PAC, Generalization and SRM
 Machine Learning, A.Y. 2022/23, Padova

Fabio Aiolli

October 12th, 2022

A simple experiment

- $P($ red $)=\pi$
- $P($ green $)=1-\pi$
- π is unknown
- Pick N marbles (the sample) from the bin, independently
- $\sigma=$ fraction of red marbles in the sample

A simple experiment

- Does σ say anything about π ?
- Short answer... NO
- Ans: The sample can be mostly green, while the bin is mostly red
- Long answer... YES
- Ans: The sample frequency σ is likely close to the bin frequency π

What does σ say about π

$\square \bullet \bullet \bullet \bullet \bullet \bullet$

In a large sample (large N), the value σ is likely close to π (within ϵ) More formally (Hoeffding's Inequality),

$$
P(\underbrace{|\sigma-\pi|>\epsilon}_{\text {bad event }}) \leq 2 e^{-2 \epsilon^{2} N}
$$

That is, $\sigma=\pi$ is P.A.C. (Probably Approximately Correct)

What does σ say about π ?

$$
P(\underbrace{|\sigma-\pi|>\epsilon}_{\text {bad event }}) \leq 2 e^{-2 \epsilon^{2} N}
$$

- Valid for all N and ϵ
- Bound does not depend on π
- Tradeoff: N, ϵ, and the bound
- $\sigma \approx \pi \Rightarrow \pi \approx \sigma$, that is " π tends to be close to σ "

Connection to Learning

- In the Bin example, the unknown is π
- In the Learning example the unknown is $f: \mathcal{X} \rightarrow \mathcal{Y}$
- The bin is the input space \mathcal{X}
- Given an hypothesis h, green marbles correspond to examples where the hypothesis is right, i.e. $h(\mathbf{x})=f(\mathbf{x})$
- Given an hypothesis h, red marbles correspond to examples where the hypothesis is wrong, i.e. $h(\mathbf{x}) \neq f(\mathbf{x})$
So, for this h, σ (empirical error) actually generalizes to π (ideal error) but... this is verification, not learning!

Connection to Learning

We need to choose from multiple hypotheses! π and σ depend on which h we choose

Change of notation

- in-sample error $\sigma \rightarrow E_{i}(h)$
- out-of-sample error $\pi \rightarrow E_{o}(h)$
- then, $P\left(\left|E_{i}(h)-E_{o}(h)\right|>\epsilon\right) \leq 2 e^{-2 \epsilon^{2} N}$

Multiple Bins

Hoeffding's inequality does not directly apply here!

Analogy: Head and Cross

- If you toss a (fair) coin 10 times, what is the probability that you will get 10 heads?
- $(0.5)^{10}=0.0009765625 \approx 0.1 \%$
- If you toss 1000 (fair) coins 10 times each, what is the probability that some coin will get 10 heads?
- $\left(1-(1-0.001)^{1000}\right)=0.6323045752290363 \approx 63 \%$

Back to the learning problem

We resort to the so called Union Bound:

$$
\begin{aligned}
P\left[\left|E_{i}(g)-E_{o}(g)\right|>\epsilon\right] \leq & P\left[\left|E_{i}\left(h_{1}\right)-E_{o}\left(h_{1}\right)\right|>\epsilon\right. \\
& \quad \text { or }\left|E_{i}\left(h_{2}\right)-E_{o}\left(h_{2}\right)\right|>\epsilon \\
& \ldots \\
& \left.\quad \text { or }\left|E_{i}\left(h_{M}\right)-E_{o}\left(h_{M}\right)\right|>\epsilon\right] \\
\leq & \sum_{m=1}^{M} P\left[\left|E_{i}\left(h_{m}\right)-E_{o}\left(h_{m}\right)\right|>\epsilon\right] \leq 2 M e^{-2 \epsilon^{2} N}
\end{aligned}
$$

Remember, M is generally very big (can be also infinite)!!

Back to the learning problem

- Testing: $P\left(\left|E_{i}(g)-E_{o}(g)\right|>\epsilon\right) \leq 2 e^{-2 \epsilon^{2} N}$
- Training: $P\left(\left|E_{i}(g)-E_{o}(g)\right|>\epsilon\right) \leq 2 M e^{-2 \epsilon^{2} N}$

In fact M can be substituted by $m_{\mathcal{H}}(N) \leq 2^{N}$ which is related to the complexity of the hypothesis space!

Remember that $P(E \cup F)=P(E)+P(F)-P(E \cap F)$.
So, when the bad events overlaps a lot (low complexity of the hypothesis space), then the value $m_{\mathcal{H}}(N) \ll 2^{N}$. What happens if only $\operatorname{poly}(N)$?

Overlapping of hypotheses and Growth Function

$$
m_{\mathcal{H}}(N)=\max _{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}}\left|\mathcal{H}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)\right| \leq 2^{N}
$$

where $\left|\mathcal{H}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)\right|$ is the number of dichotomies we can have on $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ using hypotheses from \mathcal{H}.

Measuring the complexity of a hypothesis space

 ShatteringShattering: Given $S \subset X, S$ is shattered by the hypothesis space \mathcal{H} iff

$$
\forall S^{\prime} \subseteq S, \exists h \in \mathcal{H}, \text { such that } \forall x \in S, h(x)=1 \Leftrightarrow x \in S^{\prime}
$$

$(\mathcal{H}$ is able to implement all possible dichotomies of S)

Measuring the complexity of the hypothesis space

 VC-dimensionVC-dimension: The VC-dimension of a hypothesis space \mathcal{H} defined over an instance space X is the size of the largest finite subset of X shattered by \mathcal{H} :

$$
V C(\mathcal{H})=\max _{S \subseteq X}|S|: S \text { is shattered by } \mathcal{H}
$$

If arbitrarily large finite sets of X can be shattered by \mathcal{H}, then $V C(\mathcal{H})=\infty$.

VC-dimension: Example (1)

What is the VC-dimension of \mathcal{H}_{1} ?
$\mathcal{H}_{1}=\left\{f_{(\vec{w}, b)}(\vec{y}) \mid f_{(\vec{w}, b)}(\vec{y})=\operatorname{sign}(\vec{w} \cdot \vec{y}+b), \vec{w} \in \mathbb{R}^{2}, b \in \mathbb{R}\right\}$

VC-dimension: Example (2)

What is the VC-dimension of \mathcal{H}_{1} ?
$V C(\mathcal{H}) \geq 1$ trivial. Let consider 2 points:

VC-dimension: Example (3)

What is the VC-dimension of \mathcal{H}_{1} ?
Thus $V C(\mathcal{H}) \geq 2$. Let consider 3 points:

VC-dimension: Example (4)

What is the VC-dimension of \mathcal{H}_{1} ?
Thus $V C(\mathcal{H}) \geq 3$. What happens with 4 points ?

VC-dimension: Example (5)

What is the VC-dimension of \mathcal{H}_{1} ?
Thus $V C(\mathcal{H}) \geq 3$. What happens with 4 points ? It is impossible to shatter 4 points!!
In fact there always exist two pairs of points such that if we connect the two members by a segment, the two resulting segments will intersect. So, if we label the points of each pair with a different class, a curve is necessary to separate them! Thus $\operatorname{VC}(\mathcal{H})=3$

What if $n>2$?

Generalization Error: the VC bound

Consider a binary classification learning problem with:

- Training set $\mathcal{S}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right\}$
- Hypothesis space $\mathcal{H}=\left\{h_{\theta}(\mathbf{x})\right\}$
- Learning algorithm \mathcal{L}, returning the hypothesis $g=h_{\theta}^{*}$ minimizing the empirical error on \mathcal{S}, that is $g=\arg \min _{h \in \mathcal{H}} \operatorname{error}_{S}(h)$.

It is possible to derive an upper bound of the ideal error which is valid with probability $(1-\delta), \delta$ being arbitrarily small, of the form:

$$
\operatorname{error}(g) \leq \operatorname{error}_{S}(g)+F\left(\frac{\mathrm{VC}(\mathcal{H})}{n}, \delta\right)
$$

Analysis of the bound

Let's take the two terms of the bound

- $A=\operatorname{error}_{s}(g)$
- $B=F(V C(\mathcal{H}) / n, \delta)$
- The term A depends on the hypothesis returned by the learning algorithm \mathcal{L}.
- The term B (often called VC-confidence) does not depend on \mathcal{L}. It only depends on:
- the training size n (inversely),
- the VC dimension of the hypothesis space $\operatorname{VC}(\mathcal{H})$ (proportionally)
- the confidence δ (inversely).

Structural Risk Minimization

Problem: as the VC-dimension grows, the empirical risk (A) decreases, however the VC confidence (B) increases !

Because of that, Vapnik and Chervonenkis proposed a new inductive principle, i.e. Structural Risk Minimization (SRM), which aims to minimizing the right hand of the confidence bound, so to get a tradeoff between A and B :
Consider \mathcal{H}_{i} such that
$-\mathcal{H}_{1} \subseteq \mathcal{H}_{2} \subseteq \cdots \subseteq \mathcal{H}_{n}$
$-\quad v C\left(\mathcal{H}_{1}\right) \leq \cdots \leq V C\left(\mathcal{H}_{n}\right)$

- select the hypothesis with the smallest bound on the true risk

Example: Neural networks with an increasing number of hidden units

Recap

Notions

- Hoeffding's Inequality
- Connection to learning
- Measuring the complexity of the hypotheses space (VC-Dimension)
- VC-Dimension of hyperplanes
- Structural Risk Minimization

Exercises

- VC-Dimension of other hypothesis spaces, e.g. intervals in \mathbb{R} :

$$
h(x)=+1 \text { if } a \leq x \leq b, h(x)=-1 \text { otherwise. }
$$

