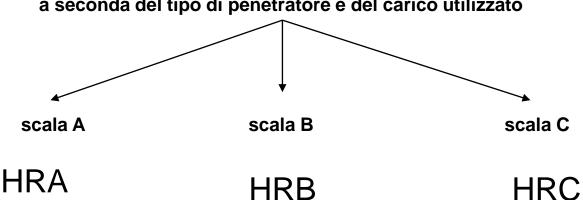
- la prova Vickers non ha limiti! Esistono materiali con durezze Vickers di oltre 5000 punti!

Valori tipici di VHN					
Materiale	VHN (kgf/mm2)				
Diamante	8400				
Allumina	2000				
Boro	2500				
Carburo di Tungsteno	2100				
Acciaio	210				
Rame ricotto	47				
Alluminio ricotto	22				
Piombo	6				

Confronto durezza BRINELL - VICKERS

Sul grafico si nota che le durezze coincidono fino a circa 350 unità Brinell-Vickers.

Prova di durezza ROCKWELL (HR)


Durezza HR è oggi la più impiegata per la sua praticità e immediatezza di lettura.

- a) pre-carico = 10 Kg;
- **b)** carico = da 60 a 150 kg
- c) misura della profondità a cui si porta un opportuno penetratore con un carico costante.

L'apparecchio per eseguire la prova col metodo Rockwell è un durometro che fornisce direttamente l'indice di durezza cercato:

LETTURA DIRETTA della DUREZZA

a seconda del tipo di penetratore e del carico utilizzato

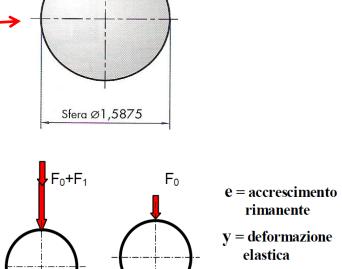
Nessuna necessità di accuratezza superficiale del campione.

Prova di durezza ROCKWELL (HR)

Consiste nel misurare la differenza di profondità di un'impronta realizzata con due carichi diversi (F_0,F_1) , adoperando i seguenti penetratori:

- a) cono di diamante (penetratore Brale) con angolo al vertice di 120° e raggio di raccordo di 0.2 mm
- b) sfera di acciaio temprato con durezza non inferiore a 850 HV diametri: 1/16 (1.59 mm); 1/8; 1/4; 1/2 pollice.

Il risultato della prova viene espresso da un numero (misura) seguito da HR e dalla lettera che indica la scala:


HRA HRB HRC

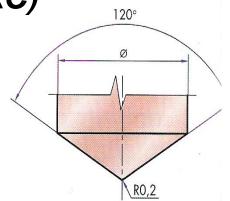
Prova di durezza ROCKWELL - B (HRB)

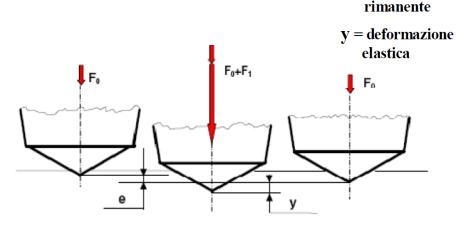
La prova si svolge in tre fasi:

sfera di acciaio temprato

- 1) Si applica un carico iniziale 10 kg (F₀) si azzera il quadrante;
- Si aggiunge al carico iniziale di 10 kg un altro carico addizionale di 90 kg (F₁) progressivamente in 5-10 secondi raggiungendo il *carico totale* di 100 kg;
- 3) Dopo circa 30 secondi, si elimina il carico addizionale di 90 kg e si esegue la lettura sul quadrante, con il penetratore sempre sollecitato dal carico iniziale di 10 kg (F₀);

Per materiali meno duri (HB < 200)


Fo


Prova di durezza ROCKWELL - C (HRC)

La prova si svolge in tre fasi:

cono di diamante

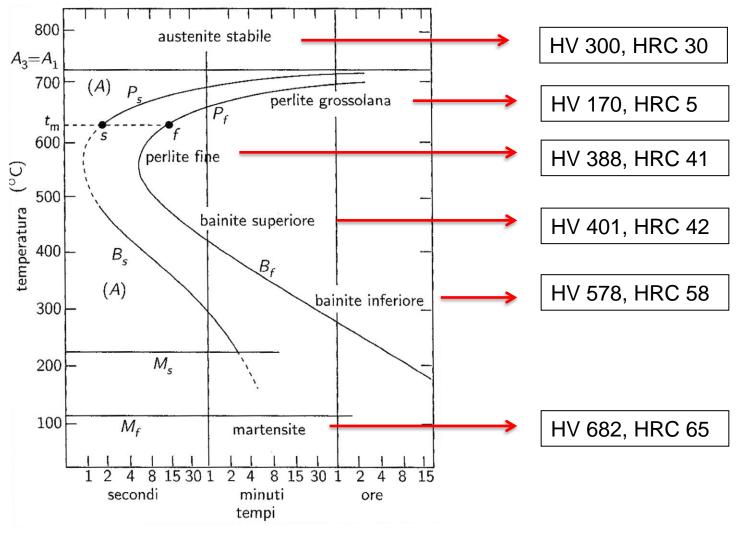
- 1) Si applica un carico iniziale 10 kg (F₀) si azzera il quadrante;
- Si aggiunge al carico iniziale di 10 kg un altro carico addizionale di 140 kg (F₁) progressivamente in 5-10 secondi raggiungendo il *carico totale di 150 kg*;
- 3) Dopo circa 30 secondi, si elimina il carico addizionale di 140 kg e si esegue la lettura sul quadrante, con il penetratore sempre sollecitato dal carico iniziale di 10 kg (F₀);

Per materiali duri (HB > 200)

e = accrescimento

Prova di durezza ROCKWELL

Nei test durezza più diffusi si usano il cono o la sfera con un pre-carico di 10 kg e carichi variabili da 60 a 150 kg; ogni possibile combinazione viene indicata con delle lettere dalla A alla K.


Simbolo scala	Penetratore	Carico [Kg]	
HRA	Cono	60	
HRB	sfera D=1,5875 mm	100	
HRC	Cono	150	
HRD	Cono	100	
HRE	sfera D=3,175 mm	100	
HRF	sfera D=1,5875 mm	60	
HRG	sfera D=1,5875 mm	150	
HRH	sfera D=3,175 mm	60	
HRK	sfera D=3,175 mm	150	

Esiste la possibilità di eseguire test di durezza superficiale utilizzando gli stessi penetratori con un pre-carico di 3 kg e un carico di 15, 30 o 45 kg

Denominazione della durezza	Tipo di penetratore	Carico iniziale (Kgf)	Carico totale (Kgf)
HR 15-N HR 30-N HR 45-N	Cono di diamante	3	15 30 45
HR 15-T HR 30-T HR 45-T	Sfera di acciaio con $d = 1,5875$ mm	3	15 30 45
HR 15-W HR 30-W HR 45-W	Sfera di acciaio con $d = 3,175$ mm	3	15 30 45
HR 15-X HR 30-X HR 45-X Sfera di acciaio con <i>d</i> = 6,350 mm		3	15 30 45
HR 15–Y HR 30–Y HR 45–Y Sfera di acciaio con <i>d</i> = 12,70 mm		3	15 30 45

Il numero rappresenta il carico ed è seguito da una lettera in base al tipo di penetratore.

Alcune durezze per un acciaio eutettoidico

28

Prova di microdurezza

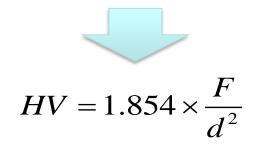
Le prove di microdurezza si effettuano:

- a) con carichi piccolissimi
- b) su campioni lucidati

Si può valutare la durezza di un singolo costituente cristallino, oppure variazioni di durezza entro regioni molto piccole.

Si usano carichi piccoli:

è necessaria una elevata finitura superficiale.


Prova di microdurezza VICKERS:

- **a)** carico = da 1 a 1000 g;
- b) a parte l'entità del carico, la microdurezza Vickers e' regolamentata dalle **stesse modalità della macrodurezza Vickers** (pentetratore, tempi, lettura,...).

Eseguita allo stesso modo della macrodurezza:

il valore della microdurezza viene determinato con la stessa relazione:

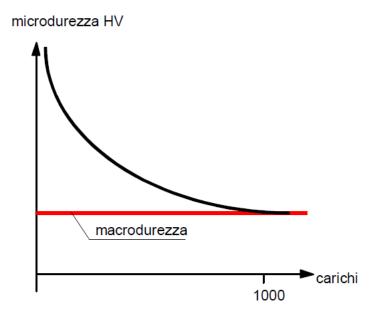
Microdurezza VICKERS vs. Macrodurezza VICKERS

I valori ricavati dalla microdurezza Vickers sono confrontabili con quelli ricavati con la macrodurezza?

NO

il carico applicato e' molto piccolo

La deformazione imposta al pezzo è anch'essa molto piccola

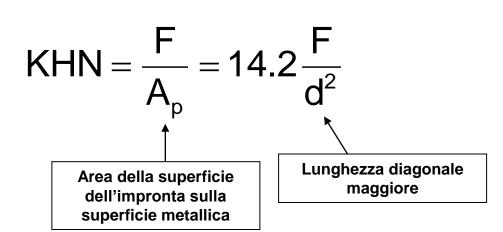


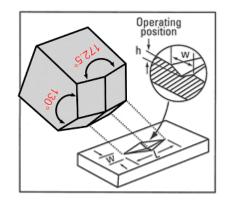
Il contributo elastico in questo caso non è più trascurabile.

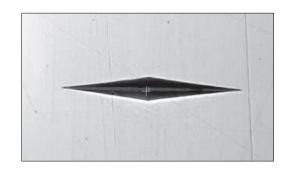
Microdurezza VICKERS vs. Macrodurezza VICKERS

Il valore della *microdurezza cresce* con il *diminuire del carico* di prova.

Al limite, se si utilizzasse un carico piccolissimo, tutta la deformazione sarebbe elastica e quindi, quando viene tolta la forza applicata, non c'é impronta ed il valore della durezza tenderebbe all'infinito.

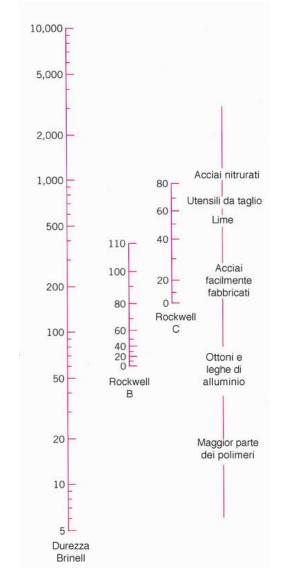



Nota: se il carico applicato é piccolo, solo gli strati superficiali ne risentono.


Per questo è necessario indicare la forza applicata.

Prova di microdurezza KNOOP (HK)

- a) penetratore = diamante;
- b) dimensione penetratore = piramide a base rombica con un rapporto tra le diagonali di 7 a 1.
- **c) carico** = da 25 a 3600 g;
- d) tempo di permanenza = di norma da 10 a 15 secondi;
- e) misura della <u>diagonale maggiore</u> dell'impronta.

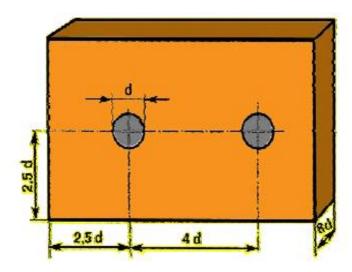


Riassumendo:

		Shape of	indentation		
Test	Indenter	Side view	Top view	Load, P	Hardness number
Brinell	10-mm steel or tungsten carbide ball		→ ø ←	500 kg 1500 kg 3000 kg	$HB = \frac{2P}{(\pi D)(D - \sqrt{D^2 - d^2})}$
Vickers	Diamond pyramid	136°	L.X	1–120 kg	$HV = \frac{1.854P}{L^2}$
Knoop	Diamond pyramid	L/b = 7.11 $b/t = 4.00$	b	25 g–5 kg	$HK = \frac{14.2P}{L^2}$
Rockwell A C D	Diamond cone	120° t = mm	0	60 kg 150 kg 100 kg	HRA HRC = 100 - 500t
B F G	1/16 - in. diameter steel ball	$ \begin{array}{c} $	0	100 kg 60 kg 150 kg	HRB HRF HRG = 130 - 500t
E	1/8 - in. diameter steel ball			100 kg	HRE

Relazione tra durezza e resistenza meccanica

1/16" 100	HRC 120° 150	HV 136°	HB 10 3000	R _m N/mm ²
	80 75 70 67 64	900		
8	60,1 57,8 55,2 52,3 49,1	700 650 600 550 500		2148 1984 1818 1651
	45,3	450	427	1487
	40,8	400	380	1322
	38,8	380	361	1256
	36,6	360	342	1189
	34,4	340	323	1121
	32,2	320	304	1057
	29,8	300	285	991
	27,1	280	266	926
	24,0	260	247	858
	20,3	240	228	793
98,2	·	220	209	727
95,0		200	190	661
93,0		190	180	628
90,8		180	171	594
88,2		170	161	562
85,4		160	162	529
82,2		150	142	495
80,4		145	138	480
78,4		140	133	463
76,4		135	128	446
74,4		130	123	429
72,0		125	119	413
69,4		120	114	396
66,4		115	109	381
63,4		110	104	363



35

Prove di durezza: generalità

L'impronta *non deve*:

- raggiungere la superficie opposta del provino (lo spessore minimo deve essere almeno 8 volte la profondità dell'impronta); per ricoprimenti, lo spessore deve essere almeno 10 volte;
- essere troppo vicina ad un'impronta precedente: nella zona intorno ad una impronta il materiale risulta incrudito per cui la sua durezza aumenta;
- essere troppo vicina al suo bordo: anche in vicinanza dei bordi si possono rilevare misurazioni errate a causa del cedimento del materiale.

