Consider a random variable X with values in

$$
A_{X}=\left\{x_{1}, \ldots, x_{8}\right\}
$$

and probability mass function

$$
P_{X}=\{1 / 4,1 / 4,1 / 4,3 / 16,1 / 64,1 / 64,1 / 64\}
$$

- What is the information content of each outcome x_{i} ?
- What is the entropy of the distribution?
- Draw a binary probability tree for X. For each node, write the corresponding envent; for each edge, write the corresponding conditional probability
- Plot the essential bit content $H_{\delta}(X)$ as a function of the error δ

Consider $X^{(3)}=X \times X \times X$:

- what is the entropy of $X^{(3)}$?
- Plot $H_{\delta}\left(X^{(3)}\right)$ as a function of δ
- How any binary strings we need to represent $X^{(3)}$ if we allow an error of 1% ?

