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Preface

This book is about dynamical aspects of ordinary differential equations and the
relations between dynamical systems and certain fields outside pure mathematics.
A prominent role is played by the structure theory of linear operators on finite-
dimensional vector spaces; we have included a self-contained treatment of that
subject.

The background material needed to understand this book is differential ealculus
of several variables. For example, Serge Lang’s Caleulus of Several Variables, up to
the chapter on integration, contains more than is needed to understand much of our
text. On the other hand, after Chapter 7 we do use several results from elementary
analysis such as theorems on uniform convergence; these are stated but not proved.
This mathematics is contained in Lang's Analysis I, for instance. Our treatment of
linear algebra iz systematic and self-contained, although the most elementary parts
have the character of a review; in any case, Lang's Calewlus of Several Variables
develops this elementary linear algebra at a leisurely pace.

While this book can be used as early as the sophomore year by students with a
strong first year of calculus, it is oriented mainly toward upper division mathematics
and science students. It can also be used for a graduate course, especially if the later
chapters are emphasized.

It has been said that the subject of ordinary differential equations is a eollection
of tricks and hints for finding solutions, and that it is important because it can
solve problems in physics, engineering, ete. Our view is that the subject can be
developed with considerable unity and coherence; we have attempted such a de-
velopment with this book. The importance of ordinary differential equations
vis ¢ vis other areas of acience lies in its power to motivate, unify, and give force to
those areas. Qur four chapters on “applications” have been written to do exactly
this, and not merely to provide examples. Moreover, an understanding of the ways
that differential equations relates to other subjects is & primary source of inaight
and inspiration for the student and working mathematician salike.

Our goal in this book is to develop nonlinear ordinary differential equations in
open subsets of real Cartesian space, R*, in such a way that the extension to
manifolds is simple and natural. We treat chiefly autonomous systems, emphasizing
qualitative behavior of solution curves. The related themes of stability and physical
significance pervade much of the material. Many topics have been omitted, such as
Laplace transforms, series solutions, Sturm theory, and special functions.

The level of rigor is high, and almost everything is proved. More important,
however, is that ad hoc methods have been rejected. We have tried to develop
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proofs that add insight to the theorems and that are important methods in their
own right.,

We have avoided the introduction of manifolds in order to make the book more
widely readable; but the main ideas can easily be transferred to dynamical systems
on manifolds.

The first six chapters, especially Chapters 3-8, give a rather intensive and com-
plete study of linear differential equations with constant cocfficients. This subject
matter can almost be identified with linear algebra; hence those chapters constitute
a short course in linear algebra as well. The algebraic emphasis is on eigenvectors and
how to find them. We go far beyond this, however, to the “‘semisimple + nilpotent”
decomposition of an arbitrary operator, and then on to the Jordan form and its real
analogue. Those proofs that are far removed from our use of the theorems are
relegated to appendices. While complex spaces are used freely, our primary concern
is to obtain results for real spaces. This point of view, 8o important for differential
equations, is not commonly found in textbooks on linear algebra or on difierential
equations.

Our approach to linear algebra is a fairly intrinsic one; we avoid coordinates
where feasible, while not hesitating to use them as a too} for computations or proofs.
On the other hand, instead of developing abstract vector spaces, we work with]
lincear subspaces of R* or C*, a small concession which perhaps makes the abstraction|
maore digestihle,

Using our algebraic theory, we give explicit methods of writing down solutions
to arbitrary constant cocflicient linear differential equations. Examples are included.
In particular, the § 4+ N decomposition is used to compute the exponential of an
arbitrary square matrix,

Chapter 2 is independent, from the others and includes an elementary account
of the Keplerian planetary orbits.

The fundamental theorems on existence, uniqueness, and continuity of solutions
of ordinary differential equations are developed in Chapters 8 and 16. Chapter 8 i3
restricted to the autonomous case, in line with our basic orientation toward dynami-
eal svstiems.

Chapters 10, 12, and 14 are devoted to systematic introductions to mathematical
manlels of vleetrieal cireuits, population theory, and classical mechanics, respectively.
The Travion Moser circuit theory is presented as a special case of the more general
theory recently developed on manifolds. The Volterra—Lotka equations of competing
species are analyzed, along with some generalizations. In mechanics we develop
the Hamiltonian formalism for conservative systems whose configuration space is
an open subset of a vector space.

The remaining five chapters contain a substantial introduction to the phase
portrait analysis of nonlinear autonomous systems. They include a discussion of
“generic” properties of linear flows, Liapunov and structural stability, Poincaré-
Bendixson theory, periodic attractors, and perturbations. We conclude with an
Afterword which points the way toward manifolds.

PREFACE xi

The following remarks should help the reader decide on which chapters to read
and in what order.

Chapters 1 and 2 are elementary, but they present many ideas that recur through-
out the book.

Chapters 3-7 form a sequence that develops linear theory rather thoroughly.
Chapters 3, 4, and 5 make a good introduetion to lincar operators and linear differ-
ential cquations. The canonical form theory of Chapter 6 is the basis of the stability
results proved in Chapters 7, 9, and 13; however, this heavy algebra might be post-
poned at a first exposure to this material and the results taken on faith.

The existenee, uniquencss, and continuity of solutions, proved in Chapter 8, arc
used (often implicitly) throughout the rest of the book. Depending on the reader’s
taste, proofs could be omitted.

A reader interested in the nonlinear material, whe has some background in lincar
theory, might start with the stability theory of Chapter 9. Chapters 12 (ecology),
13 (periodic attractors), and 16 (perturbations) depend strongly on Chapter 9, while
the seetion on dual vector spaces and gradients will make Chapters 10 (electrical
circuits) and 14 (mechanics) casier to understand.

Chapter 12 also depends on Chapter 11 (Poincaré-Bendixson) ; and the material
in Section 2 of Chapter 11 on local scctions is used again in Chapters 13 and 6.

Chapter 15 {nonautonomous cquations) is a continuation of Chapter 8 and is
used in Chapters 11, 13, and 16; however it can be omitted at a first reading,

The logical dependence of the later chapters is summarized in the following chart ;

/\
Y,

<<

12

The book owes much to many people. We only mention four of them here. Ikuko
Workman and Ruth Suzuki did an exeellent job of typing the manuscript. Dick
Palais made a number of uscful comments. Speeial thanks are due to Jacob Palis,
who read the manuscript thoroughly, found many minor crrors, and suggested
several substantial improvements. Professor Hirschis grateful to the Miller Institute
for its support during part of the writing of the book.



Chapter ].

First Examples

The purpose of this short chapter is to develop some simple examples of differen-
tial equations, This development motivates the linear algebra treated subsequently
and moreover gives in an elementary context some of the basic ideas of ordinary
differential equations. Later these ideas will be put into a more systematic exposi-
tion. In particular, the examples themselves are special cases of the class of differen-
tial equations considered in Chapter 3. We regard this chapter as important since
some of the most basic ideas of differential equations are seen in simple form.

§1. The Simplest Examples

The differential equation

(1 i

is the simplest differential equation. It is alsc one of the most important, First,
what does it mean? Here z = z({) is an unknown real-valued function of a real
variable { and dz/dt is its derivative (we will also use &' or 2’ (t) for this derivative).
The equation tells us that for every value of ¢ the equality

z'(8) = ax(t)

is true. Here a denotes a constant.
The solutions to (1) are obtained from calcutus: if K is any constant. (real num-
ber), the function f({) = Ke* is a solution since

() = aKe* = af(1).
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¥ X x
- / ! !
a>0 g:0 a a €0
FIG. A

Moreover, there are no other solutions. To see this, let 4(¢) be any solution and
compute the derivative of u(t)e=*:

d—‘f (w()e™) = w(t)e™ + ut)(—ae—)

= au(f)e=t — au(l)e = (.

Therefore uit)e = is a constant K, so u(l) = Ke=*. This proves our assertion

The constant K appearing in the solution is completely determined if the value —-
up of the solution at a single point 4 is specified. Suppose that a function z (¢) satisfy-

ing {17 is required such that z(fy) = ue, then K must satisfy Ke** = u;. Thus
equation (1) has a unique solution satisfying a specified initial condition z{ly) = u,.
For siuplicity, we often take &, = 0; then K = u,. There is no loss of generality
in taking o = 0, for if u(f) is a solution with u¥(0) = u,, then the function v(t) =
ul(t — fp) is a solution with () = ue.

It ix comunon to restate (1) in the form of an ¢nitial value problem:

(2) x = azx, z(0) = K.

A solution z(2) to (2) must not only satisfy the first condition (1), but must also
take on the prescribed initial value K at ¢ = 0, We have proved that the initial
value problemy (2} has a unique solution.

The constant a in the equation 2’ = ax can be considered as a parameter. If a
changes, the equation changes and so do the solutions. Can we deseribe qualita-
tively the way the solutions change?

The sign of a is crucial here:

if a > 0, lim,.., Ke** equals « when K > 0, and equals ~ < when K < 0;

if @ = 0, Ke! = constant;

ifa <0, lim., Ket = 0.

§l. THE BIMPLEST EXAMPLES 3

The qualitative behavior of solutions is vividly illustrated by sketching the graphs
of solutions (Fig. A). These graphs follow a typical practice in this book. The
figures are meant to illustrate qualitative features and may be imprecise in quanti-
tative detail,

The equation ' = az is stable in a certain sense if a # 0, More precisely, if a
is replaced by another constant b sufficiently close to a, the qualitative behavior
of the solutions does not change, If, for example, [ — a| < [ a |, then b has the
same sign as a. But if @ = 0, the slightest change in e leads to a radical change in
the behavior of solutions. We may also say that a = 0 is a bifurcation point in the
one-parameter family of equations 2" = ax, a in R.

Consider next a sysiem of two differential equations in two unknown functions:
{3 = as,

I = o

This is a very simple system; however, many more-complicated systems of two

equations can be reduced to this form as we shall see a little later.

Since there is no relation specified between the two unknown functions z,(¢),
z2{t), they are “uncoupled”; we can immediately write down all solutions (as for
(n):

n(t) = Kyexp(at), K, = constant,

22(8} = Kyexp(ad), K, = constant.
Here K, and Ky are determined if initial conditions z,(f) = w1, Za(ls) = us are
specified. (We sometimes write exp a for es.)

Let us consider equation (2} from a more geometric point of view, We consider
two functions z,(t), z:(f) as specifying an unknown curve x(f) = (2 {f), z:()) in
the (z,, 2} plane R®% That is to say, z 18 a map from the real numbers Rinto R?, z:
R — R The right-hand side of (3} expresses the tangeni vector z'(t) = {z1(8), £3{t})
to the curve. Using vector notation,

3" ¥ = Az,

where Az denotes the vector (@2, aizs), which one should think of as being based
at z.

X2

x=(1,1)

\J_Ax: (3' '/2)
\ x

Ax =(2,-Y2)

FIG. B



4 1. FIRST EXAMPLES

ot 5

FIG. C. Az = (2x,, — ix,).

initial conditions are of the form z{f) = u where 4 = (u;, ) is a gﬁe&point
of R'. Geometrically, this means that when ¢t = £, the curve is required to pasg
through the given point u. \

The map (that is, function) 4: R* — R! (or 2 — Az) can be considered a vector
field on R?, This means that to each point z in the plane we assign the vector Az.
For purposes of visualization, we picture Ax as a vector “based at z”; that is, we
assign to z the directed line segment from z to z + Az. For example, if a; = 2,
6 = —4,and r = (1, 1), then at (1, 1) we picture an arrow pointing from (1, 1)
to (1, 1) + (2, —4) = (3, }) (Fig. B). Thus if Az = (21, —z,), we attach to
each point r in the plane an arrow with tail at z and head at z + Az and obtain
the picture in Fig, C.

Solving the differential equation (3) or (3') with initial conditions (u;, us) at
t = O means finding in the plane a curve z(t) that satisfies (3') and passes through
the point u = (w), us) when ¢ = 0. A few solution curves are sketched in Fig. D.

The trivial solution (2,(t), z:(£)) = (0, 0) is also eonsidered a “curve.”

The family of all solution curves as subsets of R? is called the “phase portrait”
of equation (3) (or (3")).

The one-dimensional equation ' = az can also be interpreted geometrically: the
phase portrait is as in Fig. E, which should be compared with Fig. A. It is clearer
to picture the graphs of (1) and the solution curves for (3) since two-dimensional
pictures are better than either one- or three-dimensional pictures. The graphs of

§l. THE SIMPLEST EXAMPLES 5

X2

2 0
FIG. D. Some solution curves to £’ = Az, A = [0 ‘] .

solutions to (3) require a three-dimensional picture which the reader is invited to
sketch!

Let us consider equation (3) as a dynemical system. This means that the inde-
pendent variable ¢ is interpreted as time and the solution curve x({) could be thought
of, for example, as the path of a particle moving in the plane R:. We can imagine
a particle placed at any point 4 = (u, w) in R? at time ¢ = 0. Aa time proceeds
the particle moves along the solution curve z{t) that satisfies the initial eondition
z(0) = u. At any later time { > 0 the particle will be in another position z(¢). And
at an earlier time ¢ < 0, the particle was at a position z(¢). To indicate the de-
pendence of the position on ¢ and u we denote it by ¢.(u). Thus

$:(u) = (wexp(ax), u: exp{aat}).

We can imagine particles placed at each point of the plane and all moving simul-
taneously (for example, dust particles under a steady wind). The solution curves
are spoken of as trajectories or orbits in this context. For each fixed ¢ in R, we have
8 transformation assigning to each point u in the plane another point ¢,(u). This
transformation denoted by ¢.:R* — R? is clearly a linear transformation, that is,
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FIG. E

dlu Y = ¢du) + &) and @(du) = M (u), for all vectors u, v, and all
real numbers \.

As time proceeds, every point of the plane moves gimultaneously along the tra-
jectory passing through it. In this way the collection of maps ¢ R2—> R, { € R, is
2 one-parameter family of transformations. This family is called the flow or dynami-
cal system or R determined by the vector field z — Az, which in turn is equivalent
to the syvstem (3).

The dvnamical system on the real line R corresponding to equation (1} is par-
ticutarly easy to deseribe: if @ < 0, all points move toward 0 as time goes to = ; if
a > 0, all points m;cvpt. 0 move away from 0 toward £ o ; if ¢ = 0, all points stand
stall. A

We have started from a differential equation and have obtained the dynamical
svstem ¢, This process is established through the fundamental theorem of ordinary
differential equations as we shall see in Chapter 8.

Later we shall also reverse this process: starting from a dynamical system ¢,, a
differential equation will be obtained (simply by differentiating ¢.(u) with respect
tot). .

It is seldom that differential equations are given in the simple uncoupled form
{3). Consider, for example, the system.: :

|
{4) zi = 51y + 31,
1; = —6x — 4z,
or in vector notation

(4") z = (bry + 3z, —6z, — 4z} = Bz,

Our approach is to find a linear change of coordinates that will transform equation

{4) into uncoupled or diagonal form. It turns out that new coordinates (g, y2) do

the job where
th = 2n + x,

=20+

{In Chapter 3 we explain how the new coordinates were found.)
Solving for x in terms of y, we have

n ="

[

T = —4 + 24

§1. THE BIMPLEST EXAMPLES 7

FIG. F

To find 31, ¥4 differentiate the equations defining ys, yz to obtain
yi = 2z + 13,

y: = 21+ 1.
By substitution

yi = 2(5n1 + 322) + (—6zy — 4z) = 42 + 21,
yi = (521 + 3::) + (—6x) — dx3) = —x3y — 1.
Another substitution yields
¥i=4n —p) +2(—n + 2m),

yr=—(y— ) — (—n + 2n),

or
{(5) ¥o= 2
vr =~

The last equations are in diagonal form and we have already solved this ¢lass of
systems. The solution (z1(1), ¥2{f)) such that (11(0), y2(0)) = (4, tu) is

n{l) = et'n,
w(t) = e 'n.
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The phase portrait of this system (5) is given evidently in Fig. D. We can find
the phase portrait of the original syatem (4) by simply plotting the new coordinate
axes i = 0, yy = 0 in the (z), zs) plane and sketching the trajectories y(t) in these
coordinates. Thus y; = 0 is the line Iy: 7y = —2z,and gy = O is the line Ly: 2y =
—I.

Thus we have the phase portrait of (4) as in Fig. F, which should be compared
with Fig. D.

Formulas for the solution to (4) can be obtained by substitution as follows.
Let (4, 1) be the initial values (z,(0), 2:(0)) of a solution (z:(¢), r:({)) to (4).
Corresponding to (), us) is the initial value (1, »)} of a solution (3:(), ya(f)) to
(5) where :

o= 2t + Y,
o = Uy + up.
Thus
n(t) = (2w + w),
nit) = e *( + ua)
and

() = (2w + u) — ¢ (wm + w),
Ta(t) = —e"(2us + ua) + 2¢ (1, + th).

If we compure these formulas to Fig. F, we see that the diagram instantly gives us
the qualitative picture of the solutions, while the formulas convey little geometric
information. In fact, for many purposes, it is better to forget the original equation
(4) and the corresponding solutions and work entirely with the “diagonalized”
equations (5), their solution and phase portrait.

PROBLEMS

1. Each of the “matrices”

T

given below defines a vector field on R, assigning to z = (1), z») € R! the
vector Az = (auf1 + Guts, onZ; + onts) based at z. For each matrix, draw
enough of the veotors until you get s feeling for what the vector field looks

§2. LINEAR SYBTEMS WITH CONSTANT COEFFICIENTS 9

like. Then sketch the phase portrait of the corresponding differential equation
z’' = Az, guessing where necessary.

(a) T2 0] (b) [i ﬂ] (e) [*2 0]
0 2 0 2 o 2

(d) [% —‘-’] (e) [0 —l] ) [0 !]
2 0 1 0 1 0

(g) [-1 —1] (h) [i 1] (i) [ Y 0]
1 -1 L -3 0

2. Comsider the one-parameter family of differential equations
z; = 211:
’

Iy = ax; —w < a< @,

(a) © Find all solutions (z;(¢), za(1)).
{b) Sketch the phase portrait for a equal to —1, 0, 1, 2, 3. Make some gueases
about the stability of the phase portraits.

§2. Linear Systems with Constant Coefficients

This section is devoted to generalizing and abstracting the previous examples.
The general problem is stated, but solutions are postponed to Chapter 3.
Consider the following set or “system’’ of n differential equations:

(1) > = anzy + Gtz + - + Guta,

o
Tj=uuz1+auzz+ © Tt GaaZa,
%=auxn+a.zx:+---+a..x..

Herethe a;; (i =1,...,n;5 = 1,..., n) are n* constants (real numbers), while

each z; denotes an unknown real-valued function of a real variable {. Thus (4) of
Section 1 is an example of the system (1) withn = 2, ay = 5, 62 = 3, an = —86,
an = —4,
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At this point we are not trying te solve (1) ; rather, we want to place it in a geo-
metrical and algebraic setting in order to understand better what a solution means,

At the most primitive level, a solution of (1) is & set of n differentiable real-
valued funections z;(t) that make (1) true.

1n order to reach a more conceptual understanding of (1) we introduce real n-di-
mensional (arlesian space R This is simply the set of all n-tuples of real numbers.
An clemient of R isa “point” £ = (x4, .. ., Za) ; the number =z, is the ith coordinate
of the point £ Points z, y in R* are added coordinatewise:

et v=(ZT,.. . Ta) A+ (g ) = (Tt ¥y ..oy Tn T+ Ya)-
Also, if A is a real number we define the product of A and z to be
Az = (AT, ..., AZa).
The distance between points z, ¥ in R* is defined to be

lz—yl=[@—n}+ -+ (2. — g)?
The length of 1 is

|z} = (a2 + -+ + zd),

A veetor based af z € R~ is an ordered pair of points z, ¥ in R*, denoted by zj.

We think of this as an arrow or line segment directed from z to y. We say 7 is
based at x.

A vector Oz based at the origin

0={0,..., ) e R

15 identified with the point x € R

To & vector zy based at z is associated the vector y — z based at the origin 0.
We call the vectors Zif and y — z transiales of each other,

From now on a vector based at 0 iz called simply a vector. Thus an element of

R" can be considered either as an n-tuple of real numbers or as an arrow issuing
from the origin,

It is only for purposes of visualization that we consider vectors baszed at points
other than 0. For computations, all vectors are based at 0 since such vectors can
be added and multiplied by real numbers,

We return to the system of differential equations (1). A candidate for a solution
is & curve in R:

(%) z(t) = (@(0), ..., z{D)).
By this we mean a map
z: R— R

Such a map is described in terms of coordinates by (s). If each function z;(¢) is

§2. LINEAR SYSTEMR WITH CONBTANT COEFFICIENTS 11
differentiable, then the map z is called differentiable; its derivative is defined to be
dz ,
E = :’(0 = (I](t), sy I:(t)).

Thus the derivative, as a function of {, is again a map from R to R~
The dertvative can also be expressed in the form

(1) = lim% (z(t + h) — z(1)).

It has a natural geometric interpretation as the vector v(t) based at z{¢), which is
a translate of x'(¢}). This vector is called the tangent vector to the curve at ¢ (or at
z()).

If we imagine ¢ as denoting time, then the length | 2’(£) | of the tangent vector is
interpreted physically as the speed of a particle describing the curve ().

To write (1) in an abbreviated form we call the doubly indexed set of numbers
a;; an n X n matriz A, denoted thus:

au Gz *°° Gia

A= [a,-;] _ dn Gn -+ (Gas

Gul Gaz *°*  Gan

Next, for each z € R* we define & vector Ax € R* whose ith coordinate is
GaZr+ - 4 GiZa;
note that this ia the ith row in the right-hand side of (1). In this way the matrix A
is interpreted as & map
A:R~— R
which to z assigns Az.
With this notation (1) is rewritten

{2) ' = Az

Thus the aystem (1) can be considered as a single "'vector differential equation”
(2). (The word equation is classically reserved for the case of just one variable; we
shall call (2) both a system and an equation.}

We think of the map A: R* — R" as a veclor field on R*: to each point z € R*
it assigns the vector based at x which is a translate of Az. Then a solution of (2)
is a curve r: R — R* whose tangent vector at any given ¢ is the vector Az(t) (trans-
lated to z({)). See Fig. D of Section 1.

In Chapters 3 and 4 we shall give methods of explicitly solving (2), or equiva-
lently (1). In subsequent chapters it will be shown that in fact (2) has a unique .
solution z(t) satisfying any given initial condition z(0) = ue € R*. This is the
fundamental theorem of linear differential equations with constant coefficients; in
Section 1 this was proved for the special case n = 1.
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PROBLEMS (b) Let A = [' 4] Find solutions u(f), v({) to 2’ = Az such that every
solution can be expressed in the form au(!) + BSv{l) for suitable con-

stants «, 8.
1. For each of the following matrices A sketch the vector field z — Az in R
(Missing matrix entries are 0.)
_ Notes
(a) {1 ®y 1 {e} [
1 -2 —2
| o 9 The background needed for a reader of Chapter 1 is a good first year of college
L calculus. One good source is 8. Lang’s Second Course in Caleulus [12, Chapters 1,
~ IT, and IX]. In this reference the material on derivatives, curves, and vectors in
(d) {o e} [0 —1 M | — R* and matrices is discussed much more thoroughly than in our Section 2.
-1 1 0 1 1
i 0 =t | 11

2. For A asin (a), (b), (¢) of Problem 1, solve the initial value problem
T’ = Az, z(0) = (ky, ks, k).

3. Let A be aa in (e), Problem 1. Find constants a, b, ¢ such that the curve { —
(acos !, bsint, ce¥") is a solution to ' = Az with z(0) = (1, 0, 3).

4. Find two different matrices A, B such that the curve
z{t) = (&, 2¢*, 4e¥)
satisfies both the differential equations
= Ax and T’ = Bz.

5. Let A = [ai/]be an n X n diagonal matrix, that is, a;; = 0 if ¢ 7 j. Show that
the differential equation

' = Ax

has a unique solution for every initial condition.
6. Let A be an n X n diagonal matrix. Find conditions on A guaranteeing that
limz(t) =0
(213

for all solutions Lo 2’ = Ax.

7. Let A = [ai;] be an n X n matrix. Denote by — A the matrix [—ay].
(8) What is the relation between the vector fields x — Az and z — (—A)x?

(b} What is the geometric relation between solution curves of ' = Ar and
of 2’ = —Ax?

8. (a) Let u(t), »(¢t) be solutions to 2’ = Ax. Show that the curve w(l) =
au(t) + Ae(t) is a solution for all real numbers a, 8.



Chapter 2

Newton’s Equation and Kepler’s Law

We develop in this chapter the earliest important examples of differentia) equa-
tions, which in fact are connected with the origins of calculus. These equations were
used bv Newton to derive and unify the three laws of Kepler. These laws were
found from the earlier astronomical observations of Tycho Brahe. Here we give a
brief derivation of two of Kepler's laws, while at the same time setting forth some
general ideas about differential equations. .

The equations of Newton, our starting point, have retained importance .through-
out the history of modern physics and lie at the root of that part of physwa lca_l,led
classical mechanics. Ywh b

The first chapter of this book dealt with linear equations, but Newton's equa-
tions are nonlinear in general. In later chapters we shall pursue the subject of non-
linear differential equations somewhat systematically. The examples here provide

us with concrete examples of historical and scientific importance. Furthermore, the
 case we consider most thoroughly here, that of a particle moving in a central force
gravitational field, is simple enough so that the differential equations can be .solved
explicitly using exact, classical methods (just calculus!). This is due to the existence
of eertain invariant functions called integrals (sometimes cailed “first integrals”;
we do not mean the integrals of elementary caleutus), Physically, an integral is a
conservation law; in the case of Newtonian mechanics the two integrals we find
correspond to conservation of energy and angular momentum. Mathematically
an integral reduces the number of dimensions. .

We shall be working with a particle moving in a field of force F. Mathematically
F is a vector field on the (configuration) space of the particle, which in our case we
suppose to be Cartesian three space R3, Thus F is a map F: R — R that assigns
to & point 7 in R?* another point F(z) in R%, From the mathematical point of view,
F{zr) is thought of as a vector based at x. From the physica! point of view, F(zx)
is the force exerted on a particle located at z. o

The example of a force field we shall be most concerned with is the gravitational

ficld of the sun: F(x) is the force on a particle located at z attracting it to the sun.
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We shall go into details of this field in Section 6. Other important examples of force
fields are derived from electrical forces, magnetic forces, and so on.

The connection between the physical concept of force field and the mathematical
concept of differential equation is Newton's second law: F = ma. This law asserts
that s perticle in a force field moves in such a way that the force vector at the loca-
tion of the particle, at any instant, equals the acceleration vector of the particle
times the maas m, If (1) denotes the position vector of the particle at time ¢, where
z: R -+ Rl is a sufficientiy differentiable curve, then the acceleration vector is the
second derivative of z(£) with respect to time

afly = &(1).
{We follow tradition and use dots for time derivatives in this chapter.) Newton's
second law states
F(z(t)) = mi(1).

Thus we obtain a second order differential equation:
1
&=—F(z).
m

In Newtonian physics it is assumed that m is a positive constant. Newton’s law of
gravitation is used to derive the exact form of the function F(z), While these equa-
tions are the main goal of this chapter, we first discuss simple harmonic motion
and then basic background material.

§1. Harmonic Oscillators

We consider & particle of mass m moving in one dimension, its position at time
¢ given by a function ¢ — z(f), z: R— R. Suppose the force on the particle at a
point z € R is given by —mptx, where p is some real constant. Then according
to the laws of physics (compare Section 3) the motion of the particle satisfies

(1) . 24+ pix=0.
This model is calle:;:iitmrmonic oscillator and (1) is the equation of the harmonie

oscillator (in one di fon),

An example of the harmonic oscillator is the simple pendulum moving in a plane,
whest one makes an approximation of sin z by z (compare Chapter 9). Another
example is the case where the force on the particle is caused by a spring.

It is easy to check that for any constants A, B, the function

(2) z(t) = A cos pt + B sinpl

is a solution of (1), with initial conditions (0) = A, £(0} = pB. In fact, asis proved
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often in caleulus courses, (2) is the only solution of {1} satisfying these initial condi-
tions. Later we will show in a systematic way that these facts are true.
Using basic trigonometric identities, (2} may be rewritten in the form

(3) z(t) = acos (pt + k),

where @ = (A? + B')' is called the amplitude, and cos & = A(A® + B}~

In Section 6 we will consider equation (1) where a constant term is added (repre-
senting a constant disturbing force) :
(4) 2+ piz = K.

Then, similarly to (1), every solution of (4) has the form

(5) ' z(t) = acos (pt + k) + g

The two-dimensional version of the harmonic oscillator concerns a map x: R—R!
and a force F(x) = —mkz (where now, of course, z = (z, #1) € R¥), Equation
{1} now has the same form

(1) £+ k=0
with solutions given by
(2 2:(1) = A cos ki + B sin kt,

22(t) = Ccos kt + D sin kt.
See Problem 1.
Planar motion will be considered more generally and in more detail in later sec-
tions. But first we go over some mathematical preliminaries.

§2. Some Calculus Background

A path of a moving particle in R* (usually n < 3) is given by a map f: I = R~
where I might be the set R of all real numbers or an interval (a, b} of all real num-
bers strictly between a and b. The derivative of f (provided f is differentiable at
each point of I) defines & map f': I — R~ The map f is called C*, or continuously

differentiable, if f is continuous (that is to say, the corresponding coordinate func- -

tions f7({) are continuous, i = 1, ..., n). If f: I — R~ is itself ', then f is said
to be €. Inductively, in this way, one defines 8 map f: I — R~ to be (7, where r =
3, 4, 5, and so on.

The fnner produet, or “dot product,” of two vectors, z, ¥ in R~ is denoted by
{r, ) and defined by

(z, ) = “):".xaya.
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Thus (x, z) = [z ). If z, y: T — R* are " functions, then a version of the Leibnis
product rule for derivatives in

9y =& )+ (=, ¥),

as can be easily checked using coordinate functions.

We will have oceasion to consider functions f: R* — R {which, for example,
could be given by temperature or density). SBuch a map f is called " if the map
R* — R given by each partial derivative z — df/dz.(z) ia defined and continuous
(in Chapter 5 we discuss continuity in more detail). In this case the gradient of
J, called grad £, is the map R* — R» that sends z into (8f/an(z), .. ., 3f/3x.(2)).
Grad f is an example of & vector field on R*. (In Chapter 1 we considered only
linear vector fields, but grad f may be more general.)

Next, consider the composition of two C' maps as follows:

f .
JI—= R+ R,
The chain rule can be expressed in this context as

d
29U W) = {grad o(4(1)), £ (O);

using the definitions of gradient and inner product, the reader can prove that this
is equivalent to

2 gL

=1 9%

§3. Conservative Force Ficlds

A vector field F: R* < Rtis called a force field if the vector F(z) asmgned to the
point z is interpreted as a force acting on a particle placed at z.
Many force fields appearing in physics arise in the following way. There is s O
function
V:RR—S R
such that

av av av
F(z) = —~ o, (2).‘;‘ (x)’a_.-:. (3))

= —grad V(z).

(The negative sign is traditional.) Such a force field is called; conservative. The
function V is called the pelential energy function. (More properly V should be called
a potential energy since adding a constant to it does not change the force field
—grad V(z).) Problem 4 relates potential energy to work.
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The planar harmonic oscillation of Section 1 corresponds to the force field
F:R*— R, F(z) = —mkz.
This field 1= conservative, with potential energy

Vizy = §mkjz|?
as 1= casily verified,
For any moving particle (1) of mass m, the kinetic enerqy is defined to be

T = bm | () %

Here #({) is interpreted as the velocity veclor at time ¢; its length | £{¢) | is the speed
at time £. If we consider the function z: R — R? as describing a curve in R?, then
(!} is the langent veclor to the curve at z(f).

Ior a particle moving in a conservative force field F = —grad V, the potential
energy at r is defined to be V(). Note that whereas the kinetic energy depends on
the velocity, the potential energy is a function of position.

The total energy (or sometimes simply energy) is

E=T+4+V.

This has the following meaning. If z(t) is the trajectory of a particle moving in
the conservative force field, then E is a real-valued function of time:

E(t) = }[mi(0) '+ V(z(0)).

Theorem (Conservation of Energy) Lel z(1) be the trajectory of a particle moving
in a conservative force field F = —grad V. Then the tolal energy E is independent of

time.

Proof. It needs to be shown that E(z(1)) is constant in { or that
d
—{(T+ V) =0,
Z (T+ V)
or cquivalently,

d f1
il el i 2 =
2 Gmizor+vew)-o
It follows from caleulus that
Slal =2 2)

(a version of the Leibniz product formula) ; and also that

d

J (Vi£)) = (grad Vi{z), &)

(the chain rule}.
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These facts reduce the proof to showing that

or {mi + grad V, ) = 0. But this is so since Newton’s second law is mZ +
grad V(z) = 0 in this instance.

84. Central Force Fields

A force field F is called central if F(z) points in the direction of the line through
z, for every z. In other words, the vector F(x) is always a scalar multiple of z, the
coefficient depending on z:

F(z) = Mx)z.

We often tacitly exclude from consideration a particle at the origin; many central
force fields are not defined {or are “infinite”’} at the origin.

Lemma Let F be a conservative force field. Then the follnoing statements are
equivalent:

(a) F 13 ceniral,

(b) F(z) =f{lzh=,

(¢) F(z) = —grad V(z) and V(z) = g(iz ).

Proof. Suppose (¢) is true. To prove (b) we find, from the chain rule:

av a
—_— = — 1 1 2y1/1
2z, g(lrl)ax’_(:r, + 2+ )
gz
= — 1
=]

this proves (b) with f(]z{) = ¢’} z|}/] z|. It is clear that (b} implies (a). To
show that (a) implies (c) we must prove that V is constant on each sphere.

S,=[z¢ R||z]| = al, a > 0.

Since any twe points in S, can be connected by a curve in S, it suffices to show that
V is constant on any curve in S,. Hence if J C R is an interval and w:J — 8, is
a C' map, we must show that the derivative of the composition V' + u

] ¥
J—o8 CR SR
is identically 0. This derivative is

d
& V() = (grad V(u(1)), u'(}))
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as in Section 2. Now grad V(z) = —F(2) = —X(z)z since F is central:

2 V() = -A@@)u, ¥ )

_o=h(t))d
- 2D p
=0

because {u(l) | = a.

In Section 5 we shall consider a special conservative central foree field obtained
from Newton’s law of gravitation.

Consider now a central force field, not necessarily conservative.

Suppose at some time &, that # C R? denotes the plane containing the particle,
the velocity vector of the particle and the origin, The force vector F{z) for any
point z in P also lies in P. This makes it plausible that the particle stays in the plane
P for all time. In fact, this is true: a particle moving in & central force field moves
in a fixed plane.

The proof depends on the cross product (or vector product) u X v of vectors v,
v in R:. We recall the definition

u X 0= (st — sy, Uath — Upty, ity — W) € R?

and that u X v = —v X u = |u|!v| N sin 8, where N is a unit vector perpendicu-
lar to u and v, (U, v, N) oriented as the axes (‘‘right-hand rule”), and 6 is the angle
between u and v.

Then the vector X v = 0 if and only if one vector is a scalar multiple of the
other; if u X v » 0, then u X v is orthogonal to the plane containing « and v. If
u and v are functions of { in R, then a version of the Leibniz product rule asserts
(as one can check using Cartesian coordinates) :

g—t(u)(v)=1l_)<u+u>(:';.

Now let z(f) be the path of a particle moving under the influence of a central
force ficld. We have

%‘(zxi) =iXEt+zX2E
=z XiZ

=90

because £ is a scalar multiple of z. Therefore z() X £(!) is a constant vector y.
If y # 0, this means that z and & always lie in the plane orthogenal to y, as asserted.
If y = 0, then 2(f) = g()z{?) for some scalar function g{#). This means that the
velocity vector of the moving particle is always directed along the line through the
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origin al}d the particle, as is the force on the particle. This makes it plausible that
the particle always moves along the same line through the origin, To prove this let

(:(t), 1:(t), 2:(t)) be the coordinates of z(¢). Then we have three differential
equations

dr,

Z gihn(t), k=123

By integration we find

() = 1 {ty), h(l) = f'g(a) ds.

Therefore x(t) is always a scalar multiple of z{£) and so z(t) moves in a fixed line,
and hence in a fixed plane, as asserted.

We restrict attention to a conservative central force field in a plane, which we
take to be the Cartesian plane R*. Thus z now denotes a point of R?, the potential
energy V ig defined on R? and

Flz) = —grad V{z) = — (-g—::, %’)
1

Introduce polar coordinates (7, 8), with r = |z |.
Define the angular momentum of the particle to be

h = mrd,
where 4 is the time derivative of the angular coordinate of the particle.

Theorem (Conservation of Angular Momentum) For a particle moving in a
central force field:

dh

i 0, where h = mr¥.

_ Proof. Let i = i(¢) be the unit veetor in the direction z(t)Boz=ri. Letj =
J(t) be the unit vector with a 90° angle from i to J- A computation shows that di/dt =
87, dj/dt = —é¢ and hence

i =i+ réj.
Differentiating again yields

. .. 1d .
f-(r——ﬂ”)t-{-;&;(ﬁ)].

If the force is central, however, it has zero component perpendicular to z. There-
fore, since £ = m~1F (z), the component of # along j must be 0. Hence

d
a (r’a) = or

proving the theorem.
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We can now prove one of Kepler's laws. Let A () denote the area swept out by
the vector 2({) in the time from & to t. In polar coordinates dA = }rt 49, We define
the areal velocity to be

4 = r%,

the rate at which the position vector sweeps out ares. Kepler observed that the
line segment joining a planet to the sun sweeps out equal areas in equal times, which
we interpret to mean A = constant. We have proved more generally that this is
true for any particle moving in a conservative central force field; this is a con-
sequence of conservation of angular momentum.

§5. Statgs

We recast the Newtonian formulation of the preceding sections in such a way
that the differential equation becomes first order, the states of the system are made
explicit, and energy becomes a function on the space of states,

A stale of a physical system is information characterizing it at a given time. In
particular, a state of the physical system of Seetion 1 is the position and velocity
of the particle. The space of states is the Cartesian product R* X R? of pairs {z, v},
z, vin R z is the position, v the velocity that a particle might have at & given
moment,

We may rewrite Newton’s equation

(h mi = F(x)

as a first order equation in terms of x and v. (The order of a differential equation
is the order of the highest derivative that cccours explicitly in the equation.) Con-
sider the differential equation

dx

I : ==

(19 i
mj—';=F(m).

A solution to (1) is & curve ¢ — (2(¢), ¥(1)} in the state space R? X R?such that
(1) = »() and ?(8) = m~F(z(t)) foralli

It can be seen then that the solutions of (1) and {1’) correspond in a natural
ashion. Thus if z(2) is a solution of (1), we obtain a solution of (1) by setting
vl = i), The map R* X R*—» R? X R? that sends (z, v) infe (v, mF(z)) is a
veclor field on the space of stales, and this vector field defines the diflerential equation,
(1.
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A solution (x(1), (1)) to (1") gives the passage of the state of the system in time.

Now we may interpret energy as a function on the state space, R X R¥ — R,
defined by E(x, v) = dm |v|[* 4+ V(z)}). The statement that “the energy is an
integral” then means that the composite function

t—= (z(), v()) — E(x(£), v(8))

is constant, or that on a solution curve in the stale space, E is constant.

We abbreviate R?* X R? by 8. An integral (for (1)) on 8 is then any function
that is constant on every solution curve of (1'). It was shown in Section 4 that in
addition to energy, angular momentum is also an integral for (1'). In the nineteenth
century, the idea of solving a differential equation was tied to the construction of &
sufficient number of integrals. However, it is realized now that integrals do not exist
for differential equations very generally; the problems of differential equations have
been considerably freed from the need for integrals.

Finally, we observe that the force field may not be defined on all of R, but only
on some portion of it, for example, on an open subset U/ (C R?, In this case the path
x(t) of the particle is assumed to lie in {/. The force and velocity vectors, however,
are atill allowed to be arbitrary veetors in R%. The force field is then a vector field

on U, denoted by F: U — R3. The state space is the Cartesian product I/ X R?, and
(1') is a first order equation on U/ X R3,

§6. Elliptical Planetary Orbits

We now pass to consideration of Kepler's first law, that planets have elliptical
orbits. For this, a central force is not sufficient. We need the precise form of V as
given by the “inverse square law.”

We shall show that in polar coordinates (r, 8), an orbit with nonzero angular
momentum A is the set of points satisfying

(1 + ecos @) =1= constant; e = constant,

which defines a conic, as can be seen by putting rcos ¢ = z, 1* = 27 + V.

Astronomical observations have shown the orbits of planets to be (approxi-
mately) ellipses. i

Newton’s law of gravitation states that a body of mass m; exerts a force on a
body of mass m,. The magnitude of the force is gm,m,/r?, where r is the distance
between their centers of gravity and g is a constant. The direction of the force on
my is from mi; to my,

Thus if m, lies at the origin of R? and m; lies at z € R3, the force on my is

z
I FIT

The force on m, is the negative of this.
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We must now face the fact that betk bodies will move. However, if m; is much
greater than m., its motion will be much less since acceleration is inversely propor-
tional to mass. We therefore make the simplifying assumption that one of the
bodies does not move; in the case of planetary motion, of course it is the sun that
is assumed at rest. (One might also proceed by taking the center of mass at the
origin, without making this simplifying assumption.)

We place the sun at the origin of R? and consider the force field corresponding
to a planet of given mass m. This field is then

x

|z ¥

where { is a tonstant, We then change the units in which force is measured to obtain
the ssimpler formula

F(z) = —C

Z
3

It is clear this force field is central. Moreover, it is conservative, since

F(z) = -

x
W = gra,d V,

where
-1

V=
||

Ohbserve that F(z) is not defined at 0,

As in the previous section we restrict attention to particles moving in the plane
R?; or, more properly, in R? — 0, The force field is the Newtonian gravitational field
inRY Fiz) = —z/|z

Consider a particular solution curve of our differential equation £ = m—'F(z).
The angular momentum 4 and energy E are regarded as constants in time since
they nre the same at all pointa of the curve. The case A = 0 is not so interesting; it
corresponds to motion along & straight line toward or away from the sun. Hence
we gsstne bo# 0,

Introduee polar coordinates (r, 8); along the solution curve they become fune-
tions of time (r(¢), 8(t)). Since % is constant and not 0, the sign of ¢ iz constant
along the curve. Thus # is always increasing or always decreasing with time. There-
fore r is a funetion of @ along the curve.

Let u(t) = 1/r(t); then u is also a function of #(f). Note that

u= -V,

We have a convenient formula for kinetic energy T.
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1 k2 [ fdu\?
= - = 2
Tl Ga) +ol

Proof. I'rom the formula for £ in Section 4 and the definition of T we have

T = ym[#* + (rd)?].

Lemma

Also,

Substitution in the formula for T proves the lemma.

Now we find a differential equation relating » and é along the solution curve.
Observethat T = E — V = E + u. From the lemma we get

du\? ,  2m .
(1) (78) = B 4 ).

Differentiate both sides by 8, divide by 2 du/d8, and use dE/d# = 0 (conservation
of energy). We obtain another equation

(2) - tu ==

where ni/A? is a constant.

We re-examine the meaning of just what we are doing and of (2). A particular
orbit of the planar central force problem is considered, the force being gravitational.
Along this orbit, the distance r from the origin (the source of the force) is a function
of 4, a8 18 1/r = u. We have shown that this funetion u = u(®) satisfies (2), where
h is the constant angular momentum and  is the mass.

The solution of (2) (as was seen in Section 1)} is

(3) u= Z—:+Ccos (6 + o),
where € and 4, are arbitrary constants.
To obtain a sclution te (1), use (3) to compute du/ds and d®u/dé*, substitute

the resulting expression into (1) and solve for C. The result is

C== }—11—2 (Zmh*E + m®)'n,
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Putting this into (3) we get

012
u = E[l;i:(l +2&) cos (9+Q)],
h? m

where ¢ is an arbitrary constant. There is no need to consider both signs in front

of the radical since cos(# + ¢ + ») = —cos(# + q). Moreover, by changing the
variable ¢ to & — ¢ we can put any particular solution in the form
ER\
" u=T[1+(1+2—) cosﬂ].
h? m

We recall from analytie geometry that the equation of a conic in polar coordinates
is

(M u=-{1+4 ecos ¥}, u =

]
ot b

Here 1is the latus rectum and ¢ > 0 is the eccentricity. The origin is a focus and the
three cases e > 1, e = 1, e < 1 correspond respectively to a hyperbola, parabols,
and ellipse. The case ¢ = 0 is a circle.

Since (4) is in the form (5) we have shown that the orbit of a particle moving under
the influence of a Newionian gravitational force 1s a conic of ecceniricily

™ 1/2
€= (1+2Eh)
m

Clearly, ¢ 2 1if and only if £ > 0. Therefore the orbit is a hyperbola, parabola, or
ollipse according to whether £ > 0, E = 0, 0r E < (.
The quantity « = 1/r is always positive, From (4) it follows that

2ERN\?
(1 -+ —~) cosf > —1,
m

But if § = 4 radians, cos# = —1 and hence

2EAT\?
(142" <
m

Thiv 1< cquivalent to £ < 0. For some of the planets, including the earth, complete
revelutions have been observed; for these planets cos ¢ = —1 at least once a year.
Therefore their orbits are ellipses. In fact from a few observations of any planet it
cant he shown that the orbit is in fact an ellipse.

NOTES -‘27

FPROBLEM S

1. A particle of mass m moves in the plene R* under the influence of an elastic
band tying it to the origin. The length of the band is negligible. Hooke’s law
states that the force on the particle is always directed toward the origin and
is proportional to the distance from the origin. Write the force field and verify
that it is conservative and central. Write the equation F = maq for this case
and solve it. (Compare Section 1.) Verify that for “most” initial conditions the
particle moves in an ellipse.

2. Which of the following force ficlds on R? are conservative?
(a) F(:B, U) = (—x!! -2
(b) F(z,y) = (z* — 3, 2zy)
() Filz,y) = (z,0)

3. Consider the case of a particle in a gravitational field moving directly away
from the origin at time ¢ = 0. Discuss its motion. Under what initial conditions
does it eventually reverse direction?

4. Let F(z) be a force field on R?. Let z,, 2; be points in R*and let y(s) be a path
in R?, & < s < &, parametrized by arc length &, from z, to 1;. The work done
in moving a particle along this path is defined to be the integral

ay
[ Fw),ve)a,
~»
where y'(3) is the (unit) tangent vector to the path. Prove that the force field
is conservative if and only if the work is independent of the path. In fact if
F = —grad V, then the work done is V(z;) — V(x).

5. How can we determine whether the orbit of (a)} Earth and (b) Pluto is an
ellipse, parabola, or hyperbola?

Fill in the details of the proof of the theorem in Section 4.

Prove the angular momentum h, energy E, and mass m of a planet are related
by the inequality
m

> -
B2 o

Notes

Lang's Second Course tn Calculus [12] is & good background reference for the
mathematics in this chapter, especially his Chapters 3 and 4. The physics material
is covered extensively in a fairly elementary (and perhaps old-fashioned) way in
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Principles of Mechanics by S8ynge and Griffith [237]. One can also find the mechanies
discussed in the book on advanced caleulus by Loomis and Sternberg [15, Chapter
13].

The unsystematic ad hoc methods used in Section 6 are successful here because
of the relative simplicity of the equations. These methods do not extend very far
imts mechanies. In general, there are not enough “integrals,”

The medel of planetary motion in this chapter is quite idealized; it ignores the
gravitational effect of the other planets.

Chapter 3

Linear Systems with Constant
Coefficients and Real Eigenvalues

The purpose of this chapter is to begin the study of the theory of linear operators,
which are basic to differential equations, Section 1 is an outline of the necessary
facts about vector spaces. Since it is long it is divided into Parts A through F. A
reader familiar with some linear algebra should use Section 1 mainly as a reference.
In Section 2 we show how to diagonalize an operator having real, distinct eigen-
values. This technique is used in Section 3 to solve the linear, constant coefficient
system z' = Az, where A is an operator having real distinct eigenvalues. The last
section is an introduction to complex eigenvalues. This subject will be studied
further in Chapter 4.

§1. Basic Linear Algebra

We emphasize that for many readers this section should be used only as a refer-
ence or a review,

A. Matrices and operators

The setting for most of the differential equations in this book is Cartesian space
R*; this space was defined in Chapter 1, Section 2, as were the operators of addition
and scalar multiplication of vectors. The following familiar properties of these
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gporations are immediate consequences of the definitions:
Vsl r+y=w+1
r+0=u=x,

r 4 (=) = 0,
r+9)+z=z4 (¥ +2).

Herez, y, 2 € R, —z2 = (~1)z,and 0 = (0,...,0) € R~

VR2: (A4 )z = Ax + px, \ . .
on tev g e pray 0N
M4y = A+ N, ke .,wob e ﬁ
Ir = z, ety ten | .(\fn‘,-.-' 3p

0r = 0 (the first 0 in R, the second in R")_.

These operations satisfying V81 and VS2 define the veclor space structure on R*,
Freguently, our development relies only on the vector space structure and ignores
the Cartesinn (that is, coordinate) structure of R». To emphasize this idea, we may
write £ for R* and eall ¥ a vector space. Sex DPUOpIU Lo

The standard coordinates are often ill suited to the differential equation being
studied; we may seek new coordinates, as we did in Chapter 1, giving the equation
a simpler form. The goal of this and subsequent chapters on algebra is to explain
this process, It is very useful to be able to treat vectors (and later, vperators) as
objeets independent of any particular coordinate system.

The reader familiar with linear algebra will recognize V81 and VS2 as the defining
axioms of an abstract vector space. With the additional axiom of finite dimen-
sionality, abstract yeetor spaces could be used in place of R* throughcut most of
this book. g ereLE wote

Let A = [ai;] be some n X m matrix & in Section 2 of Chapter 1. Thus each
ai; is a real number, where (7, j).Tanges a rer all ordered pairs of integers with 1 <
i <n,1<j< n The matrix A can be considered a5 a map 4: R"— R" where
the ith coordinate of Az is Y7, a,z;, for each z = (zy, .. ., za) in R* It is easy
to ehieek that this map satisfies, for z, y € R*, A € R:

11 e+ y) = Ax + Ay,
P2 o) = hAr.

These are ealled finearity properties. Any map A: R" — R gatisfying L1 and L2
i called o finear map. Fyven more generally, a map A: R* — R~ (perhaps different
dorain and range) that satisfies L1 and L2 is called linear. In the case where the
domain and range are the same, A is also called an operator. The set of all operators
on R" is denoted by L(R").

Note that if e, € R™ is the vector

e=1(0,...,0,10,...,0),
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with a 1 in the kth place, zeros elsewhere, then

(l) Ae; = (ﬂ-]t, Ay o ooy ank)’ = E A48,

f=1
Thus the image of ¢; is the kth column of the matrix A.

Let M. be the set of all n X n matrices. Then from what we have just deseribed,
there is a2 natural map

(2) M.— L(R"}

that associates to each matrix the corresponding linear map. There is an inverse
process that associates to every operator on R" a matrix. In fact let T: R* = R~
be any operator. Then define a,, = the ¢th coordinate of Te;. The matrix A = [a,;]
obtained in this way has for its kth celumn the vector Tes. Thus

Ter = Aey; k=1,...,n

It follows that the operator defined by A is exactly 7. For let z € R* be any
vector,z = (x, ..., ). Then

T =mne+ - + I
Henee

Ar = A (Y ne) = 2 n(Aesd (by L1 and L2)
= 2 n(Te)
= T(X n:ei)
= Tz

In this way we obtain a natural correspondence between operatef'son R*and n X n
matrices.

More generally, to every linear map R* — R™ corresponds an m X n matrix,
and conversely. In this book we shall usually be concerned with only operators and
n X n matrices.

Let S, T be operators on R*. The composite map 78, sending the vector = to
T(8(x)), is again an operator on R~ If S has the matrix [a,;] = A and T has the
matrix [b;;] = B, then T'8 has the matrix [¢,,] = C, where

n
Cij = }: bi.tak,-
k=1

To see this we compute the image of e; under T'S:
(T8)e; = B(Ae;) = B(2, ares)
k

= 2 ai;{Be)
1

= ¥ a (X bye).
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Therefore
(TS)e; = X (X baar))es.
P

This formula says that the ith coordinate of (T'8)e; is
Z b;kaij.
&

Since this ith coordinate is ¢.;, our assertion follows. )

We call the matrix C obtained in this way the product BA of B and A (in that
order). . .

Since composition of mappings is associative, it follows that C{BA) = (CB)A
if A, B, € are n X n matrices.

The sum 8 + T of operators 8, T € L{R*) is defined to be the operator

z— 8z + Tz,

It is easy to see that if A and B are the respective matrices of S and T, then the
matrix of S+ Tis A + B = [a,; + b.-,].. o
Operators and matrices obey the two distributive laws

P(Q+R) =PQ-+ PR, (Q+R)P=QPF+RP

Two special operators are : z — 0 and I: 2 — z. We also_ use O and I to denote
the corresponding matrices. All entries of O are 0 € R while I = {4;;] where 8;
is the Kronecker function:

5 {0 if {#7,
Tl oi=g
Thus f has ones on the diagonal {(from upper left to lower right} and zeros elsewhere.
Itiselonrthat A + 0 =0+ A = A, 04 = A0 = O,and Al = IA = A, for
hoth operators and matrices. )
If 7' ix un operator and » any real number, a new operator T is defined by

(A\Tzx = MTx).

1f .1 = [a,,] is the matrix of T, then the matrix of AT is A = [Aa;;], obtained by
multiplving each entry in 4 by h. It is clear that

0T =0,
1T =T,

and similarly for matrices. Here O and 1 are real numbers. ) .
The set L(R") of all operators on R", like the set M, of all n X n matrices, satis-

fies the vector space axiom V81, V82 with 0 as O and z, y, z as operators (or ma-

trices). If we consider an n X n matrix as a point in R, the Cartesian space of

dimension 2, then the vector space operations on L{R*) and M, are the usual
NS,
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An operator T is called invertible if there exists an operator § such that ST =
TS = I We call § the inverse of T and write S = T, T = §1. If A and B are
the matrices corresponding to S and T, then AB = BA = 1. We also say A is
invertible, B = A-1, A = B,

It is not, easy to find the inverse of a matrix (supposing it has one) in general;
we discuss this further in the appendix. The 2 X 2 case is quite simple, however.

The inverse of
:
A =
¢ d

d b

D D
; D = ad — b,

c a

"D D

provided the deferminant D # 0. 1If D = 0, 4 is not invertible. { Determinants are
considered in Part E.)

B. Subspaces, bases, and dimension

Let E = R*. A nonempty subset F C E is called a subspace (more properly, a
linear subspace) if F is closed under the operations of addition and scalar multi-
plication in E; that is, forallz € F,y ¢ F,x € R:

z+yEF, Az € F,

It follows that with these operations F satisfies V51 and V82 of Part A,

If F contains only 0, we write F = 0 and call F the trivial subspace. If F = E, we
call F a proper subspace.

If Fy and F; are subspaces and F, C Fs, we call F; a subspace of Fy.

Since a subspace satisfies VS1 and V82, the concept of a linear map T: Fy — Fy
between subspaces Fy C R, F2 C R™, makes sense: T is 2 map satisfying L1 and
L2 in Part A. In particular, if m = nand F, = F,, T is an operator on p subspace.

Henceforth we shall use the term vector space to mean “‘subspace of a Cartesian

space.” An element of a vector space will be called a vecior (also a point). To dis-
tinguish them from vectors, real numbers are called scalars.

Two important subspaces are determined by a linear map
A B — E,,

where E, and E; are vector spaces. The kernel of A is the set

KerA = |z € Ey| Az = Oy = A~1(0).
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The image of A is the sct

ImA = [y € Ey| Az = y for some £ € Ey}
= A(E)).
Let F be a vector space. A set S = {a, ..., a:} of vectorsin F is said to span F
if every vector in F is a linear combination of @, . . ., a; that is, for every € F
there are scalars ty, . . ., & such that
s = ha + - + b
The set S is called independent if whenever &, ..., & are scalars such that
hay 4+ - + hae = 0,
then fy = -+ = fx = 0.

A basis of F is an ordered set of vectors in F that is independent and which spans
F.
The following basic fact is proved in Appendix I.

-

Proposition 1 Every veclor space F has a basis, and every basis of F‘ha.s the same
number of elements. If fer, ..., e} C F iz an independent subsetl tha! is not a basis,
by adjoining to it suilable veclors €ey, . . ., w ORE CAN form a basis {ey, ..., em).

The number of elements in a basis of F is called the dimension of F, denoted by
dimi . 1 ey, ..., €} is & basis of F, then every vector x € F can be expressed

I = Zt.-e.—, [ E R,
f-=]
since the ¢, span F. Moreover, the numbers &, .. ., tm &t unique. To see this,
suppnse also that

-m
z =3 s
vl
Then

O=z —2 =2 (h—a)e;
i
by independence,
t;— 8 =0, i=1,...,m

These numbers &y, . . ., & are called the eoordinales of z in the basis fes, ..., em}.
The standard basis e, . . . , em of R* is defined by

e,:(O,...,O,l,D,...,O); i=1...,n

with 1 in the ith place and 0 elsewhere. This is in fact & basis; for 3ote =
if, ..., 1), 50 (&, ..., €] spans R*; independence is immediate.
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It is easy to check that Ker A and Im A are subspaces of E, and E;, respectively,

A simple but important property of Ker A is this: A iz one-lo-one if and only if
IKer A = 0. For suppose A is one-to-one, and z € Ker A. Then Az = ¢ = AO.
Hence x = 0; therefore 0 is the only element of Ker A. Conversely, suppose Ker A =
0, and Ax = Ay. Then A{z —y) =0,80 2z — y € Ker A. Then A(x — y)}) = 0,
80—y € KerAd. Thusx — y = 0soz = y.

The kernel of a linear map R" — R~ is connected with linear equations (algebraic,
not differential) as follows. Let A = [ay;] be the m X n matrix of the map. Then
z = (Z1,..., Zn) is in Ker A if and only if

enfi + - + Gt = 0,
BmiZi + 0+ Guaka = 0.

In other words, (), ..., z.) i8 a solution to the above system of m linear homo-
geneous equations in n unknowns, In this case Ker A is called the solution space of
the system. “Solving” the system means finding a basis for'Ker A.

If a linear map T': E — F is both one-to-one and onto, then there is a unique
map S: F— E such that ST(x) =2 and TS(y) =y forall x € E, y € F. The

map S is also linear. In this case we call 7' an isomorphism, and say that E and F
are isomorphic vector spaces.

Proposition 2 Two veclor spaces are isomorphic if and only if they have the same
dimension. In particular, every n-dimensional veclor space is isomorphic to R*,

Proof. Suppose E and F are isomorphic. If {e, . .., e.} is & basis for E, it is
easy to verify that Te, ..., Te. span F (since T is onto) and are independent
(since T is one-to-one). Therefore £ and F have the same dimension, n. Conversely,

suppose (e, ..., e} and {fi, ..., fa} are bases for E and F, respectively. Define
T: E—F to be the unigue linear map such that Te, = f,, i =1, ..., n:if z =

Y ze. € E, then Tz = 3z Then T is onto since the f, span F,and Ker T = 0
since the f, are independent.

The following important proposition is proved in Appendix 1.

Proposition 3 Lel T': E — F be a linear map. Then
dim{Im T) 4 dim(Ker T) = dim E.

In particular, suppose dim E = dim F. Then the following are equivalent slatemends:
{(a) KerT =0,

b) ImT = K
{¢) T i3 an {somorphism.
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C. Changes of bases and coordinates

To every basis {ey, ..., e.} of a vector space E we have associated a system of
coordinates as follows: to each vector z € E we assign the unique n-tuple of real
numbers (2, ..., Z.) such that 2z = 3 z.e.. If we consider z; as a function of z,
we may define a map

"P:E_'R"l v(z) = (I;(Z),...,I.(Z)).

Thix i« a linear map; it is in fact the unique linear map sending each basis vector
e, of £ into the corresponding standard basis vector of R, which we denote here
by &

It is easy to see that ¢ is8 an isomorphism (see Proposition 2 of Part B}, The
isomorphism ¢ sends each vector z into its n-tuple of coordinates in the basis
léls EECICY én}-

Conversely, let ¢: E — R* be any isomorphism. If {&, ..., &] is the standard
basis of R~, then define ¢; = ¢'{&;),7 = 1,...,n. Then {e, ..., ¢} i5 & basis of
E, and clearly,

#5(2 x,e,—) = (Ih voaey In)-

In this way we arrive at the following definition: A coordinale system on a vector
space & 0s an isomorphism ¢: £ — R* (Of course, n = dim £.) The coordinates
of 20 F oare (24, ..., za), where ¢(z2) = (11, ..., Zs}. Each coordinate z, is &
hinear function z;; £ — R,

We thus have three equivalent concepts: a basis of £, a coordinate system on E,
and an womorphism E — R*,

Readers familiar with the theory of dual vector spaces (see Chapter 9) will
recognize the coordinate functions z, as forming the basis of £* dualto {e, ..., €};
here £* is the “‘dual space” of E, that is, the vector space of linear maps £ — R.

The coordinate functions z; are the unique linear functions £ — R such that

z:(e;} = &, i=1,.,.,n j=1,...,n,

wherc 8,; = 0ifi = jand 1 if ¢ = j.

Now we investigate the relations between two bases in E and the two correapond-
ing courdinate systems,

Let {e, ..., ea) be a basis of E and (z, . . ., za) the corresponding coordinates.
Let ¢: K — R~ be the corresponding isomorphism. Let {fi, . .., fu] be a new basis,
with evordinates (3, ..., ya). Let ¥: E — R* be the corresponding isomorphism.
Each vector f; is a linear combination of the ¢;; hence we define an n X n matrix:

(3) Palpyl; fi= EPM;-

Each of the new coordinates y:: £ — R is a linear map, and go can be expressed
in terms of the old coordinates (z, ..., z.). In this way another n X n matrix is
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defined-
(4) Q="[gu); w=2Xquz.

I

In fact, @ is the matrix of the linear operator o=1: R*» — R»,
How are the matrices P and @ related? T'o answer this we first relate the bases
with their corresponding coordinates;

{(8) zi(e;) = by;, Li=1,...,n;
(6) wl(f) = by, ki=1...,n
Substituting (4) and (3) into (6):

i = Z‘: 9“3:(%: Pists).

Since 1 is a linear function, we have

Gy = E (z qeipiizi{e;))
T
= ¥ (X qupidy)
i

by (5). Each term of the internal sum on the right is 0 unless { = j, in which case
it i8 qu;p.;. Thus

i = 2 qupip
i

To interpret this formula, introduce the matrix B which is the transpose P* of
P, by

R = [ry], Ty = Pii
Each row of R is the corresponding column of P. Then,
i = Z Quji Tii
i

tells us that the (k, 7)th entry in the matrix QR is 3:,; in other words,

I=0QR.
We finally obtain

I =QP
Thus

Q= (P~ = (P
The last equality follows from the identities I* = I, and (AB)* = B*A* for any
n X n matrices A, B. Hence
' I = (PPt = PY(P),

s (P91 = (P,
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We have proved:

Proposition 4 The malrix expressing new coordinales in terms of the old is the in-
verse franspose of the matriz expressing the new basis in lerms of the old.

D. Operator, bases, and matrices

In Part A we associsted to an operator T on R* a matrix {a,,] by the rule
(N Te; = 3 aues; i=1,...,n
i

where {e;, ..., €] is the standard basis of R*. Equivalently, the ith coordinate
of Tz, z = (21, ..., ZTu), 18

(8) ):". aifZs.
bt ix useful to represent (8) as the product of an# X n matrix and an n X 1 matrix:
(T.I)t ﬂ.u s ﬂ_ln 1_51
(sz) o] = ain Te a:in
TSN I P | P

We carry out exactly the same procedure for an operator T: E — E, where E
ig any vector space and [e;, ..., e} is & given basis of E. Namely, (7) defines a
matrix [a;;]. The coordinates of Tz for the bagis {e;, . . ., ¢} are computed by (8).

It is helpful to use the following rules in constructing the matrix of an operator
in a given basis:

The jth column of the matrix gives the coordinates of the image of the jth. basis
vector, as in (7).

The ith rew of the matrix expresses the ith coordinate of the image of z as'a linear
function of the coordinates of z, as in (8),

If we think of the coordinates as linear functions z;: £ — R, then (7) ia expressed
succinctly by

(9 2T =X auxy; i=1,...,n

This looks very pretty when placed next to (7) ! The left side of (9) is the composi-
tion
T E

E—-E—R.

The right-hand side of (9) iz a linear combination of the linear functions x;, . . . , Za.
The meaning of (9) is that the two linear functions on E, expressed by the left and
right sides of (9), are equal.
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Now suppose a new gystem of coordinates (g, ..., y.) 18 introduced in E, cor-
reaponding to a new basis [f;, ..., f.}. Let B be the matrix of T in the new coordi-

nates. How is B related to A?

The new coordinates are related to the old ones by an invertible matrix @ = [g.;],
a8 explained in Part C. If 2 € ¥ is any point, its two sets of coordinates
T={25,...,2s) a0d ¥ = (yy, ..., ya) are related by

y=90z; z=9N.

(Here we think of z and ¥ as points in R",) The image Tz alsc has two sets of co-
ordinates, Ax and By, where B is the matrix of T in the new coordinatea. Therefore

By = QAx.
Hence
By = QAQ™Yy
for all y € R~ Tt follows that
(10) B =QAQ.

This is a basic fact. It is worth restating in terms of the matrix P expressing the
new basis vectors f; in terms of the old basis {e;, .. ., ea}:

P = [‘p.-j], f:‘ = }:ptﬂr

In Part C we saw that @ is the inverse transpose of P. Therefore

(11) B = (PY)-'AP.
The matrix Pt can be described as follows: the ith column of P* consista of the co-
ordinates of the new basis vector f; in the old basis |, . .., es]. Observe that in

(10} and (11} the inverse signs — 1 appear in different places.

Two n X n matrices B and A4 related as in (10) by some invertible matrix { are
called similar. This is a basic equivalence relation on matrices. Two matrices are
similar if and only if they represent the same operator in different bases. Any matrix
property that is preserved under similarity is a property of the underlying linear
transformation. One of the main goals of linear algebra is to discover criteria for
the similarity of matrices.

We also call two operators S, T € L(E) similar if T = Q8@ for some invertible
operator @ € L(E). This is equivalent to similarity of their matrices. Similar
operators define differential equations that have the same dynamieal properties.

E. Determinant, trace, and rank

We recall briefty the main properties of the determinant function

Det: M. — R,
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where A, s the set of 7 X n matrices:

DI Det(AB) = (Det A) {Det B},

D2 Deti =1, -

D3: Det A # 0if and only if A is invertible.
There is a unique function Det having these three properties; it is discussed in more
detail in the appendix. Fora 1 X 1 matrix A = {a], Det A = a. Fora 2 X 2 matnx

sel =4,
Det A = ad — be.
From D1 and D2 it follows that if A~! exists, then

Det(A™) = (Det A)—\
From D1 we then obtain
Det{RAR-') = Det A.
In other words, similar matrices have the same delerminant, We may therefore define
the determinant of an operator T: E — E to be the determinant of any matrix
representing T
For n = 1, the determinant of T: R' — R! is the factor by which T multiplies
lengths, except possibly for sign. Similarly, for R? and areas, R* and volumes.
If A is a triangular matrix (a;; = Ofori > j,ora;; = Ofori < j), then Det A =
@y - -+ Gan, the product of the diagonal elements.
From D3 we deduce:

Proposition 5 Let A be an operalor. Then the following statements are equivalent:

(8) Det A #=0,
(b Kerd =0,
(¢y A 1s one-to-one,
(d) A 15 ondo,

(e) A 1s inveriible.

In particular, Det A = 0 if and only if Az = O for some veclor x » 0.

Another important similarity invariant is the irace of a matrix A = [a,]:
TrAd = Z Giiy

the sum of the diagonal clements. A computation shows that
Tr{AB) = Tr(BA)

and hence
Tr(RAR™) = Tr(R'RA)

= Tr{4).
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Therefore we can define the trace of an operator to be the trace of any matrix repre-
senting it. It is not easy to interpret the trace geometrically.
Note that
Tr{A + B) = Tr(A) + Tr(B).

The rank of an operator is defined tobe the dimension of its image. Since every
n X nmatrix defines an operator on R*, we can define the rank of a matrix A to be
the rank of the corresponding operator T. Rank is invariant under similarily.

The vector space Im T is spanned by the images under T of the standard basis
vector, €, . . ., &. Since Te, is the n-tuple that is the jth column of A, it follows that
the rank of A equals the marimum number of independent columns of A.

This gives a practical method for computing the rank of an operator T. Let A
be an n X n matrix representing T' in some basis. Denote the jth column of A by
¢;, thought of as an n-tuple of numbers, that is, an element of R*. The rank of T
equals the dimension of the subspace of R* apanned by ¢, . . ., ¢a. This subepace is
also spanned by ¢, ..., ¢js, €5+ Aewy Ciryy - - ., &) A € R. Thus we may replace
any column ¢; of A by ¢; + s, for any A € R, k # j. In addition, the order of
the columns can be changed without altering the rank. By repeatedly transform-
ing A in these two ways we can change A to the form

[ o]

B = ,

C o

where I} is an r X r diagonal matrix whose diagonal entries are different from-sero

and C has n — r rows and r columns, and all other entries are 0. It is easy to see
that the rank of B, and hence of 4, ia r.

From Proposition 3 (Part B) it follows that an operator on an n-dimensional
vector space is invertible if and only if it has rank n.

F. Direct sum decomposition

Let E), ..., E, be subspaces of E. We say £ is the direct sum of them if every
vector z in £ can be expressed uniquely:

=+ + x5, z€CE, 1=1,...,r.
This is denoted

L4

E=E e -- -0k =®E,.
-]

Let T: E—>Eand T;: E;— E,, i =1, ..., n be operators. We say that T is
the direct sum of the T, if E = E, @ --- @ E,, each E; is invariant under T, that
is, T(E:)) CE; and Tt = Tiz if z € E;, We denote the situation by T' =
Tie--- @ Ta. If T; has the matrix A, in some basis for each E,, then by taking
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the union of the basis elements of the E; to obtain a basis for £, T has the matrix
A,
A = diagl{Ay, ..., A} =
A,
Thi= means the matrices A; are put together corner-to-corner diagonally as indi-
cated, all other entries in A being zero. (We adopt the convention that the blank

entrics in a matrix are zeros.)
For direct sums of operators there is the useful formula:

Det(T,@--- @ Ta) = (Det Th) -+« (Det Th),
and the equivalent matrix formula:

Det diag{A,, ..., A} = (Det 4;) --- (Det Aa).
Also:
Tr(The-- T =Te(Th) + -+ + Tr(T.),
and
Tr diag(Ay, ..., 4a) = Tr(4) + -+ + Tr(4.).

We identify the Cartesian product of R and R* with R+ in the obvious way.
If £ R™ and F C R" are subspaces, then E X F is a subspace of R™+* under
this identification. Thus the Carlesian product of two vector spaces is a vector apace.

§2. Real Eigenvalues

Let T' be an operator on a vector space E. A nonzero vectur # € E is called a
(real} efgenvector if Tz = ez for some real number a. This a is called & real etgen-
value; we say = belongs o a.

Figenvalues and eigenvectors are very important: Many problems in physice
and other sciences, as well as in mathematics, are equivalent to the problem of
finding eigenvectors of an operator. Moreover, eigenvectors can often be used to
find an especially simple matrix for an operator.

The condition that « is a real eigenvalue of T means that the kernel of the operator

T~al: E—E

is nontrivial. This kernel is called the a-eigenspace of T'; it consists of all eigen-
vectors belonging to o together with the 0 vector.
To find the real eigenvalues of 7 we must find all real numbers X such that

1) Det(T — Al) = 0.
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(See Part E of the previous section.) To do this let A be a representative of T. Then
(1) 18 equivalent to

(2) Det(d — AI) = 0.

We consider A as an indeterminate (that is, an "unknown number”) and compute
the left-hand side of (2) (see Appendix 1}. The result is & polynomial p(A) in A,
called the characteristic polynomial of A. Thus the real eigenvalues of T are exactly
the real roots of the p()), Actually, p()) is independent of the basis, for if B is
the matrix of T in another basis, then

B = QAQ™
for some invertible n X n matrix Q (Section 1, Part D}. Hence
Det(B — Al) = Det(QAQ™ — A}
= Det(Q(4 — Q)
= Det(4 — M)

(Section 1, Part E). We therefore call p(\) the characlerislic polynomial of the
operator T. Note that the degree of p()) is the dimension of E.

A complex root of the characteristic polynomial is called a complex eigenvalue
of T. These will be considered in Section 4.

Once a real eigenvalue o has been found, the eigenvectors belonging to a are
found by solving the equation

(3) (A —=xDz=0.

By (2) there must exist & nonzero solution vector x. The solution space of (3) is
exactly the a-eigenspace.

Example. Consider the operator A = [_§ _t]on R?, used to describe a differen-
tial equation (4) in Chapter 1. The characteristic polynomial is

[5—& 3 ]
Det
-6 —4-2
A=2)(A+1).

The eigenvalues are therefore 2 and — 1. The eigenvectors belonging to 2 are solu-
tions of the equations (T — 20)x = 0, or

[ o]
=0,

~6 =6JLz
32, + 322 = 0,
—6x — 6z, = 0.

M—A-—2

which, in coordinates, is
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The solutions are
=1, T2 = —1; te R,
Thux the veotor

h=(, -1 eRr

is a busis for the eigenspace belonging to the real eigenvalue 2.
The —1 eigenspace comprises solutions of

(A+ Dz =0,

(o SlE)-

This matrix equation is equivalent to the pair of scalar equations
61! -+ 33;3 = 01

or

-6z, — 379 = 0.

It is clear that (—1, 2) is a basis for the solution space. Therefore the vector
fi = (—1,2) € R*is a basis for the {—1)-eigenspace of T.
The two vectors

f1= (1: —l)r f!= (_1!2)
form a new basis {f,, fa] for R In this basis T has the diagonal matrix

o 1]
0 -1
Note that any vector z-= (z1, 2:) in R? can be written in the form i + yoh;

then z = (3 — ¥, —t + 2y1) using the definition of the f,. Therefore (1, y2) are
the coordinates of x in the new basis. Thus

B B--[ 1 —l]
z = By, 1 o |

This is how the diagonalizing change of coordinates waa found in Section 1 of Chap-
ter 1,

Example. Let T have the matrix [{ “}]. The characteristic polynomial is

-\ =1
Det[ ]=A’+l.
I =X

Hence T has no real eigenvalues,

§2. REAL EIGENVALUES " 45

If n real eigenvalue a is known, the general procedure for finding eigenvectors
belonging to a are found as follows. Let. A be the matrix of T in a basis ®. The matrix
equation (A — of}z = 0is equivalent to the system of linear equations

(ay — a)zy + anr + -+ + @nza = 0,

ant1 + {8 —a)zz + - + Gaaza = 0,

GuTi + 0 GaactTaor + (Gan — a)za =0,

The vanishing of Det(A — af) guarantees a nonzero solution z = (xz,, ..., %.).
Such a solution is an eigenvector for a, expressed in the basis ®.

A very fortunate situation oceurs when E has a basis {fy, ..., fa) such that each
f+1s an eigenvector of T. For the matrix of T in this basis is just the diagonal matrix
D = diag{«,, ..., aa}, that is,

Qn

all other entries being 0. We say T is diagonalizable.

It is very easy to compute with D. For example, if £ € £ has components
(x1, ..., a), that is, x = 3 zfi, then Tz = (@21, ..., «nZa). The kth power
D* = D --- D (k factors) is just diaglat, ..., o*].

An important criterion for diagonalizability is the following.
Theorem 1 Let T be an operator for an n-dimensional veclor space E. If the charac-
teristic polynomial of T' has n distinct real roots, then T can be dingonalized.

Proof. let e, ..., & be eigenvectors corresponding to distinct eigenvalues
@, ..., 0n If €&, ..., €. do not form a basis for E, order them so that ey, .. . , &
is a maximal independent subset, m < n. Then e, = 11| i¢;; and

0= (T — as])e, = il,-(T — aud)e
=1

1

e
2 t(Te; — auey)
i

i ti{a; — au)e;
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Ritnee ¢, .. ., em are independent,
ti{a; — an) =0, i=1,...,m

Since «a, = a, by assumption, each {; = 0. Therefore, ¢. = 0, contradicting e,
being an eigenvector. Hence {ey, . . ., €.} is & basis, so T is diagonalizable.

The following theorem interprets Theorem 1 in the language of matrices,

Theorem 2 Let A be an n X n malrixz having n distinct real eigenvalues )\1, R
Then there exists an tnverlible n X n matriz Q such that

QAQ™ = diagfny, ..., A},

Proof. Let [e, ..., e} be the standard basis in R with corresponding co-
ordinates (zu, . . . , Za}. Let T be the operator on R* where the matrix in the stand-
ard basis is A, Suppose |fy, ..., f} i8 2 basis of eigenvectors of T, so that Af; =
Mot =1, ..., nPut f; = (fa, ..., f). If Q is the matrix whose jth column is
i, then QAQ" is the matrix of T in the basis {fi, . . ., fu}, as shown in Part D of
Section 1. But this matrix is diag{x;, ..., Aa}.

We will often use the expression ““ A has real distinct eigenvalues” for the hypothesis
of Theorems 1 and 2.

Another useful condition implying diagonalizability is that an operator have a
symmelric matrix (a;; = a;) in gome basis; see Chapter 9.

I,ot us examine a general operator T on R? for diagonalizability. Let the matrix
be [° 5]; the characteristic polynomial pr(}) is

Det[a_)\ b ]—(a—h)(d—)\)—bc '
¢ d—2 ;
M= {a+ x4+ {ad — be).
Notice that a + ¢ is the trace Tr and ad — be is the determinant Det. The roots
of pr()\), and hence the eigenvalues of T, are therefore

Tr =+ (Tr? — 4 Det)'?).

The roots are real and distinet if Tr* — 4 Det > 0; they are nonreal complex con-
jugates il Tr — 4 Det < 0; and there is only one root, necessarily real, if Tr —
1 Dot = 0. Therefore T is diagonalizable if Tr* — 4 Det > 0. The remaining case,
Tr? — 4 Det = 0 is ambiguous. If T is diagonalizable, the diagonal elements are
eigenvectors. If pr has only one root «, then T has a matrix [§ 2]. Hence T = al.
But this means any matrix for T is diagonal (not just diagonalizable)! Therefore
when Tr? — 4 Det =-0 either every matrix for T, or no matrix for T, is diagonal.
The operator represented by [1 1] cannot be diagonalized, for example.:
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§3. Differential Equations with Real, Distinct Eigenvalues

We use the resulta of Section 2 to prove an important result.

Theorem 1 Let A be an operalor on R* having n distinct, real eigenvalues. Then
for all x, € R~, the linear differential equation

(D ¥ = Az;  2(0) = 1z,
has a unique solution.

Proof. Theorem 2 of Section 2 implies the existence of an invertible matrix @
such that the matrix QAQ! is diagonal:

QAQ™ = diag{h, ..., \] = B

where Ay, . . ., An are the eigenvalues of A. Introducing the new coordinates y = Qx
in R, with z = @'y, we find

=Qz = QAz = QA(Q™Y)

80

(2) ¥ = By.

Since B is diagonal, this means

(2 v =y i=1,...,n

Thus (2) is an uncoupled form of (1). We know that (2°) has unique solutions for
every initial condition y,(0):

yi(t) = #:(0) exp(tr,).

To solve (1}, put y(0) = Qxy. If y(t) is the correaponding solution of (2), then
the solution of (1) is

z() = Q'y(0).
More explicitly,

z(t) = @ (1n(0} exp(ht), . . ., #=(0) exp(rat)).

Differentiation shows that

=@ =Q'By
= @ (QAQ )y
= AQ™y;

z' = Az,
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Moreover,
z{(0) = @0} = @'Qx = 0.
Thus x{¢) really does solve (1}.

To prove that there are no other solutions to (1), we note that z(¢) is a solution
to (1) if and only if Qz{¢) is & solution to

(3) ¥ = By, y{(0) = Qx.

Hence two different solutions to (1) would lead to two different solutions to (3),
which is impossible since B is diagonal. This proves the theorem.

It is important to observe that the proof is constructive; it actually shows how
to find svlutions in any specific case. For the proof of Theorem 1 of Section 2
shows how to find the diagonalizing coordinate change @ (or Q-'). We review this
procedure.

First, find the eigenvalues of A by finding the roots of the characteristic poly-
nomiai of A. {This, of course, may be very difficult.) For each eigenvalue X, find a
corresponding eigenvector f; by solving the system of linear equations corresponding
to the vector equation

(A-aDfi=0.

(This is purely mechanical but may take a Jong time if = is large.) Write out each
eigenvector f; in coordinates:

f“ = (pl'l:l ey pin),
obtaining a matrix P = [p.3. Then the y; are defined by the equation
(4) G=Xps J=1L...m
or
z = Fy.

Note the order of the subscripts in (4) ! The ith column of P* consists of the coordi-
nates of f;. The matrix Q in the proof is the inverse of Pt. However, for some pur-
poses, it is not necessary to compute Q.

In the new coordinates the original differential equation becomes

(5) ¥ = Ay i=1...,n
%0 the general solution is
yi{l) = a;exp(iN); i=1,...,n
where aj, . .., @. are arbitrary constants, a; = ¥:(0). The general solution to the
vriginal equation is found from (4):
(63 (8 = Z pigiexp{in);  F=1,...,n
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This substitution is most easily done by matrix multiplication
z(¢8} = Py(y),

writing 2(2) and y{¢} as column vectors,

() @ exp (i)
z(f) = R y(t) = : .
za(t) an exp{iha)

To find a solution x (1} with a specified initial value

z2(0) = u=(uy,..., %),
one substitutes { = 0 in (8), equates the right-hand side to u, and solves the result-
ing aystem of linear algebraic equations for the unknowns (a,, ..., a):
(7} Zomi=u;  j=1,...,n
‘

This is equivalent to the matrix equation
Plg = yu; @ = (G, ..., 0u).

Thus @ = (P*)~'u. Another way of saying this is that the initial values z{(0) = u

corresponds to the initial value y(0) = (P*)~'u of (5). If one isinterested only ina

specific vector u, it is easier to solve (7) directly then to invert the matrix Pt.
Here is a simple example. Find the general solution to the system

(8) x =z,
i = 35 + 21,

Iy =3I — T3
The corresponding matrix is

Since A is triangular,
Det{A — M) = (1 — M) (2 — A} (=1 —1).

Hence the ecigenvalues are 1, 2, —1. They are real and distinct, so the theorem
applies.

The matrix B is
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In the new coordinates the equivalent differential equation is

=1
i = 2
y= —U
which has the solution
n(t) = ae,
n(t) = b,

nal(t) = ce™, a, b, ¢ arbitrary constants.

To relate the old and new coordinates we must find three eigenvectors fy, fi, /s
of A belonging respectively to the eigenvalues 1, 2, —1. The second column of 4
shows that we can take

f! = (OI 11 0)!
and the third column shows that we may take
h= {0, 0, 1).
To find f; = (1, ta, s} We must solve the vector equation
- @A-Dnh=qo
or
0 0 0 "
11 0 t|= 0;
1 0 -2 v

this leads to the numerical equation
ntwn=0
n— 2t = 0.
Any nonzero solution will do; we take n, = 2,1 = —2, 0 = 1. Thus
h=1(2 -=-2,1).
The matrix P* has for its columns the triples fi, fs, fs:

200
Pr=]1-2 1 0¢
1 01
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From z = Pty we have

xi{t) 2 00 ae'
wft) | = —2 1 0]] be |;
xs{t) 1 0 1f]cet
hence
(9 z,{t) = 2qe!,

(t) = —2aet + bet,
T3{l) = ae* + ce,

where a, b, ¢ are arbitrary constants.
The reader should verify that (9) is indeed a solution to (8).
To solve an initial value problem for (8), with

I.‘(O) = Ui, it = 1, 2, 3,

we must select a, b, ¢ appropriately.
From (9) we find

2 (0) = 2a,
2:(0) = —2a + b,
n(0) =a+ec
Thus we must solve the linear system
(10) 2a = u,,
224+ b = 1w,
a4+ c = u,

for the unknowns a, b, ¢. This amounts to inverting the matrix of coefficients of the
left-hand side of (10), which is exactly the matrix Pt For particular values of uy, s,
s, it is easier to solve (10)-directly.

"This procedure can, of course, be used for more general initial values, z{(f) = .
The following observation is an immediate consequence of the proof of Theorem 1,

Theorem 2 Lel the n X n malriz A have n distinct real eigenvalues Ay, ..., Aa.
Then every solution to the differential equation

' = Az, z(0)} = u,
18 of the form

2i(f) = caexp{th) + -+ +cmexp(ia);  £=1,...,n,
Jor unique conslants ca, . . ., cin depending on u.
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By using this theorem we get much information about the geners! character of
the solutions directly from the knowledge of the eigenvalues, without explicitly
solving the differential equation. For example, if all the eigenvalues are negative,
evidently

limz(t) =0

=00

for every solution z(!), and conversely. This aspect of linear equations will be
investigated in later chapters.

Theorem 2 leads to another method of solution of (1). Regard the coefficienta ¢;,
as unknowns; set

z,() = X eisexp{try); i=1...,mn
i

and substitute it into
= Az, z{0) = u,

Then equate coefficients of exp(i\;) and solve for the ¢,z There results a system

of linear algebraic equations for the ¢;; which can always be satisfied provided

M, - . . 1 A 87e Teal and distinct. This is the method of “undetermined coefficients.”
As an example we consider the same system as before,

= 2,
zt = T + 219,
zZ =2 — Iy
with the initial condition
z{(0) = (1,0, 0).
The cigenvalues are Ay = 1, A = 2, A\; = — 1, Our solution must be of the form
z21(t) = cue + cue?t + cue™;
n(t) = cue' + ome* + ome™;
() = ene' + cne® + cpe.
Then from zi () = ) we obtain
cue' + 2enet — cye™ = cuet + cuet + cuet
for all values of £, This is possible only if
ey = tn = 0.
(Differentiate and set £ = 0.} From z; = a3 + 222 we get
cne' + 2eme — cge~t = (cu + 2om)et + (cn2on)e¥ + (cu + 2en)e".
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Therefore

en = cu + 2cm,
o + 20&1

—etn = ty + 2¢nm,

¥
I

which reduces to
Cn = =1,

cn = 0.
From 2§ = z; — z, we obtain

tne' + 2ope™ — cne' = (en — cn)e* + (e — en)e* + (e — en)e.
Therefore
tn = €y — I,
2ce = €1 — Cm,

—€m =y — Cnm,

which boils down to
tn = Yeu,
e =10
Without using the initial condition yet, we have found
z(f) = cne!,
za(t) = —cue' + cne
(1) = denet + cuet,
which is equivalent to (9). From (2,(0), 2:(0), z,(0)) = (1, 0, 0) we find
en=1, en =1, tm = —4%
The solution ia therefore
z(l) = (ef, —et + &Y, het — iev),

We remark that the conclusion of Theorem 2 is definitely false for some operators

with real, repeated eigenvalues. Consider the operator A = [ 71, whose only eigen-
value is 1 and the system ' = Az:

(11 T =,
z =z + 1.

Ob\_fiously, :c.,(t) = a¢’, a = constant, but there is no constant b such that z,(¢) =
be! is a solution to (11). The reader can verify that in fact a solution is

n(l) = ae!,
xaft) = e'(al + b),
a and b being arbitrary constants. All solutions have this form; see Problem 3.



! 3. LINEAR SYSTEMS: CONSTANT COEFFICIENTS, REAL EIGENVALUES

PROBLEMS

1. Solve the following initial value problems:

(a) & = —z, (b) zf{=2m + 2,
' ¥y =z+ 2y, T = &+ T
z(0) =0, y(0) = 3. (1) = 1, z(1) = L
() 2’ = Azx; (d) =’ = Az,
z(0) = (3, 0); z(0) = (0, —b, b),
0 3 2 0 0
4= [ ]
1 =2 A=lo -1 ol
0 2 -3

2. Find a 2 X 2 matrix A such that one golution to ' = Az is
z(f) = (e — &, & + 2},
3. Show that the only solution to

-T'; = o,
zh = 21 + Ty
n(0) = a,
2(0) = b,
is
n() = ae,

(Hint: Tf (a(t), 1a(t)) is another solution, consider the functions e~ (!),

ep(t).)
4. Lot an operator A have real, distinct eigenvalues. Whalt condition o'n the e;gen-
values is equivalent to limeo [ z(8) | = = for every solution z(t) to z' = Ax?

5. Suppose the n X n matrix 4 has real, distinct eigenvalues. Let { — &, To)
be the solution to z = Az with initial value $(0, o} = %o
(a) Show that for each fixed ¢,
lim ¢(tl yll) = ¢(tl Io).
wm--Io . )
This means solutions are continuous in initial conditions, (Hint: Suppose
A is diagonal.)
(b} Improve (a) by finding constants A 2 0, k > 0 such that

1¢(tr yﬂ) — ¢, xl’) | < Aet 1 Yo— To *
(Hint: Theorem 2.)
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6. Consider a second order differential equation

(») '+ b+ ex =0 b and ¢ constant.

(a) By examining the equivalent first order system

]

xr =y,

’

¥ o= —ex — by,

show that if b* — 4c > 0, then (*) has a unique solution z(t} for every
initial condition of the form

z(0) = x, Z(0) = v
{b) If b* — 4¢ > 0, what assumption about b and ¢ ensures that
lim z(f) = 0

(52
for every solution z()?
(¢) Sketch the graphs of the three solutions of

¥ — 3+ 2 =0
for the initial conditions

z(0) =1, £(0) = —-1,0, 1.

Let a 2 X 2 matrix A have real, distinct eigenvalues A, . Suppose an eigen-

vector of his (1, 0) and an eigenvector of 4 is (1, 13. Sketch the phase portraita
of ' = Az for the following cases:

(a) 0 < X<y by 0< u<X;

(¢) A< <0
(d) » <0<y (&) A=0;u>0.

§4. Complex Eigenvalues

A class of operators that have no real eigenvalues are the planar operators T, ,:

R? — R? represented by matrices of the form A, = [$ 2], b # 0. The charac-
teristic polynomial is

A — 2ax + (a4 b,
where roots are

a -+ b, a — ib; i= ~/—1.
We interpret T.. geometricallv as follows. Introduce the numbers 7, # by
r= {a + b2,

a a
# = arc cos (—), cos f = —.
r r
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Then: Providing & > 0, T, s a counterclockwise rotation through 8 radians foilowed
by a stretching (or shrinking) of the length of each vector by a faclor of r.
That is, if Ry denotes rotation through 6 radians, then

Taslz) = rRy{x) = Ry(rz).
To see this first observe that
a = rcosé, b=rsing

In the standard basis, the matrix of Ry is

[cosﬂ —sin 0]_
sin 4 cos 81’

the matrix of scalar multiplication by r is rJ = [} ¥]. The equality
a —b [r 0] [cosa —sin B}
l:b a] " Lo rJlsine cos @
vields our assertion.

There is another algebraic interpretation of T,s. Identifly the plane R? with the
field of complex numbers under the identification

(z,y) =+ z + 4.
Then with this identification, the operator T.. corresponds to multiplication by
a + b ‘
(z,y} ——rz + 1wy

operate by T, multiply by a + @

—

(ax — by, bx + ay) +—— (az — by) + 1(bx + ay)

Notice also that r is the norm (absolute value) of a + bi and ¢ is its srgu_ment..
Readers familiar with complex functions will recall the formula a + tb = re¥ (see
Appendix I). )

The geometric interpretation of T, , makes it eagy to compute with. For example,
to compute the pth power of Ty,

(Tap)? = (rD)*(Re)? = (r*I) (Rp)
[r’ cos pd —r”gin pO]
- r* sin pé r* cos pd

Next, we consider the operator T on R* where the matrix is{} 73] . The char-
acteristic polynomial is 2 — 2) + 2, where roots are

144, 1-—4i
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T does not correspond to multiplication by & complex number since its matrix
is not of the form A, . But it is possible to introduce new coordinates in R*—that
is, to find a new basis—giving T a matrix A, ,.

Let (1, 2;) be the standard eoordinates in R2. Make the substitution

n=un+ Ya,

T2 = —,
80 that the new coordinates are given by

= —Iy,
— =2+ I

The matrix of T in the y-coordinates is [ 1] = A1, For this matrix r = V2,
# = x/4. Therefore in the (g, y:)-plane T is rotation through x/4 followed
with stretching by V2. In the original coordinates (z,, z;), T is a kind of “elliptical
rotation” followed by the V2-stretch. If vectors in R? are identified with complex
numbers via the y-coordinates—the vector whose y-coordinates are (11, ¥} becomes
#h + tyr—then T corresponds to multiplication by 1 + 1.

This shows that although 7 is not diagonalizable, coordinates can be introduced
in which 7 has a simple geometrical interpretation : a rotation followed by a uniform
stretch. Moreover, the amount of the rotation and stretch can be deduced from
the roots of the characteristic polynomia), since »/4 = arg(l + 4}, V2 = |1 4 ¢|.

We shall explain in Chapter 4, Seetion 3 how the new coordinates were found.

We show now how the complex structure on R? (that is, the identification of

R? with C) may be used to solve a corresponding class of differential equations,
Consider the system

(1) L o az by,
dy
ar = bz + ay

We use complex variables to formally find a solution, check that what we have
found solves (1), and postpone the uniqueness proof (but see Problem 5).
Thus replace (2, y) by 2 + iy = z, and [T ?]by a + bi = p. Then {1) becomes

(2) 2 = uz

Following the lead from the beginning of Chapter 1, we write a solution for (2),
z(t) = Ke®. Let us interpret this in terms of complex and real nuimbers, Write
the complex number K a8 u + v and set z(£) = z(t) + 1y (L), e* = eMmgi A gtand-
ard formula from complex numbers (see Appendix 1) says that ¢ = costh +
isin tb. Putting this information together and taking real and imaginary parts we
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obtain
(3) z(t) = ue' cos th — ve™ sin th,

y(t) = ue* sin tb + ve* cos tb.

The reader who is uneasy about the derivation of (3) can regard the preceding
paragraph simply as motivation for the formulas (3); it is easy to verify directly
by differentiation that (3) indeed provides a solution to (1), On the other hand,
all the steps in the derivation of (3) are justifiable.

We have just seen how introduction of complex variables can be an aid in solving
differential equations. Admittedly, this use was in a very special case. However,
many systems not in the form (1) can be brought to that form through & change
of coordinates (see Problem 5). In Chapter 4 we shall pursue this idea systemati-
cally. At present we merely give an example which was treated before in the Kepler
problem of Chapter 2,

Consider the system

(4) r =1
' = —br; b>0

(5 )
A= \
- O
whose eigenvalues are =bi. It is natural to ask whether 4 can be put in the form
[ ol
B =
b 0
through a coordinate change. The answer is yes; without explaining how we dis-

covered them (this will be done in Chapter 4), we introduce new coordinates (u, v}
by setting z = », y = bu. Then

o
4

The rorresponding matrix is

u = %y‘ = —bv,
v =z = bu.
We have already solved the system
w = —by
v = bu;

the solution with (u(0), v(0)) = (u, 1) i8
u(t) = ugcosth — vosin th,
v(l) = uosin th -+ v cos th.
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Therefore the solution to (4) with initial condition

) (z(0}, y(O)}) = {0, 30)
18

0

2(l) = %sin th + zq cos tb,

y(8) = yocostb — brysin b,

a9 can be verified by differentiation.
We can put this solution in a more perspicuous form as follows. Let C =

[ {we/0)t + 2521 and write, assuming C » 0,
— = —u(, x = vC.
Then u? + #* = I, and
z(t) = Clveosth — usinth],
Let &, = b~ arc cos v, 8o that
cos bly = v, sin bly = u.

Then z(t) = C(cos bt cos bty — sin bt sin bly), or

(5) z(f) = Ccosb(t — &);
and
(6) y(t) = bC sin b(t — £)

as t:he reader can verify; C and f; are arbitrary constants,
From (5) and (6} we see that
z* Ul

et (be)r

Thus the solution curve (x(!), y{t)) goes round and round an ellipse.

Retumiug to the system (4), the reader h H a .
s as probably recogmzed that it
lent to the second order equation on R 18 equiva-

(7) z'" + bx = 0,
obtained by differentiating the first equation of (4) and then substituting the

second. This is the famous equation of “simple . N
solution is (5}, ple harmonic motion,” whose general
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PROBLEMS 8 Let.A - {- —h] Th . ;
- = [ ] The solutions of 2’ = Az depend continuousl initi
(See Problem 5, Seetion 3.) pend continuously on initial values.
1. Solve the following initial value problems. 7. Solve the initial value problem
{8) == -y (b) =zl = —2m, v
y ==z zf = 2x;; _ = —4y,
z(0) =1, y(0) = L. n{c) = 0, za(0) = 2. ¥y =x
{¢) ' =y, (d) z' = A4z, _
v = -z 2(0) = (3, =9); z0) =0, v = -7
z(0) = L, y(0}) = L. 1 —2
L
2 1

2. Sketch the phase portraits of each of the differential equations in Problem 1.

3. Let A = [1 ] and let z(¢) be a solution to z' = Az, not identically 0. The
curve z({) is of the following form:
(a) acircleif a = 0;
(b) = spiral inward toward (0,0) ife <0, b # 0;
(e) a epiral outward away from (0, 0Oifa>0,b=0
What effect has the sign of b on the spirals in (b} and (c)? What is the phase
portrait if b = 07

4. Sketch the phase portraits of:
(s} z' = —2x; b) £=—-2+2
¥ =2z v = 3y
Z = —2y. =—z~-1
Which solutions tend to 0 as ¢ — «?

5. Let A be n 2 X 2 matrix whose eigenvalues are the complex numbers « =+ g,
8 # 0. Let B = [ 5] Show there exists an invertible matrix @ with QAG? =
B, as follows:
() Show that the determinant of the following 4 X 4 matrix is 0:

A — al -ﬂI]
g1 A—aoll

where I = [ }]. .

(b) Show that there exists 8 2 X 2 matrix Q such that AQ = QB.

(Hint: Write out the above equation in the four entries of @ = [qu]
Shou‘;)}lut the resulting system of four-linear homogeneous equations in
the fotir unknowns g;; has the coefficient matrix of part (a).)

(¢)  Show that @ can be chosen invertible. h
Therefore the system ' = Az has unique solutions for given initial conditions.



Chapter 42‘

Linear Systems with Constant

Coefficients and Complex Eigenvalues

As we saw in the last section of the precedi_ng cha;?ter. co‘mplex n:mber;snen;flt
naturally in the study and solution of real ordinary dlﬂje.rentlal }:aqual ;?:s.of 1‘.§ea_r
eral the vstudy of operators of complex ve(%t.or spa.ces.fa.clhtates t ci }:;:.o 1ine§r f e
differential equations. The first part of this chapter is devoted to the g >
methods are developed to study almost a

f complex vector spaces. Subsequently, : ' . : )
(f)'qut. orger linear ordinary differential equations with constant coefﬁcwnt.ﬂ?, mclu;:ll;g
those whose associated operator has distinct, tl-!ough p‘erhaps nonreal, eigenvalues.
The meaning of “almost all” will be made precise in Chapter 7.

§1. Complex Vector Spaces

standing of linear operators {and hence of li.near
find the geometric significance of complex*elgen-
values, This is done by extending an operator T on a {real) vector space I t'Ut:E
tor Te on a complex vector space Fe. Complex eigenvalues of T arc associa

¢ first. develop complex vector Spaces.
real) vector spaces go over

In order to gain a deeper under:
difierential equations) we have to

opera : :
with complex cigenveetors of Te. W e
The delinitions and clementary properties o and ! r
dircetly to € and complex vector spaces by S).!stematlcall_\:' replacing the real num
hers R with cumﬁfvx numbers €. We make this more precns&inow. ) of complex
o plex Cartesian space C is the set all n-tuples 2 = (2 ..., Zn e
the definition of complex numbers). We call z1n
. Complex vectors are added exactly
if X is a complex number and

numbers (see Appendix I for finiti
a complex vecetor or sometimes & pomt' in C»
like vectors in R* (see Chapter 1, Section 2). Also,
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z= (z,..., ) is in €, then Az is the vector (Az, ..., Az.); this is scalar multi-
plication. Note that R* is contained naturally in C~ as the set of all (2, ..., z.),
where each z, is real.

The axioms V81, V52 of Section 1A of Chapter 3 are valid for the operations
we have just defined for C* They define the compler vector space structure on C=

As in Section 1B, Chapter 3, a nonempty subset F of C* is called a subspace or a
(complex) linear subspace if it is closed under the operations of addition and scalar
multiplication in C* The notions of trivial subspace, proper subspace, subspace
of a (complex) subspace are defined as in the real case; the same is true for the
concept of linear map T: F, — F, between subspaces F,, Fy of C*. One replaces
real scalars by complex scalars (that is, complex numbers) everywhere. A complex
vector space will mean a subspace of C~.,

The material on kernels and images of linear maps of complex vector spaces
goes over directly from the real case as well as the facts about bases, dimension,
coordinates. Propositions 1, 2, and 3 of Section 1B, Chapter 3, are all valid for the
complex case. In fact, all the algebraic properties of real vector spaces and their
linear maps carry over to complex vector spaces and their linear maps. In par-
ticular, the determinant of a eomplex operator T, or a complex » X n matrix, is
defined (in C). It is zero if and only if T has a nontrivial kernel.

Consider now an operator on C*, or more generally, an operator T on a complex
vector space F (C C*, Thus T: F — F is a linear map and we may proceed to study
its eigenvalues and eigenvectors as in Section 2 of Chapter 3. An eigenvalue A of
T i3 a complex number such that 7'v = v has a nonzero solution v € F. The vector
v of F is calied an eigenvector belonging to L. This is exactly analogous to the real
case. The methods for finding real eigenvalues and eigenvectors apply to this com-
plex case.

Given a complex operator T as above, one associates to it a polynomial

p(x) = Det(T — A)

{now with complex coefficients) such that the degree of p()\) is the dimension of
F and the roots of p are exactly the eigenvalues of T,
The proof of Theorem 1 of Section 2 in the previous chapter applies to yield:

Theorem Let T: F— F be an operalor on an n-dimensional complex vector space
F. If the characteristic polyromial has distinct rools, then T can be diagonalized.

This implies that when these roots are distinet, then one may find a basis |ey, . . . , €.}
of eigenvectors for T so that if 2 = Y jer2; 18 in F, then Tz = Y 31 Azpey; ¢, is the
eigenvector belonging lo the (complex) eigenvalues A;,

Observe that the above theorem is stronger than the corresponding theorem
in the real case. The latter demanded the further substantial condition that the
roots of the characteristic polynomial be real.

Bay that an operator T on a complex vector space ia semizimple if it is diagonal-
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izable. Thus by the theorem above T is semisimple if its characteristic polynomial
has distinet roots (but not conversely as we shsll see in Chapter 6).

Ax we have noted, R* C Cr. We consider now more generally the relations be-
{ween vector spaces in R* and complex vector spaces in Cn. Let F be a complex
subspace of Cn. Then Fp = Fn R~ is the set of all n-tuples (2, ..., z.} that are
in F and are real. Clearly, Fg is closed under the operations of addition as well
as scalar multiplication by real numbers. Thus Fp is & real vector space {subspace
of R*).

Consider now the converse process. Let E C R* be a subspace and let E¢ be the
subset of C" obtained by taking all linear combinations of vectors n E, with complex

coefficients. Thus
g
Ec=[26C 2= X \zi,,z. € E, i € C}
]

and Ec is a complex subspace of C*. Note that (Ec)n = E. We call Ec the com-
plecification of E and Fg the space of real vectors in F.

In defining K¢, Fp we used the fact that all the spaces considered were subsets
of C*. The essential element of structure here, besides the algebraic structure, is
the operation of complex conjugation.

Recall if z = z + sy is a complex number, then £ = r — fy. We often write
Z = a(2) so that o: C — C as a map with the property o* = ¢ <0 = identity. The
sot of fixed points of o, that is, the set of z such that ¢(2) =z, is precisely the set
of rienl nambers in €.

"I'his operation e, or conjugation, can be extended immediately to C* by defining
o' Cn — C7 by conjugating each coordinate. That is,

|

alzy, ..., 2a) = (B, ..., 2a).

For this extension, the sef of fized points is R".

Note alse that if F is a complex subspace of C, such that «F = F, then the set
of fixed points of o on F is precisely Fg. This map ¢ plays a crucial role in the rela-
tion between real and complex vector spaces.

Lot F € C~ be a o-invariant linear subspace of C. Then it follows that forv € F
Ae €, oih) = alN)e(r) or i we write o{w) = @ for w€ F, v = A Thus o is
nof camplex linear. However, o(v + w) = o(v) + alw).

[1 follows that for any subspace F C Cn,

Fr={2€ Fla(z) = z}.

I terms of o it is easy to see-when a subspace F C C+ can be decomplexified,
that is. expressed in the form F = E¢ for some subapacilb' C R*; F can be de-
complexified if and only if ¢(F) C F. For if o(F) C F, then z — ty € F whenever
rt iy Fwithz, y € R";s0x € F because

z = §{(x + iy} + (z ~ )]
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Similarly, y € F. It follows easily that F = Fgc, that is, F is the complexification
of the space of real veetors in F. The converse is trivial.

Just as every subspace E C R* has a complexification E¢ C C», every operator
T: K — E has an extension to a complex linear operator

Tc: Ec — Ec,
called the complexification of T. To define T¢, z ¢ Eg, let
(1) z2=3 Nzxj; A eC, z,€ E
Then
Tez = z )\_,*TI,‘.

:t is ?:;.:;y to see that this definition does not depend on the choice of the representa-
ion (1).

If fer, .. ., &} = ® is a basis for E, it is also a basis for the complex vector space
E¢; and the ®-matrix for T¢ is the same as the ®-matrix for T.

In particular, if T € L{R") is represented by an n X n matrix A (in the usual
way), then T¢ € L(C*) is also represented by A.

The question arises as to when an operator @: Ec — E¢ is the complexification
of an operator T: E - E,

Proposition Let £ C R~ be ¢ real vector space and E, i ficali
! ¢ C C~ ils complexification.
If @ ¢ L(Ec) then Q = Tc for some T ¢ L(E) if and only if
Q“ = UQ,
where o: E¢ ~+ E¢ ts conjugation,
Proof. 1fQ = T, we leave it to the reader to prove that Qe = oQ. Conversely,
assume @ commautes with o. Then Q(E) C E; for if £ € E, then oz = z, hence

oQr = Qox = Qz

Q€ ly€ Ecloay=y| = Ecr = E.
Let Q| E = T € L(E}; it is clear from the definition of T'¢ that T¢ = Q.

We close this section with a property that will be very important in later chapters.
A.n operator T’ on a real vector space E is semisimple if its complexification T¢ is a
diagonalizable operator on Ec. Then the theorem proved earlier implies that a
sufficient (but not necessary) condition for semisimplicity is that the characteristic
polynomisal should have distinct roots.

PROBLEMS

1. Let F C C? be the subspace spanned by the vector (1, 7).
(a) Prove that F is not invariant under conjugation and hence is not the

complexification of any subspace of R?,
(b} Find Fg and (Fa)c.
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Let £ C R and F C C~ be subspaces. What relations, if any, exist between
dim # and dim Ec? Between dim F and dim Fg?

1f ' ¢ C* is any subspace, what relation is there between F and Fgc?r

ot £ be a real veetor space and T € L(E). Show that (Ker T)¢ = Ker(T¢),
(Im Te = Im(T¢), and (T7)¢ = (Tc)—tif T is invertible. .

(]

bl e

§2. Real Operators with Complex Eigenvalues

We move toward understanding the linear differential equation with constant

cocflicients

dx

—=Tr

dt '
where T is an operator on R*. For this purpose, we study further the 'eigenvalues
and eigenvectors of T. This was done thoroughly in Chapter 3 assuming t.ha.t all
the cigenvalues were distinet and real. Now we drop the hypothesis that the eigen-

values must be real.

Proposition. If T is an operalor on & real veclor space E, th.en the set of 'its‘ eigen-
values s preserved under conpler conjugation. Thus if A is en eigenvalue s0 is . Con-
sequently, we may write the eigenvalues of T as

b YU WS all real;
g1, @y - ooy By Bay all nonreal.

Proof. First, observe that the eigenvalues of T coincide with the eigenva_lut':s
of its (:llllll)lt‘xif.lt'ati(ill Tc because both T and Te have the same f:haractenat_lc
pobvnomial, Let A be an eigenvalue of Tc and ¢ a currospcmdn}g eigenvector in
Fooxe Tew = e Applving the conjugation operation ¢ to both sides, we find

o(Tey) = M
But. by the propesition of Section 1,

o(Tep) = Teole) = Telo).

Henee ~
Tep = Ao

In other words, A is an eigenvalue of T¢c with corrmpo}tlgng cigenvector ¢. '.I‘h}s
proves the proposition. (Another proof is based on the 1:ac t.h.at the chfaractenstlc
polynontial of T has real coefficients, so the roots oceur in conjugate pa.m:s.)

The basie properties of real operators are contained in the following three

theorems.
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Theorem 1 Let T: E — E be a real operalor with distinct eigenvalues listed as in
the previous proposition. Then E and T have a direct sum decomposilion (see Section
1F of Chapter 3},

E=FE, 9E, T=T.eT, Tat E,— E,, Ty: Ey— E,,
ichere T, has real eigenvalues and T, nonreal eigenvalues.

For the proof we pass to the complexification 7'¢ and apply the theorem of the
preceding section together with the above proposition. This vields a basis for E¢
(e, ..oy e, i, Juo ooy Iy 1) of eigenvectors of Te corresponding to the eigenvalues
(AID s Ay B, M ﬂ.)

Now let F. be the complex subspace of E¢ spanned by {ey, ..., e} and F, be
the subspace spanned by {fy, f, . . ., f,, f.]. Thus F, and F; are invariant subspaces
for T'c oni E¢ and form a direct sum decomposition for Eg,

Ec =F.aF,

Morcover F, and F, are invariant under complex conjugation. Set E, = En F, and
Ey = En Fy; then F,, F, are the complexifications of E,, Ey, and E = E, @ E,. It
is easy to sce that E, and E, have the required properties.

Theorem 1 reduces the study of such T to T, and T,. The previous chapter ana-
lyzed T,.

We remark that Theorem 1 provides an ‘“‘uncoupling” of the differential equation

by
dt *

mentioned at the beginning of the section. We may rewrite this equation as a pair
of equations

dz, B
7
d.!'f,
=T

dt ke

where T,, Ty are as above and 2z, € £, 1, € E,.
We proceed to the study of the operator T,

Theorem 2 Let T: E— F be an operalor on a real veclor space with distinet non-
real eigenvalues (uy, @y, . . ., ko, B:). Then there is an invariant direct sum decom position
Jor E and a correspanding dirvect sum decomposition for T,

E=FKe. ok,
T=Te---aT,

such that each K, is two dimensional and T, € L(E.) has eigenvalues u,, f..
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For the proof of Theorem 2, simply let F; be the complex subspace of Ec spanned
by the eigenvectors, f;, fi correaponding to the eigenvalues i, fi. Then let E; be
F;n E. The rest follows.

Theorems 1 and 2 reduce in principle the study of an operator with dmt.lnct eigen-
values to the case of an operator on a real two-dimensional vector space with nonreal

eigenvalues.

Theorem 3 LdTbe_anoperuioranatwodinmm‘omlwdoerCR‘Mﬂt
nonreal eigenvalues p, B, u = a + . Then there is o malrix represeniation A for T

N
A= X
b [
The study of such a matrix A and the corresponding differential equation on
R, dz/dt = Az, was the content of Chapter 3, Section 4.

We now give the proof of Theorem 3. )
Let Tc: E¢ — Ec be the complexification of T. Since T has the same eigenvalues

as T, there are eigenvectors ¢, ¢ in Ec¢ belonging to u, &, reapectively.
Let ¢ = u + iv with u,v € R~ Then p = u — . Note that u and v are in E¢, for

u=de+e), v=i(@—e).
Hence u and v are in Egc N R~ = E. Moreover, it is easy to see that u and v are

independent (use the independence of ¢, #). Therefore [v, u} is a basis for E.
To compute the matrix of T in this basis we start from

Telu + iv) = (a -+ bi) (u + )
= (—bv + au) + i(ar + bu).

Also,
Tel{u + iv) = Tu+ iTo.
Therefore
Tv = av + by,
Tu = —bw + ou.

This means that the matrix of T in the basia {v, u} is [3 ~a], completing the proof.

In the course of the proof we have found the following interpretation of & complex
eigenvalue of  real operator T € L(E), E CR":

Corollary “Let ¢ € E.be an eigenvector of T belonging lo a b0 Ife=u+
iv € C~, then v, u} is a basis for E giving e the matriz [} 1.

Note that u and v can be obtained directly from ¢ and o (without reference to
C*) by the formulas in the proof of Theorem 3.
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PROBLEM

For each of the following operators T on R® find an invariant two-dimensional
E C R and a basis for E giving T | E a matrix of the form [} ~2]:
@ [t 0o 1 ) {0 0 15

00 -2 1 0 -17

01 0 01 7

§3. Application of Complex Linear Algebra to Differential Equations

Consider the linear differential equation on R~

(1) E = Tz,

where T is an operator on R* (or equivalently, an n X n msatrix). Buppose that
T has n distinet eigenvalues. Then Theorems 1, 2, and 3 of the previous section
apply to uncouple the equation and, after finding the new basis, one can obtain
the solution. Letting £ = R*, we first apply Theorem 1 to obtain the following ays-
tem, equivalent to (1):

dz,
(2) e
(28') dt TJI!
dz,
(2b) i Tyzs.

Here
T=T‘°T.' x=(z-|R)EE.OEg=E,

T. has real eigenvalues, and T, nonreal eigenvalues,

Note that (2a) and {2b) are equations defined not on R=, but on subepaces E.
and E,. But our definitions and discussion of differential equations apply just as
well to subspaces of R*. To find explicit solutions to the original equations, bases
for these subspaces must be found. This is done by finding eigenvectors ,of the
complexification of T, as will be explained below.

] If we qbta.i.n solutions and properties of (2a) and (2b) separately, corresponding
n}form?tm!l is gained for (2) and (1). Furthermore, (2a) received a complete
discusgion in Chapter 3, Section 3. Thus in principle it is sufficient to give an analysis
of {2b). To this end, Theorem 2 of Section 2 applies to give the following system,
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equivalent to (2b):

dy: o
3) Yoty i=1...s
where T=Tio---oTuy= (0 ..., ) € Ea=Ero - ok, and each E:

has two dimensions.
Thus (2b) and hence (2), (1) are reduced to the study of the equation

(4 d—;—' = T on two-dimensional E;,

where each T, has nonreal eigenvalues. Finally, Theorem 3 of Section 2 applies
to put (41 in the form of the equation analyzed in Section 4 of Chapter 3.

Example 1 Consider the equation

= —2z,
z3 = 21+ 274,
or
, 0 -2
x = Az, z = (x1, 22}, 4 = [1 2].

“Fhis is the matrix considered in Chapter 3, Section 4. The eigenvalues of A are
A=1+1,A=1—1
A complex eigenvector belonging to 1 + s found by solving the equation

(A~ (1+)w=0

[—l —i -2 ][w.]
. = 0;
1 1—1 Wy 7
(—1—Dw — 2w =0,
w4 (1 — 1w =0
The first equation is equivalent to the second, a8 is seen by multiplying the second
by {—1 — 7). From the second equation we see that the solutions are all {(complex)
multiples of any nonzero complex vector w such that w, = {—=1 4 t)n; for exam-
ple, g = —1, wy = 1 + 1. Thus N
we=(l+4—=(1,0+il, -1) =u+i
is & complex eigenvector belonging to 1 + 1.
We choose the new basis {v, u} for R* C €, with e = (1, —1), u = (1, 0.

To find new coordinates y;, ys corresponding to this new basis, note that any x
can be written ’

z=5(1,0) + (0, 1) = yw+ yu = nu(l, =1} + (1, 0).

far w € C?,

or
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or z =Py, P=[ ! 1]_
-1 0

Thus

o=t + ¥y

T2 = =W

The new coordinates are given by

i = —m,

it

=131+ I

The matrix of A in the y-coordinates is
0 -1 - -
A M| e N R B
1wy 2dl-1 0 1 1 ’
or B = A,, in the notation of Section 4, Chapter 3.
Thus, as we saw in that section, our differential equation

& _ 4

ar oF
on R?, having the form

dy

a =By

in the y-coordinates, can be solved as
n{t) = ue'cost — vetsin ¢,
ya(t) = ue'sint 4 ve'cosl.
The original equation has as its general solution
oty = (u+ v)efcost + (u — v)etsint,
z3(l) = —ue'cos! + vesin !

Example 2 Consider on R? the differential equation

1 0
& 4 a_los s
dt— z: = 0 2 —3
1 3 2

The f:hsracteristic equation Det(Ad — ) =018 (1 —)({(2—1)*+9) =0. Its
gm]utmns, the eigenvalues for 4, are A = 1, u = 2 + 3z, g = 2 — 3i. Eigenvectors
in C* for the complexified operator are found by solving the homogeneous systems
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of three linear equations,

00 0| e
A—-ne=0, Lo 1 -3|lal|=0;
1 3 1]l e

this vields e = (=10, 3, 1). Likewise
-1 -3 0 0 W
(A—aw=0, 0 -3 -3 |lu|=0
1 3 -3i|lw
. . s — —i1).
jelds w = {0, £, 1). A third eigenvector is w (0, —1, . ~
Y We now wish to find the matrix P that gives a change of coo?dmates ;s = P}z:,
y = P-ir where z is in the original coordinate system on R? and y co_rreepon to the
hasis «of cigenvectors. Proposition 4 of Section 1C, Chapter 3, applies.
Thus ‘

00
P= 310}
1 01

u+ .

Here the columns of P are (e, v, u) where w = (0,0, 1) + (0, 1, 0)
Then

—% 0 0
P = s 10
% 01
and
10 0
B=PAP =10 2 -3\
03 2

Now we have transformed our original equation z' = Az following the outline
given in the beginning of this section to obtain

1 0 0
y’:By' B=l0 2 -3) y'__Pﬂlx'
0 3 2

This can be solved explicitly for  as in the previous e.xample and from this solution
one obtains solutions in terms of the original z-coordinates by z = Py.
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A related approach to the equation (1) is obtained by directly complexifying it,
extending (1) to a differential equation on C»,

dz
(1c) 3 Tez, z € Cn

One can make sense of (1¢) as a differential equation either by making definitions
directly for derivatives of curves R — C~ or by considering C* as R, that is,

Rin — C",

(xli [ -:I’lxyh-'-!yl) = (z:y)"_'z'f-t‘y =z
Application of the theorem of Section 1 diagonalizes T¢, and one may ¢orrespond-
ingly rewrite (1c) as the set of differential equations,

dz .

E=R.Zi, t=l,...,f;
= = MiZppq i=1,...,8;
dt y H 1 &
dw.- 1

— - = Ry, =15 ...,8
a " " ' *

{Sometimes Z.,.; is written in place of w..) Hete z;, z,,., 1; are all in one-dirmensional
complex vector spaces or can he regarded as complex numbers, and n = r + 2.
These complex ordinary differential equations may be solved using properties of
complex exponentials, as in Section 4 of the previous chapter, obtaining as the
general solution: :

z(t)

(zl(t)l ey z,+.(t), wl(t); rey wt(t))

(cl exp(klt): veey Cr exP(’\rt)y

Cra eXplmt), .. ., Crpens €Xp(ER), . . ., Crazs eXp{fL)).

Now it ean be checked that if z(0) € R, then z(t) € R for all , using formal

properties of complex exponentials. This can be a useful approach to the study of
{1).

PROBLEM

Solve z’ = Tz where T is the operator in (a) and (b) of Problem 1, Section 2.



Chapter 5

Linear Systems and Exponentials
of Operators

The object of this chapter is to solve the linear homogenecus system with con-
stant coefficients
{1) z = A=,

where A is an operator on R {oran A X 7 matrix). This is accomplished with

exponentials of operators. . ) .
%;‘his method of solution is of great importance, although in this chapter we can

compute solutions only for special cases. When co;nbin@ with the operator the(o;r)y
of Chap-t('r 6. the exponential method yields explicit solutions n?r:t ;;erfy :yt'ateé:ﬁne(i
¥ , 4 called the expo of A, 18
Far every operator A another operator e®, © the expe !
in Section 4, The functi(’m A — ¢4 has formal properties mml_lar to thos;e :l): O;glrlrlnng
exponentials of real numbers; indeed, the latter 158 8 spfz(fml ('::me tc: e B I[;_
Likewise the function { — &4 (¢t € R) resembles the familiar e'¢, where a. < _.;R-
particular, it is shown that the solutions of (1) are exactly the maps z:
iven by
: z(t) = e"K (K € R").
Thus we establish existence and uniqueness of sohftion .ol" ( 1}; “un‘ic!uene?s hm;-,latrn“sl
that there is only one solution £(1) satisfying s given initial condition of the fo
r{ty) = Ka. ‘ . ' ) )
(E]xponc:nials of operators are defined in Section 3 by means of an mﬁlmt,«;i :zr:g:
in the operator space L(R"); the series is formally' the same as th;:l Fsu:h se il
e=. Convergence is established by means of a special norm on_L( ),_ ﬂe u orm
norm. Norms in general are discussed in Section 2, while Section 1 briefly re
some basic topology in R™. ) ) )
qm;‘::ctions 5 End 6 arc devoted to two less-central types of differential e:quat[mns.
One is a simple inhomogeneous system and the other a l'_ughcr ?rder equation ot_or:l:
variable. We do not, however, follow the heavy emphasis on higher order equatio
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of some texts. In geometry, physics, and other kinds of applied mathematics, one
seldom encounters naturally any differential equation of order higher than two.
Often even the second order equations are studied with more insight after reducing
to a first order system (for example, in Hamilton’s approach to mechanics),

§1. Review of Topology in R*

The inner product (“dot product’’} of vectors z and y in R is

£, y)=xm+ -+ Zayn-

The Euclidean norm of z is [z] = {z, 2" = (z,* 4+ - -+ + z.)"%. Basic prop-
erties of the inner product are

Symmetry: {(z,y) = {y, z);
Bilinearity: {(z+y,2) = (x,2) + {¥, 2),
(o, y) = alz, ), a€R;
Positive definiteness: {r,z) > 0 and
{z, 2} = 0if and only if z = 0.
An important inequality is
Cauchy's inequality: (zr, ) < |z|lyl.

To see this, first suppose z = 0 or ¥y = 0; the inequality is obvicus. Next, obeerve
that for any A

+rap,z+ )20
or

(x,2) + My, 1) + Dz, ) > 0.
Writing — {z, y}/{y, y) for X yields the inequality.
The basie properties of the norm are:
(1) |z|>0and]z| =0if and only if r = 0
2) lz+yl<lzl+ |yl
(3) lexl=|eallz}
where | ¢ | is the ordinary absolute value of the scalar a. To prove the triangle
inequality (2}, it suffices to prove
lz+ylP<|zPP+lyP+2[z]lyl
Since
lz+ylt=4{+yz+y)
= |I|,+ |y|’+2(1=.y)»
this follows from Cauchy’s inequality.
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Geometrically, | z | is the length of the vector x and
(z,y)=z||y|cosd,

where 8 is the angle between z and ¥. ] 4

The distance between two points z, y € R™ is defined to be |z — | = d(=z, ¥}.
1 is casy to prove:
y |r—y|=0and|z—y! = Qif and only if x = ¥;
Volr—zl<lz—yl+ly -zl

The last inequality follows from the triangle inequality applied to

(4
5

z—z=(z—-+y—2.
If ¢ > O the e-neighborhood of x € R~ is
B(z) = fye R[|y—z| <.

A neighborhood of 7 is any subset of R* containing an e-neighborhood .oi.' z. )
Aset XCRrisopenifitisa neighborhood of every z € X Explicitly, X is
open if and only if for every z € X there exists ¢ > 0, depending on z, such that

B.(z) C X.
A sequence {zx) = Ty, @, . . . in R® converges to the limit y € R~ if

lim|ze —y| =0.

k—v0

Equivalently, every neighborhood of y contains all but & finite number of the points

of the sequence. We denote this by y = lime.u Zs OF T2 — ¥, .If 7 = (Zhry -« 3:_u)
and y = (%1, . .-, Yn), then {z4] converges to y if and only if iMe.nZa; = ¥ J =
1, ..., n. A sequence that hasa limit is called convergent.

A sequence {z:} in R* is & Cauchy sequence if for every ¢ >0 there exists an
integer ko such that

|z;— =z} <e ifk2k and 72 ke
The following basic property of R is called metric completeness:
A sequence converges to a limit if and only if it is @ Cauchy sequence.

A subset Y C R is closed if every sequence of pointa in ¥ that is convergent
has its limit in ¥. It is easy to see that this is equivalent to: Y is closed if the com-
plement R — Y is open. .

Let X C R~ be any subset, A map f: X — R™ is continuous if it takes c(_mverggnt
sequences to convergent sequences. This means: for every sequence {Z:} in X with

limzs =y € X,

k-»w
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it is true that
lim f(z:) = f(y).
krem
A subset X (C R* is bounded if there exists a > 0 such that X C B.(0).
A subset X is compact if every sequence in X has a subsequence converging to a
point in X. The basic theorem of Bolzano—W eiersirass says:

A subset of R* is compact if and only if it iz both closed and bounded.

Let K C R~ be compact and f: K — R" be a continuous map. Then f(K) is
compact.

A nonempty compact subset of R has a maximal element and a minimal element.
Combining thiz with the preceding statement proves the familiar result:

Every continuous map f. K — R, defined on a compact set K, takes on a mazimum
value and @ minimum value.

One may extend the notions of distanee, open set, convergent sequence, and other
topological ideas to vector subspaces of R~. For example, if E is a subspace of R*, the
distanze function d: R* X R* — R restricts to a function dg: E X E — R that also
satisfies (4) and (5). Then eneighborhoods in E may be defined via dr and thus
open sets of E become defined.

§2. New Norms for Old

It is often convenient to use functions on R" that are similar to the Euclidean
norm, but not identical to it. We define a norm on R" to be any function N:R* —R
that satisfies the analogues of (1), {2}, and (3) of Section 1:

(1) N(x) > 0and N{z) = 0if and only if x = 0;
(2) N{z+y) S Niz)+Ny);
(3) N{ax) ={a|N(z).

Here are some other norms on R~:

lxlmnx=mi|x1|:---slxl“1
|Il|uln= ‘31|+ +|I.|.
Let ® = {fi, ..., fu] be a basis for R" and define the Euclidean ®-norm:

[zle = (24 - + L it =24,
1

In other words, | z |a is the Euclidean norm of z in ®-coordinates (4, ..., &).
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The & maex-norm of z i8
1z [®.max = max{| & |r coen e “

The hasic fact about norms is the equivalence of norms:

Proposition 1 Let N: R* — R be any norm. There exist constants A > 0, B >0
such thal

(4) Alz| <N(z) <B|z]
for all z, where | x| 18 the Euclidean norm.

Proof. First, congider the max norm. Clearly,

(max | z;()? € ¥z < n(max|z; )%
f

taking square roots we have
|Z|nn < ]17| S%ixlmn-

Thus for the max norm we can take 4 = 1/¥n, B = 1, or, equivalently,
1
ﬁlxl S|z|nns|1l.

Now let N: R~ — R be any norm. We show that N is conlinuous. We have
N(z) = N(Zxie) < Z|z;| N(e),
where €y, . . ., ¢ i8 the standard basis. if

mu[N(cl):"°rN(¢n)} =M|
then
Niz) < MT |zl S Malz o

< Mn|zl
By the triangle inequality,
IN(z) =N | < N@E= -y
<Mniz-—yl
This shows that N is continuous; for suppose lim z: = y in R*:
IN(m) —N@) | < Mnlz—vyl

so im N(z} = N(y) in R, o
Since N is continuous, it attains & maximum value B and a minimum value A
on the closed bounded set

(xe R ||z} =1}
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Now let z € R~ If r = 0, (4) is obvious. If |z | = a # 0, then
N(z) = aN(ax).
Since | o™z | = 1 we have
A < N(a"'z) < B.
Hence
4 <a'N(z) < B,
which yields (4), since a = | z|.
Let E C R~ be a subspace. We define a norm on E to be any function

N:E—-R

that satisfies (1), (2}, and (3). In particular, every norm on R* restricts to a norm
on E. In fact, every norm on E is obtained from a norm on R* by restriction. To
see this, decompose R* into a direct sum

Rr=EefF.
(For example, let {ey, ..., e} be a basis for R® such that {e;, ..., ea} isa basis
for E; then F is the subspace whose basis is {ém41, . . ., €}.) Given a norm N on

E, define a norm N’ on R* by

N'(z) = Ny) + 12|,
where

t=y+zy€CEz€EF,

and | z| is the Euclidean norm of z. It is easy to verify that N is a norm on R* and
N'|E=N.

From this the equivalence of norms on E follows. For let N be a norm on E. Then
we may assume N is restriction to E of a norm on R~, also denoted by N. There
exist A, B € R such that (4) holds for all z in R*, so it holds a fortiori for all x
in E.

We now define a normed vector space (E, N) to be a vector space E (that in, a
subspace of gome R") together with a particular norm N on E.

We shall frequently use the following corollary of the equivalence of norms:

Proposition 2 Lel (E, N) be any normed veclor space. A sequence {2a) in E con-
verges lo y if and enly ¢f

(5) Bm N(z: — y) = O

k-»w

Proof. Let A > 0, B > Obeasin (4). Suppose (5) holds. Then the inequality
0< |z ~y|<A'WN(: — y)
shows that limi., [ 2z: — y | = 0, hence z. — y. The converse is proved similarly.

Another useful application of the equivalence of norms is:
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Proposition 3 Lel (E, N) be a normed vector space. Then the unil ball

D={ze E|N(z) <1}

s compact.

Proof. lLet Bbeasin (4). Then D is a bounded subset of R", for it is contained
in

{z € Rllz| < B,

It follows from Proposition 2 that I is closed. Thus D is compact.

The Cauchy convergence criterion (of Section 1) can be rephrased in terms of
arbitrary norms:

Proposition 4 Let (E, N) bea normed veclor space. Then a sequence {za} tn E
converges lo an element in E if and only if:

{6) for every ¢ > O, there exists an integer no > 0 such that if p > n > mo, then
- Nz, — za) <&

Proof. Suppose E C R*, and consider {7} a8 a sequence in R". The condition
(6) is equivalent to the Cauchy condition by the equivalence of norms. Therefore
(6) is equivalent to convergence of the sequence to some y € R* Buty € E because
subspaces are closed seta.

A sequence in R~ (or in a subspace of R"} is often denoted by an infinie series
3o sz This is merely a suggestive notation for the sequence of partial sums {ae},
where

s=xn+ -+ %

If limia o 82 = ¥, We write

-y

o=y

el
and say the series 3. Z¢ converges to y. If all the x, are in a subspace E C R®, then
also y € E because E is a closed set.

A series T a4 in a normed vector space (E, N) is absolutely convergenl if the series
of real numbers Y5 N(2:) is convergent. This condition implies that > = is
convergent in E. Moreover, it is independent of the norm on E, as follows easily
from equivalence of norms. Therefore it is meaningful to speak of absolute con-
vergence of a series in a vector space E, without reference to & norm.

A useful criterion for absolute convergence is the comparison test: & series 2 T
in a normed vector space (E, N) converges absolutely provided there is & conver-
gent series 3 a: of nonnegative real numbers a such that

Nim) <a; k=12,....
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For

0< T Na) < X a

=n [

hence 3> iwo N (x:) converges b i iteri
y appl the Cauch i
s o 3 .Y ying auchy criterion to the partial sum

PROBLEMS

1. Prove that th i i inni i
Prove at the norms described in the beginning of Section 2 actually are

[ £ |5 ig & norm on R", where
|2l = (Z 12 P 1<p < w.
1

Sketch the unit balls in R* and R* under the norm lzl,forp=1,23
3. Find the largest A > 0 and smallest B > 0 such that

Alz| <2 |wm € Biz|
for all z € R~

4. Compute th
o rm[;: e norm of the vector (1, 1} € R? under each of the following

(a} the Fuclidean norm;

(b) the Fuelidean ®-norm, where @& is the basi

{c) the max norm; @b {2, @21,
(d) the ®-max norm;

{e) thenorm [z |, of Prablem 2, for alt p.

An inner product on a vector space E is any map R*» X R~ — R, denoted

by (z, ) — i ic. biki . ¢
Section 1). (z, ¥}, that is symmetric, bilinear, and positive definite (see

(g) ()}iven any inner product show that the function {z, z}* is a norm.
(by 1 rove t‘hat & norm N on E comes from an inner product as in (a) if and
only if it satisfies the “parallelogram law":

Nz +y)*+ Nz — )7 = 2(N(z)? + N(y)).

(¢} Leta, , @ be positive nu 1 i
e mbers. I'ind an inner produ -
corresponding norm is prodict on " whose

N(z) = (T au?)r.
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(d) Let {e, ..., ¢} be a basis for E. Show that there is a unique inner
product on E such that

(e e;) =8;  forall 4,7
6. Which of the following formulas define norms on R*? (Let (z, ) be the co-
ordinates in R%)
(a) (2 +zy + OV (b} (z* — 3zy + )"
ey U=zl+1lyD% (@) fl=zl+1yh + 3G+ 00
7. Let U C R*be a bounded open set containing 0. Suppose U/ is convez: if z € U

and y € U, then the line segment {t&z + (1 — Oy |0 <t <1} is in U. For
each z € R* define

o(z) = least upper bound of {A 2 0] Az € U}.

Then the function

is a norm on R,

8. Let M, be the vector space of n X n matrices. Denote the transpose of A € M,
by A% Show that an inner product (see Problem 5) on M, is defined by the

formula
{A, B) = Tr{A'B).

Express this inner product in terms of the entries in the matrices A and B.

9. Find the orthogonal complement in M, (see Problem 8) of the subspace of
diagonal matrices.

10. Find a basis for the subspace of M. of matrices of trace 0. What is the ortho-
gonal complement of this subspace? '

+

§3. Exponentials of Operators

The set L{R") of operators on R ig identified with the set M, of n X n matrices.
This in turn is the same as R** gince a matrix is nothing but a list of n* numbera.
(One chooses an ordering for these numbers.) Therefore L(R") is a vector space
under the usual addition and scalar multiplication of operators (or matrices). We
may thus speak of norms on L(R*), convergence of series of operators, and so on.

A frequently used norm on L(R*) is the uniform norm. This norm is defined in
terms of a given norm on R* = E, which we shall write as [z |. If T: E—E isan
operator, the uniform norm of 7' is defined to be

N7 = max{| Tz |||z} < 1}.
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In other words, || T [| is the maximum value of | Tz | on the unit ball
D={zcE||lz]<1].

The existence of this maximum value follows from the eompactness of D (Section
1, Propogition 3) and the continuity of T: R* — R», (This continuity follows im-
mediately from a matrix representation of T.)

The uniform norm on L(R*) depends on the norm chosen for R*. If no norm on
R* is specified, the standard Euclidean norm is intended.

Lemma 1 Let R* be given a norm | & |. The corresponding uniferm norm on L(R*)
has the following properiies:

(8) If\T|| =k, then|Tz| < k|z|for all z in R=,
(b (ST <|SII-ITI
() T <|T|™forallm =0,1,2,....

Proof. (8) Iiz=0,then |Tx|=0=k|z|. If 20, then || = 0. Let
y = |z ™'z, then

1

lyl=|—z—lixl=1-
Hence
1
k=IITI!2|TyI=mlTxI

from which (a) follows.
{(b) Let|z| < 1. Then from {a) we have

| 8(Tz) [ < || 81| Tz}
SHSHANTI-[=]
SNSH-UTI

Sin({e [| 8T |j is the maximum value of | §Tz |, (b) follows.
Finally, (¢) is an immediate consequence of (b).

We now define an important series generalizing the usual exponential series. For
any operator T: R* — R~ define

- Tl
exp(T) =ef = 3 —.
o K!
(Here k! is k factorial, the product of the first k positive integers if kX > 0, and
0! = 1 by definition.) This is a series in the vector space L(R").

Theorem The exponential series 3 iy T*/k! is absolulely convergent for every
operalor T,



84 5. LINEAR BYBTEMS AND EXPONENTIALB OF OPERATORB

Proof. Let | T{l=a20 be the uniform norm (for some notm on R*).
Then || T*/k!]| < &*/k!, by Lemma 1, proved earlier. Now the real series
I o o*/k! converges to & {where ¢ is the base of natural logarithms). Therefore
the exponential series for T converges absolutely by the comparison test {Section

2).
We have also proved that

fjeal] < ehail.
We shall need the following result.

Lemma 2 Let ThoA; = A ond Y7 o By = B be absolulely convergent series of
operators on R~ Then AB = C = X0, C, where Ct = X ekl A;Be.

Proof. Let the nth partial sum of the geries T A;, 3 By, 2 C1 be denoted
respectively by an, Sa, ¥a Then

AB = }-im auﬁn,

-

while
C = lim'n..

If vin — 0aBa iB computed, it is found that it equals
T AB+ ZABx,
where 3’ denotes the sum over terms with indices satisfying
i+k<m, O0Z5jsm n+1<k<2n,
while 3" 18 the sum corresponding to

i+ k<2n, n+1<j<2n 0<k<£n
Therefore

Hym — aBall < Z 1A B} + T Agll-ll Ba b
Now

T AN Bl < (g IlA;H)(l_Zj:ﬂ 1L Ba 1)

This tends to 0 as n — w since Tiy || 4; | < . Similarly, > AN Bell =
0 as n — =, Therefore liMu.a(Ym — anBs) = 0, proving the lemma.

The next result is useful in computing with exponentials.

Proposition Let P, 8, T denole operalors on R, Then:
(a) Q= PTP, then &8 = PePY,
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(b) if ST = TS, then ¢3+T = c%eT
(€) e = (), '
(d) ifn=2and T = [} 7, then

e = c.[:m.oeb —ﬂinb]‘
b cosb

The proof of (a) follows from the identiti
and (PTP-Y)* = PT¢p—1, ?I'he::for: identities P(A + BYP' = PAP' 4+ PRP

TN s ey
P(Ek!)P =L

and (a) follows by taking limits, To pro
. - b R > —
have by the binomial theorem prove (0) olserve that because ST = TS we

(S+T)»=n T s
Therefore
- Si T
T = ( ST
-);o ,-E-.J'?' k!)

- S, - Tl
‘Eﬂ)(ﬁ E)
by Lemma 2, which proves (b). Putti i
y . ngT = —8in (b) g
The proof of (d) follows from the correspondence (b) gves (c).

a b
[b a:’Ha+ﬂb

of Chapter 3, which preserves sums, prod i i
that it also preserves limita, Therefc;rz uets, and resl multiples. 1t s easy to sce

er g™,

where ¢* is the complex number 3"%, (1b)*/k!. Using # = —1, we find the real

pmtv Of e* to be the sum Oi bhe Iﬂylol series (at 0 10[ cos b Slt'ml&lly "he w}
( ) ' ’

Obeerve that (c) implies that * is inverti This is anal-
vertible for is i
ogous to the fact that ¢ » 0 for every real number ‘:‘.fery operstor . "

As an example we compute the exponential of T = {§ ¥]. We write

T =al + B, B=[O 0]
b 0J
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Note that af commutes with B. Hence
er = e*lef = 2P,
Now B? = 0; hence B* = 0 for all k > 1, and
1 l Bl
e =3, —
o k!

I+ B

[

Thus

10
e"=c‘(I+B)=e'[ 1

b 1
= ]
b el
We can now compute ¢4 for any 2 X 2 matrix A, We will see in Chapter 6 that
can find an invertible matrix P such that the matrix

B = PAP™
has one of the following forms:

ORI N IR RN

We then compute 2. For (1},
i
Lo ed

cos b —sinb]
e = e"[ .
sin b cos b

as was shown in the proposition sbove. For (3)

o8 \ [1 0]
= ¢
11
as we have just seen. Therefore e4 can be computed from the formula

et = ¢"'BF = P1efP,
There is & very simple relationship between the eigenvectors of T and those of

er:
If x € R~ is an eigenvector of T belonging to the real eigenvalue a of T, then z izalso
an etgenveclor of eT belonging lo e=,

Yor (2)
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im (£ 5)
e
-(£5)-

= g*1.

For, from Tz = az, we obtain

eTx

We conclude this section with the observation that all that has been said for
exponentials of operators on R~ also holds for operators on the complez vector space
C=. This is because C~ can be considered as the real vector space R™ by simply
ignoring nonreal scalars; every complex operator is a fortiori a real operator. In
addition, the preceding statement about eigenvectors is equally valid when complex
eigenvalues of an operator on C* are considered; the proof is the same.

PROBLEMS

1. Let N be any norm on L(R"}. Prove that there is a constant K such that
N(ST) < EN(S)N(T)
for all operators S, T. Why must K > 1?

2. Let T: R~ — R~ be a linear transformation. Show that T is uniformly con-
tinuous: for all ¢ > O there exists § > 0 such that if | z — y{ < & then

Tz~ Ty| <e
3. Let T: R~ —R" be an operator. Show that

I T fj = least upper bound {' izil

| .1:#0].

4. Find the uniform norm of each of the following operators on R:

3 0 } 0] 0 1:|
@] oyl @[,

5. Let
T= [30 2]
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(a) Show that
lim j| T || = &

LT

{b) Show that for every ¢ > 0 there is a basis ® of R? for which
ITlle<t+e

where || T ||@ is the uniform norm of T corresponding to the Euclidean
®-norm on R,
(¢} For any basis & of R?,

i Tile > %
(a) Show that
NTI-T izl

for every invertible operator T
(b} If T has two distinet real eigenvalues, then

Nr- = >1
{Hint: First consider operators on R%)

Prove that if T is an operator on R= such that || T — I'|| < 1, then T is
invertible and the series Y i (I — T)* converges absolutely to T~ Find
an upper bound for || T-'1].

Let 4 € L(R") be invertible. Find ¢ > 0 such that if {{ B — A [| < ¢ then
B is invertible. (Hint: First show A—B is invertible by applying Problem 7
toT = A~'B.}

Compute the exponentials of the following matrices (1 = +/—1):

5 -6 2 -1 2 —1] q [0 1]
(2) [3 —4] ®) [1 2] tc) [0 A4 Lo

01 2 2 00 » 0 0
(e} |0 O 3 ( (0 3 O (g) 1 A
000 01 3 01 2

i 0 144 0 (1000

) [o ——i] (1)[2 l+i] @ 11o000

1000

1000

For each matrix T in Problem 9 find the eigenvalues of e
Find an example of two operators 4, B on R? such that
e+l & pheB,
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12. If AB = BA, then e%e® = e8¢ and e4*B = Bed.

I3. Let an operator A: R* — R" leave invariant a subspace E C R~ (that is,
Az € E for all r € E). Show that ¢4 also leaves E invariant.

14. Bhow that if || T — I || is sufficiently small, then there is an operator S such
that e® = T. (Hint: Expand log(1l + x) in a Taylor series.) To what extent
ig § unique?

15. Show that there is no real 2 X 2 matrix S such that &5 = [1 *

Py

#4. Homogeneous Linear Systems

Let A be an operator on R~ In this section we shall express solutions to the
equation:

(1) ' = Az
in terms of exponentials of operators.

Consider the map R — L(R*} which to ¢ € R assigns the operator ¢4, Since
L(R") is identified with R*’, it makes sense to speak of the derivative of this map.

Proposition
d

Zotd = fetA = gtdf
dt
In other words, the derivative of the operator-valued function e'4 is another
operator-valued function Ae*4. This means the composition of ¢*4 with A ; the order
of composition does not matter. One can think of A and ¢4 as matrices, in which
case Ae' is their product.

Proof of the proposition.

d e(H—h]A —_ el‘
__eu = i ——
dt - h
elaghd _ gt
= lim ———
Aet h
= gt im (‘BM — [)
Ao h
= e'44;

that the last limit equals A follows from the series definition of ¢4, Note that A
commutes with each term of the series for e'4, hence with 4. This proves
the proposition,
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We can now solve equation (1). We recall from Chapter 1 that the general solu-
tion of the scalar equation

r

' = azx {a€ R)
is
z{t) = ke®; k = x(0).

The same is true where z, a, and k are allowed to be complex numbers (Chapter 3).
These results are special cases of the following, which can be considered as the
fundamental theorem of linear differential equations with constant coefficients.

Theorem Lel A be an operator on R", Then the solution of the initial value probiem
(i = Az, z(0) = K € Rn,

(2 K,
arid there are no other solulionas.

Proof. The preceding lemma shows that

d d

Z(eAK) ={—e4 ) K

i = (i)
= AetK,

sinee MK = K, it follows that (2) is a solution of (17). To see that there are no
other solutions, let z{t} be any solution of (1’) and put

y (1) = e*4z(t).
Then

¥

d - —tAp!
(&-te ‘)z(t) + ez’ (1)

—Ae () + e Ax(l)
et {—A 4+ A)z(l)

= 0. ’

Therefore 31y is a constant. Setting ¢ = 0 shows y(#) = K. This completes the
proof of the theorem.

As an example we compute the general solution of the two-dimensional system
L3) zi = 6z,

’
Ty = bIl + axs,
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where @, b are constants. In matrix notati>n this is

, a O
¢’ = Az; A=[ ]; z = (2, 2).
b a

The golution with initial value K = (K,, K,) € R?is
e 4K,

chl = pl¢ [1 0]'
h 1

eK = (enK,, e (thK, + K,}).
Thus the solution to (3) satisfying

In Section 3 we saw that

Thus

) I],(O) = Kl, :Eg(o) = Kg
18

n(t) = ewK,,

z(t) = e*(1bKy + K,).

A0
FIG. A. Saddle: B = [0 ]. A0 < p
H
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Since we know how to compute the exponential of any 2 X 2 matrix (Section 3},
we can explicitly solve any two-dimensional system of the form z” = Az, A € L(RY).
Without finding explicit solutions, we can also obtain important qualitative in-
formation about the solutions from the eigenvalues of A. We consider the most
important special cases.

Case §. A has real eigenvalues of opposite signs. In this case the origin (or some-
times the differential equation} is called a saddle. As we saw in Chapter 3, after a
suitable change of coordinates 2 = Py, the equation becomes

y"-'By:

A0
B=PAP"=[ ], A< < p.

0 u

In the (3, y2) plane the phase porirait looks like Fig. A on p. 91. .

Case H. All eigenvalues have negative real parts, This important case is called
a sink. It has the characteristic property that

limz(t) =0

fem
fur every solution x(t). If A is diagonal, this is cbvious, for the solutions are

(1) = (ae*, ee); X <0, <O

20
FIG. B. Focus: H = . , A < 0.
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X2

X Bl x

Xz
a0
FIG. C. Node:B-[o ].)\(ﬂ(ﬁ.
F'y

If A is diagonalizable, the solutions
z(t) = Py()

are of the form with y() as above and P € L(R?); clearly, z{f) =0 as { — .
The phase portrait for these subeases looks like Fig. B if the eigenvalues are
equal (a focus) and like Fig. C if they are unequal (a node).
If the eigenvalues are negative but A is not diagonalizable, there is a change
of ecoordinates z = Py (see Chapter 6) giving the equivalent equation

v = By,
where

A
1 X

We have already solved such an equation; the solutions are
nit) = Ky,
ya(t) = Koe? + K\le®,

:Ec;l tend to 0 as ¢ tends to «. The phase portrait looks like Fig. D (an improper
€). .

If the eigenvalues are a + ib, a < 0 we can change coordinates as in Chapter 4
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a0
FIG. D. Improper node: B = [1 x]’ » <0

to obtain the equivalent system

. fa —b
v’ = By, B=[b a]-

From Section 3 we find

I:cos tb -sin tb]
etB = pie N
sin tb cos &b

a ~b
FIG. E. Spirs sink: B = [b ], b>0>a
a
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Therefore the general solution is expressed in y-coordinates as
¥(t) = e*(Kycosth — Kysinth, K, cos th 4+ K, zin th).
Since {costh | < 1 and |sinthb| < 1, and a < 0, it follows that

limy(¢) = 0.

==

If b > 0, the phase portrait consists of counterclockwise spirals tending to 0 (Fig.
E), and clockwise spirals tending to 0 if b < 0.

Case III. Al eigenvalues have positive real part. In this case, called a source, we
have
Hm|z(f) | = = and tim |z(t) | = 0.

t+mw fe—i0

A proof similar to that of Case II can be given; the details are left to the reader.
The phage portraits are like Figs. B-E with the arrows reversed.

Case IV, The ¢igenvalues are pure imaginary. This is called a center. It is charac-
terized by the property that all solutions are periodic with the same period. To see
this, change coordinates to obtain the equivalent equation

. B_[o -—b:l
y_ ¥ - b 0-

We know that

" [cos th —sin Lb]
e = .
gin th cog th

2x
y(t + —~) = y(¢).

0 —b
FI1G. F, Center; B = [b 0], >0
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Det Sources
Sink Tr;O,Dﬂ?O
Inks . irals
120 Spirols Spira AzO
Tr< O, De A<Q,Tr<0 A<O,Tr>0
o
"
=
o o/
v VLS
< o°
v Nodes

Soddles
Det < QO

FIG. G

The phase portrait in the y-coordinates consists of concentric circles. In the origix_m:
z-coordinates the orbits may be ellipses as in Fig. F. (If b < 0, the arrcws poln
clockwise. ) . )
Figure G summarizes the geometric informa.t.lon_ about the. phase portrait .of
&' = Ar that can be deduced from the characteristic polynomial of 4, We wnte

this polynomial as
A — (Tr A)» + Det A.
The discriminant A is defined to be

A= (TrA) — 4Det A,
The eigenvalues are

3} (Tr A £ V).

Thus real eigenvalues correspond to the case & = 0; the eigenvalues have negative
«ql purt when Tr A < 0; and so on,

" '[‘}fn greometric interpretation of ¥’ = Az is a8 foliows (compart‘a Chn.pter_ 1). The
map R — R~ which sends x into Az is & vector field on‘R". Given s.pomt. K' of
Rr, there is a unique curve | — e*4K which starts at K at t.lme zero, and is asol}itlon
of '( 1). (We interpret ¢ as time.) The tangent vector to this curve at s time & is the
veetor Az(f) of the vector field at the point of the curve x{l). )

We miay think of points of R* flowing simultaneously along these solution curves.
The position of a point z € R~ at time ¢ is denoted by

@.(z) = etdz,
Thus for each { € R we have a map
suR* =R (tER)
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given by
di(x) = e'Ax.

The collection of maps {¢:} & is called the flow corresponding to the differential
equation (1). This flow has the basic property

Sope = @ 0y,
which is just another way of writing

d - AptA .
elrtid — e*dgt R

this is proved in the proposition in Section 2. The flow is called linear hecause each

map ¢,: R* — R iz a linear map. In Chapter 8 we shall define more general nonlinear
flows.

The phase portraits discussed above give a good visualization of the correspond-
ing flows. Imagine points of the plane all moving at once along the curves in the
direction of the arrows. {The origin stays put.)

PROBLEMS

1. Yind the general solution to each of the following systems:

i=2 — r _
(a) {x T — Y (b) {x 2r—y

v =2 ¥ =z+2
3;'=y I’=—2£
(e) [, (d) L.
¥y =z Yy =z—-2y
2=y — 2z
r=y+4z
(e} ¥ =z
=0

[

In (a}, (b}, and (¢) of Problem 1, find the solutions satisfying each of the
following initial conditions:

(8) z(0) = 1,y(0) = —-2; (b) x(0) =0, y(}) = —2;

(¢} =z(0) =0,y(0) =0.

3 Let A: R*— R" be an operator that leaves a subspace E C R~ invariant.
Let z: R - R* be a solution of 2’ = Ar. If (&) € E for some ts € R, show
that x(t) € Eforallt € R,

4. Suppose A € L(R") has a real eigenvalue A < 0. Then the equation ' = Az
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0.

11

5. LINEAR SYSTEMS AND EXPONENTIALS OF OPERATORS

has at least one nontrivial solution z () such that

limz(t) = 0.

i

Let A € L{R?) and suppose ' = Az has a nontrivial periodic solufion,.u(t)_:
this means w(t + p) = u(t) for some p > 0. Prove that every solution is
periodic, with the same period p.

1f u: R — R” is a nontrivial solution of ' = Az, then

d 1
(}_t(lul) - |u|(u,Aﬂ).

Supply the details of Case II in the text.

Classify and sketch the phase portraits of planar differeritial equations =’ =
Az, A € L(R?), where A has zero as an eigenvalue.

For each of the following matrices A consider the corresponding differential
equation ' = Az. Decide whether the origin is a sink, source, saddle, or none

of these. Identiiy in each case those vectors u such that lim,., z(f) = 0, where
£(1) is the solution with £(Q) = u:

oD 2] @l ol
o [503] e [T

Which values (if any) of the parameter k in the following matrices makes the
origin a sink for the corresponding differential equation 2" = Ax?

e —k . [3 0]

) [k 2} ® 1k —s

() [k’ 1] 0 -1 0
0 k& (d) 1 00

Let é:: R?— R? be the flow corresponding to the equation =’ = Azr. (That
is, t — ¢ (x) is the solution passing through z at ¢ = 0.} Fix r > 0,. and show
that ¢, is a linear map of R? — R, Then show that ¢, preserves area if and only

§5.

12,

13.

14,

15.
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if Tr A = 0, and that in this case the origin is not a sink or a -ouree. (Hinf:
An operator is area-preserving if and only if the determinant is +1.)

Describe in words the phase portraits of " = Az for

o[ o

o wal

Suppose 4 is an n X 1 matrix with = distinet eigenvalues and the real part of
every eigenvalue is less than some negative number «. Show that for every
solution to ' = Az, there exists & > 0 such that

| z(6) | < et= if &2t

Let T be an invertible operator on R", n odd. Then ' = Tz has & nonperiodic
solution,

Let A = [* ] have nonreal eigenvalues, Then b s 0. The nontrivial solutions
curves to 2’ = Az are spirals or ellipses that are oriented clockwise if b > 0
and counterclockwise if & < 0. (Hint: Consider the sign of

%t arc tan(z, (¢} /=, (0).)

A Nonhomogeneous Equation

We consider a nonhomogeneous nonautoncmous linear differential equation

(1)

2’ = Az + B(1).

Here A is an operator on R* and B: R -+ R~ is a continuous map. This equation is
called nonhomogeneous beeause of the term B({) which prevents (1) from being
strictly linear; the fact that the right side of (1) depends explicitly on ¢ makes it
nonautonomous. It is difficult to interpret solutions geometrically.

We look for a solution having the form

()

z(t) = e“f(1),

where f: R — R* is some differentiable curve. (This method of solution is called

“variation of constants,” perhaps because if B(1) = 0, f(1) is a constant.) Every

solution can in fact be written in this form since et/ is invertible. '
Differentiation of (2) using the Leibniz rule vields

() = AerAf(8) + etAf (D).
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Since z is assumed to be a solution of (2),

Az() + B(t) = Az(t) + 47 ()
or
) = et4B(1).
By integration

10) = [ e4BGs) da + K,
[ ]
80 88 a candidate for a solution of (1) we have
3 2(f) = oAt [f' 4B (s) ds + x], K € R
9

Let us examine (3) to see that it indeed makes sense. The integrand in (3) and
the previous equation is the vector-valued function s — ¢~4'B () mapping R into
R~. In fact, for any continuous map g of the reals into a vector space R, the integral
can be defined as an element of R*. Given a basis of R*, this integral is a vector
whose coordinates are the integrals of the coordinate functions of g.

The integral as s function of ite upper limit ¢ is & map from R into R™. For each
t the operator acts on the integral to give an element of R~ So t— z(1) is a well-

defined map from R into E.
To check that (3) is a solution of (1), we differentiate 2(¢) in (3):

2{t) = B(1) + Aer* [f 4B (s) ds + K]
[ ]

= B(f) + A=z(l).
Thus (3) is indeed a solution of (1).
That every solution of (1) must be of the form (3) can be seen as follows. Let
y:R"— E be a second solution of (1). Then
-y =Alz-y)
80 that from Section 1

x—y = 4K, for some Kein R~

This implies that y is of the form (3) (with perhaps a different constant K e Rv.
We remark that if B in (1) is only defined on some interval, instead of on all of
R, then by the above methods, we obtain a solution z(2) defined for ¢ in that same
interval.
We obtain further insight into (1) by rewriting the general solution (3) in the
form

2() = u(t) + 'K,

u(t) = e f " 40B(s) da.
]
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Note that u(t} is also a solution to (1), while e4'K is a solution to the homogenecus
equation

(4 vV = Ay

obtained from (1) by replacing B(f} with 0. In fact, if v(2) is any solution to (1)
and y(¢} any solution to (4), then clearly x = v + y is another solution to (1).
Hence the general solution to (1) is obtained from a particular solution by adding
to it the general solution of the corresponding homogeneous equation. In summary

Theorem Let u{t) be a particular solution of the nonhomogeneous linear differential
equalion

(1) ' = Az + B(1).

Then every solution of (1) has the form u(l) + v(f) where v(1) iz a solution of the
homogeneous equation

(4) * = Az
Conversely, the sum of a solution of (1) and a solution of (4') is a solution of (1).

If‘ the fum?tion B(2) is at all complicated it will probably be impossible to replace
the integral in (3) by a simple formula; sometimes, however, this can be done.

Example. Find the general solution to
(5) x: = —I,

=2y + L

4L w0-l)

[ coss gin s:!
r‘l =
—gins coss

‘s gin 3
[l
o Lacoss
[sint—tcost ]
cost + teint — 1.J
To compute (3) we set

B ot BN |

Here
Hence

and the integral in (3) is

[l e
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hence the general solution is
[xl(t)] [cost —pin t] [sin t—teost+ Ki ]
() Lsnt  cost cost+ tsint — 14+ Kol
Performing the matrix multiplication and simplifying yields

Il(fv) = —t+ K1003f + (1 - K:) sint,
2(t) = 1 — (1 — Ki) cost + Kysinl

This is the sclution whose value st t = O is

n(0) = Ki,  #:(0) = Ks

PROBLEMS

1. Find all solutions to the following equations or systems:

{a) 2 — 4r — cost = 0; by o —d4z—t=10; ) £ =1
¥y =2-1%
(dy =19 ) ¥=x+v+2
y = —4z + sin 2¢; v = -2+t
z =22+ sint

2, Suppose T: R"—R" is an invertible linear operator and ¢ € E is a nonzero
constant vector. Show there is a change of coordinates of the form

z=Py+b beR7,

transforming the nonhomogeneous equation z = Tz + ¢ into hnmogeneous
form ¢’ = Sy. Find P, b, and 3. (Hint: Where is 2’ = 07)

3. Solve Problem 1{c) using the change of coordinates of Problem 2.

§6. Higher Order Systems

Consider a linear differential equation with constant coefficients which involves

a derivative higher than the first; for example,
8] ' +as +be=0

By introducing new yariables we are able to reduce (1) to a firat order system
of two equations. Let z, = s and 7, = ) = #'. Then (1) becomes equivalent to the

§6. HIGRER ORDER BYSTEMS
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gystem:
(2) I; = Iy,
I; = —b:l:, — QI

Thus if (&) = (x. (£}, 2:(1)) is a soluti
5] ; ' tion of (2}, then #{t) = z,(8) i i
of'lgllﬁ)s, if 8(21 isa aol.utmn of_ (1), then x(2) = (s{t), s’(t))) i :lio{ul:i:nszlfut(a;)n
high procedure _of introducing new variables works very generally to red ;
er order equations to first order ones. Thus consider ¢ "

(3) a a4 g s+ as =0
(I::; :ni:s .a real function of ¢ and ™ is the nth derivative of s, while @y, . . . , a. are
(3§n mtl:: ;::1 :::, :::h:n;?t:: aTeXL = 8, %2 = 21, ..., Ta = Ta’ and the equation
(4) T = m,

2t = @,

F34 - —GaTy — Ga1¥r — - — GiZa.

In vector notation {(4) has the form z’ = Az, where A is the matrix

(4) B o 1 0 . 0—
0 0 1
- 0
0 0 0 1
__au —On-1 ree —a;

Proposition The characteristic polynomial of (4') is
p(A) = M+ a4+ .- +og,.

Proof. One uses induction on n, F i Assum
ra 1 . For n = 2, this is easily checked.
mzl:ixoi;;l:; prop.ogtmn for n — 1, and let 4..; be the (ny— le)c):d(u - l)e tlll:
Do 4 c(?nslst.‘mg of the last (n — 1) rows and last (n — 1) columns 'I?Een
} is easily computed to be A Det (A — A.,) + a, by expanding along

the first column. ; . o
polynomial. The induction hypothesis yields the desired characteristic

The point of the proposition is it gi ynomial
! that it giver the characteristi ial direct]
from the equation for the higher order differential equation (:;:)'.)Ol Y
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Let us now return to our first equation
(1N s +as + bs = 0.

Denote the roots of the polynomial equation M + ak + b = 0 by M, Aa. Suppose
at fir<t that these roots are real and distinet. Then (1} reduces to the equation of
first order (2): one can find a diagonalizing system of coordinates (3, vs)- Every
solution of (2) for these coordinates is then p(8) = K, exp(At), 12() = Krexp{(hsf),
with arbitrary constants Ky, K. Thus z,(f) or s({) iz a certain linear combination
s({) = puKaexp(At) + puKrexp(Mt). We conclude that if A;, A are real and
distinet then every solutien of {1) is of the form

() = Crexp(Mt) + Crexp(hdt)

for some (real} constants Cp, C: These constants can be found if initial values

s(lo), §'{{o) are given. _
Next, suppose that A; = A = A and that these eigenvalues are real. In this case

the ? ¥ 2 matrix in (2) is similar to a matrix of the form

[)\ O] 8 %0
ﬁ A’ ?

as will be shown in Chapter 6. In the new coordinates the equivalent first-order
system is

¥ = A
y2 = By + My
By the methods of Section 4 we find that the general solution to such a system is
n(t) = Kie*,
n(l) = Kifte* + Kae™,

K, and K, being arbitrary constants. In the original coordinates the solutions to
the equivalent first order system are linear combinations of these. Thus we con-
clude that if the characteristic polynomial of (1) has only one root A € R, the
solutions have the form

S(t) = Clel' “+ szﬁ“.
The values of C; and C; can be determined from initial conditions.

Example. Solve the initial-value problem

(5) '+ 28 +s8=0,
&(0) =1, 3(0) =2
The characteristic polynomial is A 4+ 21 + 1; the only root is A = — 1. Therefore

the general solution is

g{0) = Cre~t 4 Cite".
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We find that
(1) = (—=Ci+ Colet — Cute,
From the initial conditions in (5) we get, setting ¢ = 0 in the last two formulas
Ci=1,
—Ci+Cy =2
Hence Cy = 3 and the solution to (5) is
a(l) = e + e,

The reader may verify that this actually is a solution to (5)!
The final case to consider is that when Ay, ); are nonreal complex conjugate num-
bers. Suppose A = u + @, A = u — 4, Then we get a solution (as in Chapter 3):

n(t) = e(K,cos ot — Kysin ),
#(t) = e=*(K,sin vf + K, cos ot).
Thus we obtain s(#) as a linear combination of %(t) and y,(t), so that finally,
8(1) = e (€, cos vf + Cysin o) '

for some constants ', Cs.
A special case of the last equation is the “harmonic oscillator”:

g + b = 0;
the eigenvalues are +ib, and the general solution is
Cicos bt + Csin b,

We summarize what we have found.

Theorem Let A, ) be the roots of the polynomial »? )\ every Y
of the differential equation ey ok h . Then chery solution
(1) "+ a’ +bs=0
18 of the following type:

Case {a). M, M are real distinct: s{) = Cyex

, : = p(Mt) + Crexp(Aal);
Case (b). A\ =12s = )\ is real: () = Cle‘: + C,t.le“; rexp il
Case (c). M =Rs=wu-+ivo=0: s = e (Cy cos vf + Cysin o).,

fmi: each case (), C; are (real) constants determined by initial conditions of the

at) =a, &) =8B,

The nth order linear equation (3) can also be solved by changing it to an equiva-
lent first order system. First order systems that come from nth order equations
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have spevial properties which enable them to be solved quite easily. To understand
the method of solution requires more linear algebra, however. We ghall return to

higher order equations in the next chapter.
We make a simple but important observation about the linear homogeneous

equation {3):
If 5(t) and ¢(t) are solutions to (3), 20 is the function &{1) + g(4); if k iz any real
number, then ks(t) is a solution.

In other words, the set of all solutions is a vector space. And since n initial conditions
determines a solution uniquely (consider the corresponding first order system), the
dimension of the vector space of solutions equals the order of the differential

equation.
A higher order inhomogeneous linear equation

(6 g 4 g™ 4 - 4 aus = b(8)

ean be solved (in principle) by reducing it to a first order inhomogeneous linear

system

i =Ax + B(t)
and applying variation of constants {Section 5). Note that

0
B() = 8
b(e)

As in the case of first order systems, the general solution to (6) can be expressed
as the general solution to the corresponding homogeneous equation

81-] + a‘s(u"‘l) + sea + a8 = (1]
plus a particular solution of (3). Consider, for example,
n &+ a=t— 1

The general solution of
' 4+2=0
is

Acoatl+ Bsint; A, B€ER

A particular solution to (7) is
sty =t~ 1.

Hence the general solution to (7) is
Acost+ Bsint+1t— L
Finally, we point out that higher order systems can be reduced to first order
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systems. For example, consider the system
'+ 2+ 2y — 32 =0,
¥y + 52 —4y =0

Here z(f) fmd ¥(f) are unknown real-valued functions of a real variable. Introduce
new functions u = z’, v = . The system is equivalent to the four-dimensional
first order system

¥ =u,

% =3x—u—2v

¥ =u,

v = —5u + 4y.

PROBLEMS

1. :Vhic}(;?of the following functions satisfy an equation of the form &' + as’ +
s = 07

{a) te! by #—1¢ (c) ecos2t 4 3sin2¢
{(d) cos 2t 4+ 2sin 3¢ (e) eteos2t f) e+ 4
(@) 3t—9

12

Find solutions to the following equations having the specified initial values
() 8" +4s=20;2(0) =1, () = 0. .
{(b) 8" — 3¢+ 20 =0;8(1) =0,5(1) = ~1.
3. f‘or eafht,‘Of t.he(ft))llowing equations find a basis for the solutions; that is, find
- two solutions &, (f), 8:(¢) such that every solution has the f :

for suitable constants «, 8: e form an(t) + #a(0

(a) 8" 4+3:=0 {(b) 8" ~3s=0

(¢} " —3d —6s=0 {d) "+ +2=0
4. Buppose the roots of the quadratic equation A + ax 4+ b = 0 have negative

real parts. Prove every solution of the differential equation

) &' +as +bs=10
satisfies
lima(t) = 0.
Loy
5. S.tate and prove a generalization of Problem 4 for for nth order differen-
tial equations
= + ala(ﬂ—l) G e a8 = 0,
where the polynomial
PR TR SRR o A

has n distinet roots with negative real parts.



108 5. LINEAR SYSTEMS AND EXPONENTIALS OF OPERATOKS

. L . Tution
6. Under what conditions on the constants a, b is there 8 nontrivial sclutio
' to 8 -+ as + b = 0 such that the equation

s{l) =0

has
(a1 no solution; )
(b)  a positive finite numl_)cr of solutions;
(¢} infinitely many solutions? . )
For each of the {ollowing equations sketch the phase portral{, of lt:a ;:lrl);risz[t:))or}o;
ing first order system. Then gketch the graphs of several so

i nt initi itiona:
‘?;f)ff‘l"-sf‘\’t:“:lf :.’:)O“d b) & —s=10 () 8" +&+e=0
(dy ¢ +2 =0 (& g -+ s N —
8. Which equations &' -+ as" + bs = 0 have a nontrivial periodie soluhotn.

15 the period?

=1

9. Find all sotutions to
g7 — ' 448 — 43 =0
10. Find a real-valued function (f) such that
s+ 45 = cos 2f,
2(0) = 0, &{0) = 1.

i i tial
11. Find all pairs of functions z{f}, y{t) that satisfy the system of differen

uations
“a p = - v,

y'=—z—y+v.
12. Let g(t) be a polynomial of degree m. Show that any equation
8™ 4 als(-—-l) 4 oeie o Qa8 = qu)
has a solution which is a polynomial of degree < m.

Notes

. . . 's The
A reference to some of the t,opologica.l backg,round in 'S(}cu;);ljl is Bartle's
ilements of Real Analysis [2]. Another is Lang's Analysts T [11].

Chapter 6

Linear Systems and Canonical
Forms of Operators

The aim of this chapter is to achieve deeper insight’ into the solutions of the
differential equation

(1) ' = Az, A € L(E), E =R-

by decomposing the operator A into operators of particularly simple kinds, In
Sections 1 and 2 we decompose the vector space E into a direct sum

E=El0... eE’
and A into a direct sum

A=Adio--0d, A,¢ L(E).
Each A, can be expressed as a sum

Ay = 8 + N,; 8., Ne € L(E)),

with S, semisimple (that is, its complexification is diagonalizable), and N, nil-
potent (that is, (Ny)™ = O for some m); moreover, S; and N commute. This
reduces the series for e*4 to a finite sum which is easily computed. Thus solutions
to {1} can be found for any 4.

Bection 3 is devoted to nilpotent operators. The goal is a special, essentially
unique matrix representation of a nilpotent operator. This special matrix is applied
in Section 4 to the nilpotent part of any operator T to produce special matrices
for T called the Jordan form; and for operators on real vector spaces, the real canon-
ical form. These forms make the structure of the operator quite clear,

In Section 5 solutions of the differential equation =’ = Az are studied by means
of the real canonical form of A. It is found that all solutions are linear combinations

of certain simple functions. Important information about the nature of the solu-
tions can be obtained without explicitly solving the equation,
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Seetion 6 applies the results of Section 5 to the higher order one-dimensional
linear homogeneous equation with constant coefficienta

(2 g +als(n—1)+ /. = 0.
Solutions are easily found if the roots of the characteristic polynomial
A dai 4 e e

are known. A different approach to (2), via operators on function spaces, is very
briefly discussed in the last section.

The first four sections deal not with differential equations, only linear algebra,
This linear algebra, the eigenvector theory of a real operator, is, on one hand,
rarcly trested in texts, and, on the other hand, important for the study of linear
differential equations.

§i. The Primary Decomposition

In this section we state a basic decomposition theorem for operators; the proof
is given in Appendix IIL. It is not necessary to know the proof in order to use the
theorem, however.

In the rest of this section T denotes an operator on a vector space E, which may
be real or complex; but if E is real it is assumed that all eigenvalues of T are real.

Let the characteristic polynomial of T be given as the product

p() = TL(t— )™
b=l

Here Ay, . . ., A are the distinet roots of p(f), and the integer > 1 is the mulii-
plicity of A; note that m + -+ +n =dimE.
We recall that the eigenspace of T belonging to A« is the subspace
Ker(T — M) CE

(we write ) for the operator nI). Note that T is diagonalizable if and only if E
is the direct sum of the eigenspaces (for this means B has a basis of eigenvectors).
We define the generalized eigenspace of T belonging to M to be the subspace

E(T, n) = Ker(T — M)™ C E.

Note that this subspace is invariant under T.
The following primary decomposition theorem is proved in Appendix. I11.

Theorem 1 Let T be an operator on E, where E i3 a complex vector space, or else E
is real and T has real eigenvalues. Then E is the direct sum of the generalized eigen-
spaces of T. The dimension of each generalized eigenspace equals the multéplicity of the
corresponding etgenvalue.

Then 7' =T, @ ---
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Let us see what this decompositi
. iz decomposition means. Suppose first t i
eigenvalue A, of multiplicity n = dim E. The theorem implielrl E&:YE{I;'O:;Y ;?I:

N=T-2 S =1L
Then, clearly, T = N + S and SN = NS. Moreover, S is diagonal (in every basis)

and N is nilpotent, for £ = E =
e (T, A} = Ker N*. We can therefore immediately

n—1
eT = ¢Se¥ = o 3 »
| =k
there is no difficulty in finding it.
Example 1 Let T = [ -}]. The characteristic polynomial is
p(t) =0 — 4t + 4 = (2 — 21,

There is only one eigenvalue, 2, of multiplicity 2. Hence
2
s-[o o
0 2

N=T—S=[_l —I:l
1

We know without further com i
. putation that N commutes wi is ni
of order 2: N* = 0. (The reader can verify these state:nent:ﬂ)tl'll'lfe:;grem pilpotent

e = &SV = (] + N)
0 -
=e’[ 1]=[0 -
1 2 ¢ 22)
e = eSetN — A ] 4 1N
ze“[l-—Qt —:]
] 1+l

Th -
us the method applies directly to solving the differential equation z’ = Tz

More generally,

(see the previous chapter),

For comparison, try to compute directly the limit of
L] tl 1 _l &
5l 7]
—ktll 3]

T =T|EM,T).

In the general case put

e T,. Since each T, has only the one eigenvalue X, we can
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appiv the previous result. Thus
Ty = Sc + N S, Ny € LE(M, T),
where S. = MJ on E(h, T), and Ne = T — 8. is nilpotent of order 7. Then
T=8+N,

where

S = S!e..- 08"
N=No: -ehN,
Clearly, SN = NS. Moreover, N 18 nilpotent and § is diagonalizable. For if m =

max(ny, . .., 7., then

Nm=(N)~e- - e(NJ==0;
and § is diagonalized by a basis for E which is made up of bases for the generalized
cigenspaces.
We have proved:

Theorem 2 Let T € L(E), where E 18 complex if T has a nonreal eigenvalue. Then
T = 8+ N, where SN = NS and S is diagonalizable and N 1is nilpotent.

In Appendix ITI we shall prove that S and N are uniquely delermined by T.

Using Theorem 2 one can compute the exponential of any operator T: E — E
for which the eigenvalues are known. (Recall we are making the general assumption
that if £ is real, all the eigenvalues of 7 must be real.} The method is made clear

by the following example.
Example 2 Let T ¢ L(RY) be the operator whose matrix in standard coordi-
nates is

-1 1 =2
Te = 0 -1 41
0 0 1

We analyze T, with a view toward solving the differential equation
' = Tor.
The characteristic polynomial of T, can be read off from the diagonal because sall
subdiagonsl entries are 0, it is
plt) = ¢+ 1)t —1).

The cigenvalues are — 1 with multiplicity 2, and 1 with multiplicity 1,
The two-dimensional generalized eigenspace of —1 is spanned by the basis

o = (1,0,0), a = (0’ 110);
this can be read off directly from the first two columns of To.
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The one-dimensional generalized ei : .
genspace of 41 is the so
system of equations e solution space of the

(To — Dz =0,
or

one can verify that the vector
a = (0) 2r 1)
is a basis.
Let ® be the basis {a), as, &3} of R%. Let T= S+ N i
®-coordinates, S has the matrix be 25 In Theorem 2. In

-1 00
8 = 0 —1 0};
0 01

this follows from the eigenvalues of T being —1, —1, 1. Le i
in standard coordinates. Then & 75 7l Lt Sobe the mabx of 8

8 = P8P,
where P is the inverse transpose of the matrix whose rows are ay, a2, a;. Hence
Lo o
PYyr=[0 1 0],
[0 2 1]
Lo o
P1=101 2|
0 0 1]
[1 0 o
P=]o 1 -2
_0 0 1
Therefore
8 = P1S,P.
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Matrix multiplication gives

-1 00
Se=| 0 —1 4}
0o 01

We can now find the matrix N of N in the standard basis for R,

No=To— S
1 1 -2 -1 00
| 0o -1 4|-j 0 -1 4
o 0 1 0 01
[0 1 -2
~l0 0 of
00 o

We have now computed the matrices of S and N. The reader might verify that

Nt =0Oand SN = NS.
We compute the matrix in standard coordinates of e not by computing the matrix
e% directly from the definition, which involves an infinite series, but as follows:

exp(8o) = exp(P§,P) = P~'exp(S))P

olfer* 0 O}{1 0 O
={0 1 2|0 e Ofj0 1 =2}

—
<

00 1(|]0 0 e]{C O 1
which turns out to be
et 0 0
exp(Se) = |0 &' =2+ 2|
0 o e

It is easy to compute exp(No):
exD(No) = I 4 No

1 1 -2
=10 1 0|
0 0 1
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Finally, we obtain
exp(Te) = exp(8S, + No) = exp(8y) exp(N,),

which gives
rl e—l —Ze'"
exp(To) =0 1 —201 4 2¢)
0 o e

It is no more difficult to compute /™, t € R, Replacing T, by (T, transforms S,
to t8y, Ny to {N,, and 80 on; the point is that the same matrix Pis used for all values
to {. One obtains

exp(tTs) = exp(tSs) exp(tNo)

re 0 0 1 &t -2
=|0 ' —200421101 0
[0 0 ¢t 00 1
[ttt —e
={0 et —2t42]
_0 0 e

The solution 'of z' = Ty is given in terms of exp(tT,).
Th.e following eonsequence of the primary decomposition is called the Cayley~
Hamilton theorem.

Theorem 3 Lel A be any operator on a real or complez vector space. Lel its charac-
teristic polynomial be

p(f) = 3 autt,

-0
Then p(A) = 0O, that 1s,

L adXz) =0

F ]
Jorallz € E.

Pl:oof. We may sssume E = R» or C*; gince an operator on R* and its complexi-
fication have the same characteristic polynomial, there is no loss of generality in
sssuming £ is a complex vector space.

It suffices to show that P(A)z = 0 for all z in an arbitrary generalized eigenspace
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E(A, \), where p(A} = 0. Now
E(x, A) = Ker(4 — \)™,
where m is the multiplicity of A, Since (¢ — A)* divides p{t) we can write
p(t) = q{t) (¢~ M=
Hence, for z € E(\, 4):
p(A)z = q(A)[(4 — N"z]
= g(A4)(0) = 0.

§2. The S+ N Decomposition

Let T be an operator on R* and Tc:C* - C*its complexification. If T is diagonal-
izable, we say T is semisimple.

- ique operalors S, N on R*
1 For any operator T € L(R ).t{wre are tnique
E?tlr;tmi' = 8 4 N, SN = NS, S is semisimple, and N 1s nilpolent.
imi for operators on complex vector
. We have already seen a similar theorem v
sp:cr:f now \:e apply this result to prove the t.heorem. for operatqrséog .R‘.rhl;:
a: C» iR C* be the operator of conjugation (Chapter 4.);sz =z -li—e;l% t,'o,; ¥here
x.yeR" thenaz=:r—iy.Anoperat.orQonC"lst.hecomp eati

R~ if and only Qo = Q. ) ' ]
Opt(!}r;l:»g; g‘ne L(R*) let Tc € L{C") beita complexification. By Theorem 2, Section

1, there are unigue operators Sy, N, on C» such that
TC - S. + Nll

SeNo = NoSs, Se diagonalizable, and N, nil[.)ot.ent.. We assert t-hat t.:. an:lo r:!:l :rt:
complexifications of operators on R*. This is prl'oved by showing they
with o, as follows. Put §; = o8y, Ny = oNeo'. Then

Te = d'TcO‘_' = S:+N1.

is di i in ni d 81N1 - lel- There-
i to see that S, ia disgonalisable, N, is nilpotent, an 3 .
::;rl: g:si S.ﬁd Na -1 N.. This means that S, and N, commute with ¢ as asserted
There are unique operators S, N in L{R*) such that
S. - SCl NO - NC-
Since the map A — Ac is one-to-one, it follows that
SN = NS
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for
(SN - NS)C = SeNo — NoSo = 0.

Similar reasoning shows that N ia nilpotent, and also § + N = T, The uniqueness
of § and N follows from uniqueness of 8, and N,. This completes the proof.

Definition S is called the semisimple part of T and N the nilpolent part.

Let T = 8§ + N as in Theorem 1. Since Sc is diagonalizable, it follows from
Chapter 4 that in a suitable basis ® of R*, described below, S has a matrix of the

form _
g

A

2
b a |
Here )y, ..., ), are the real eigenvalues of T, with maltiplicity ; and the complex

numbers
a + 1h; k=1,...,s

are the complex eigenvalues with positive imaginary part, with multiplicity. Note
that T, T, S¢, and S have the same eigenvalues.
The exponential of the matrix ¢L, ¢ € R is easy to calculate since

[ta ~tb] “[costb —&in tb]
=¢ .
Ple @ sinth  costh
The basis ® that gives S the matrix L is obtained as follows. The first r vectors

in ® are from bases for the generalized eigenspaces of 7 that belong to real eigen-

values. The remaining 2a vectors are the imaginary and rea! parts of bases of the
generalized eigenspaces of T¢ that belong to eigenvalues a + b, b > 0.

In this way ¢'T can be computed for any operator T, provided the eigenvalues
of T are known,

Example. Let T € L(R*) be the operator whose matrix in standard coordinates
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18
0 -1 ¢ 0
1 090 0
Tn = .
0 00 —1
2 01 0
In C* the generalized i-eigenspace is the solution space of
(Tu - 1‘:)‘2 = 0,
or of .
"‘221 -_ 21:21 = 0,
—2121 - 22; = 0,
—2z — 2z 4+ 2 =0

iz, — % — 2in— 2 = 0.

These are equivalent to
o= 1:511

—zp 4tz = 2.
As s basis for the solution space we pick the complex vectors
wu=(;1,01), v=0%L -1, 0.

From these we take imaginary and real parts:

Tu=1{(1,000) =e, Iv=(1,0,—1,0) =e,

Ru=(0,1,0,1) =&, Rv=(0100 =e
These four vectors, in order, form a basis ® of R*. This basis gives S the matrix -

o -1

1 0
S1=

(We know this without further computation.)
The matrix of S in standard coordinates is

So = P ISgP y
where P is the transpose of the matrix of components of ®; thue
10 10
01 01
P1=
o0 -10
01 00
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and one finds that

1 0 0]
P=00 0 1
00 -1 of
01 0 —1]
Hence
[0 —1 0 0]
1
5, ~ 00 0
o 10 -1
1 01 0]
The matrix of N in standard coordinates is then
No=To— S
[0 -1 ¢ o 0 -¥r 0 0
|t o0 o 1 00 O
0 00 -1 0 10 —
2 01 0 1 01 o0
.
“lo -1 '
(10

which indeefi is nilpotent of order 2 (where - denotes a zero)
The matrix of ¢:T in standard coordinates is ‘

exp(tTo) = exp(tNy + 1Ss) = exp(IN,) exp(LS,)

= (I 4 tNy) P exp(LS,) P,
From
cogl —sint
exp(1Sy) = gin ¢ cost
cost —sint
sin ¢ cos ¢

the reader can complete the computation.
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PROBLEMS
1. For each of the following operators T find bases for the generalized eigenspaces;
give the matrices (for the standard basis) of the semisimple and nilpotent
parts of T.
(&) r1 1 M 1] (e) [0 1]
[0 1] [0 -1 1 0
(d) 0 20 (e {00 8 M [t 111
-2 0 0 00 4 2 2 2 2
2 0 6 01 -2 3333
4 4 4
2. A matrix [a;;] such that a;; = 0 for i < j is nilpotent.
3. What are the eigenvalues of a nilpotent matrix?
4. For each of the following matrices A, compute e*4, £ € R:
(a) Jo o 5 by fo 000
2 0 -1 1 001
01 1] 1 001
0 -1 1 0
(e) 0 (d} o 2 o
-1 2 0 00 3
1 1 00
5. Prove that an operator is nilpotent if all its eigenvalues are zero.
6. The semisimple and nilpotent parts of T. commute with A if T commutes
with A,
7. If A is nilpotent, what kind of functions are the coordinates of solutions to
= Ax?
8. If N is a nilpotent operator on an n-dimensional vector space then N* = 0.
9. What can be said about AB and A + Bif AB = BA and

(a} A and B are nilpotent?
(b) A and B are semisimple?
{¢) A is nilpotent and B is semisimple?

$2.

10.

11.

13.

14,

15.

16.

17.

18.

19.

21.
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If. A and B are commuting operators, find & formula for the semisimple and
nilpotent parts of AB and A + B in terms of the corresponding parts of A

and B. Show by example that the formula is not always valid if A and B donot
commute. .

Identify R"*! with the set P, of polynomials of degree < n, via the corre-
spondence
(@ny ... @} aats + - +at + .
Let D: P, — P, be the differentiation operator. Prove D is nilpotent.
Find the matrix of D in the standard basis in Problem 11,

A rotation around a line in R? and reflection in a plane in R* are semisimple
operators. P

Let-Sbesemis.impleand Nnilpotent. If SN = NS = 0,then 8§ = Oor N = 0
(Hint: Consider generalized eigenspaces of § + N.) -

If T* = T, then T is diagonalizable. (Hini: Do in thi
chaptor) { : not use any results in this

Fipd necessary and sufficient conditions on a, b, ¢, d in order that the operator
[z 4] be P

{a) diagonalizable; (b} semisimple; (¢) milpotent.

Let F C E be invariant under T ¢ L(E). If T is nil isi
4 . te
diagonalizable, so is T | F. s ipotent, or semizimple, or

An operator T -6 L(E) is semigimple if and only if for every invariant subspace
F C E, there is another invariant subspace F’ C E such that E = F o F".

Suppose T is nilpotent and

k-1

Tk = Ea,-T", a; € R.
F=00

Then T* = 0.

What values of a, b, ¢, d make the following operators semisimple?

(8) [ 0 a] (b) [1 —I] (c) 1 00 (d) 040
-1 2 1 b 211 1 0 d
0 0 ¢ d 1 0

What values of a, b, ¢, d make the operators in Problem 20 nilpotent?
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§3. Nilpotent Canonical Forms

In the previous section we saw that any operator T can be decomposed uniquely
as
T=84N
with 8 semisimple, N nilpotent, and SN = NS. We also found a canonical form
for S, that is, a type of matrix representing S which is uniquely determined by
T, except for the ordering of diagonal blocks. In the complex case, for example,

S = diﬂg{kl, LR | All}i

where Ay, ..., A are the roots of the characteristic polynomial of T, listed with
their proper multiplicities.

Although we showed how to find some matrix representation of N, we did not
give any special one. In this section we shall find for any nilpotent operator a matrix
that is uniquely determined by the operator (except for order of diagonal blocks).
From this we shall obtain a special matrix for any operator, called the Jordan
canonical form.

An elementary nilpolent block is & matrix of the form

(1) 0

10

with 1’s just below the diagonal and O's elsewhere. We include the one-by-one

matrix {0].
If N: E — E is an operator represented by such a matrix in a basis e, .. ., &n,
then N behaves as follows on the basis elementa:
N(O]) = &y
N(er) = &,
Nlea) = ea,
N(ea) = 0.
1t is obvious that N» () = 0, k = 1, ..., n; hence N* = 0. Thus N is nilpotent

of order . Moreover, N* # O if 0 < k < =, since Nig, = gy # 0.
In Appendix ITT we shall prove
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Theorem 1 Let N be a nil, veclor space
em 1 Let polent operator on a real or le
E has a basis giving N a mairiz of the form o £ Then

4= dia'g[Al: cery A,’,
wh:re A;jisan fslemmtary nilpotent block, and the size of A, 1s & nonincreasing function
of k. The matrices Ay, ..., A, are uniquely determined by the operator N

We call the matrix in Theorem 1 the canonical form of N,

Let A be an elementary nilpotent i i i
o e ry nilpotent matrix. It is evident that the rank of A is

dim Ker A = 1.

This implies the following corollary of Theorem 1.

Theorem 2 In Theorem 1 the number r of blocks is equal to dim Ker A.

We define the canonical form of a nil i
¢ potent matrix to be the canonical
o.f t,l}lxe corres‘pondmg operator; this is a matrix similar to the original one ;fnnc:
similar matrlces correspond to the same operator, it follows that they hu.ve the
same canonical form. From this we conclude:

Theorem 3 Two nilpotent n X n matri 3 aperalor same
¢ nipol rices, or {wo nilpotent
vector space, are similar if and only if they lu;w the same canom'oalfon: o the

The question arises: given a nilpatent operator, how is its canonical form found?

To answer this let us examine a nil ; ;
tent t : . X
form, say, the 10 X 10 matrix pe matrix which is already in canonical

o | -
1 0
10

N =

(o]
(o]
L (0]
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We consider V as representing a nilpotent operator T on R™, Consider the relations
between the following sets of numbers:

5. = dim Ker T7, 1<k <10,
and

»i = number of elementary nilpotent k X k blocks, 1<k <10

Note that v = 0 if k¥ > 3. The numbers & depend on the operator, and can be
computed from any matrix for 7. On the other hand, if we know the v we can
immediately write down the matrix N. The problem, then, is to compute the »
in terms of the .
Consider
5, = dim Ker T.

From Theorem 2 we find
§, = total number of blocks = ry + » + n.

Next, consider & = dim Ker T* Each 1 % 1 block (that is, the blocks [0])
contributes one dimension to Ker T2 Each 2 X 2 block contributes 2, while the
3 % 3 block also contributes 2. Thus

5! = 9 + 2" + 27:.

For & = dim Ker T%, we see that the 1 X 1 blocks each contribute 1; the 2 X 2
blocks each contribute 2; and the 3 X 3 block eontributes 3. Hence

& =n + 2': + 3v;.

Tn this example N? = 0, hence & = &, k>3

For an arbitrary nilpotent operator T on a vector space of dimension n, let N
be the canonical form; define the numbers & and 5, k = 1, ..., n, 08 before. By
the same reasoning we obtain the equations

3|=I’1+1‘:+"' +l‘n,
fr=m 420+ - o,
=t 2m+30mt o),

6",_1 =v1+2v1+ L + (ﬂ— 2)!._1+ (ﬂ— 1)(3._1+7.)’
&n =v1+2n+ v 4 e,

We think of the 8 as known and solve for the ». Subtracting each equation from
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the one below it gives the equivalent system:
=t o+,
—Hitd =t o,
—&h+ 4 =_=ra+ AR ¥ N
—8py + 8a =- V-
Subtracting the second of these equations from the first gives
»n = 25 — b,
Bubtracting the (k 4+ 1)th from the kth gives
= =+ 25 — S, 1<k <n;
and the last equation gives ».. Thus we have proved the following theorem, in which
part (b) allows us to compute the canonical form of any nilpotent opent:or:

Theorem 4 Let T be a nilpolent aperator on an n-dimensional 1pace.

. veclor L
ulhcnuu.tberokakblochinﬂwwrwm’mlformofT,and&.-dichr!‘ t);t:v:
the following equations are valid: '

(B} 3a = Yickcmbrs + M Yagscary;m=1,..., n;
(b) » =28 — &,

= =8+ 2 — By, 1 <k <,

o = =8 + da.

Note that the equations in (b) can be subsumed under the xingle equation

L4 T _al—l. + 26& - ﬁg...h

val.idfor'allintaegeuk.?_ 1,ifwenote that 8 = O and 3, = 3, fork > n.

There ia the more difficult problem of finding & basis that puts a given nilpotent
o?erat.or in canox_ncal form. An algorithm ia implicit in Appendix II1. Our point of
view, however, is to obtain theoretical information from canonical forms. For
example, the eqx;‘nf.lons in the preceding theorem immediately prove that fwo nil-
potent operators N, M on a vector space E are similar if and if di -
dim Ker M* for 1 <k < dimE. / oy of dim Keer "

For computational purposes, the 8 + N decompoeition is usually adequate.

! s potition is ly On
:he :;:her hand, the existence and uniqueness of the canonical forms is important
or theory,
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PROBLEMS
1. Verify that each of the following operators is nilpotent and find its canonical
form:
& [o 00 ) [o 2 -2 (cy O 0 00
1 0 00 4 0000
02 0 60 0 6700
8 9 00
dy fo o000 (e) 1 10 O
10000 -1 -1 0 0
000CCGO 0 1 2 -2
00000 i 0 2 —2
0 0 230

Let N be a matrix in nilpotent canonical form. Prove N is similar to

{a) kN for all nonzero ke R,

{b) the transpose of N.

3. Let N be an n X 7 nilpotent matrix of rankr. IEN* = 0, thenk 2 n/{n — 1),

Classify the following operators on R by similarity (missing entries are 0):

12

(a) [0 1 (b) 200 2 () |0 O
0 2 0 0 4 0
0 3 0 0 0
L 0 -2 00 -2 00
@ [ o (e} [0 0 0 100
1 0 0
o 1 0 0
|-1 —1 -1 0 0

§4. Jordan and Real Canonical Forms

In this section canonical forms are constructed for art?itrary opera'bors:
We start with an operator T on E that has only one eigenvalue A; if x i8 nonreal,
we suppose E complex. In Section 1 we saw that

T=M+N
i i i ive E a basis & =
with N nilpotent. We apply Theorem 1 of Section 3'and give
le,, .. ., e} that gives N a matrix A in nilpotent canonical form. Hence T has the

®-matrix M + A. Since A is composed of diagonal blocks, esch of which is an
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elementary nilpotent matrix, \I + A has the form

(1 A ]

-

i 1 A
{Some of the diagonal blocks may be 1 X 1 matrices [A].) That is, Af + A has
X's along the diagonal; below the diagonal are 1’s and 0's; all other entries are 0.

The blocks making up M + A are called elenientary Jordan malrices, or elementary

A=blocks. A matrix of the form (1) is called a Jordan matriz belonging to A, or briefly,
a Jordan M-block.

Consider next an operator T: E — E whose distinct eigenvalues are Ay, ..., Aa;
as usual E is complex if some ecigenvalue is nonreal, Then E = E, 0 --- @ E,,
where E, 1s the generalized M-eigenspace, k = 1, ..., m. We know that T | E; =

MI + N with N, nilpotent. We give E, a basis ®,, which gives T'| E, a Jordan

matrix belonging to A.. The basis ® = &, U - -+ U®; of E gives T a matrix of the
form

C = diﬂ’g{clr RN | Clll

where each C, is a Jordan matrix belonging to .. Thus C is composed of diagonal
blocks, each of which is an elementary Jordan matrix C. The matrix C is called the
Jordan form (or Jordan matrix) of T.

We have constructed a particular Jordan matrix for 7', by decomposing E as a
direct sum of the generalized eigenspaces of 7. But it is easy to see that given any
Jordan matrix M representing T, each Jordan A-block of M represents the restric-



125 §. LINEAR BYSTEMS AND CANONICAL FORMS OF OPERATORS 5‘1: JORDAN AND REAL CANONICAL FO
N RME

tion of T to the generalized \-eigenspace. Thus M must be the matrix we con- of diagonal blocks of the form
structed, perhaps with the a-blocks rearranged. (o -~
It is easy to prove that gimilar operators have the same Jordan forma {perhaps 2 D 7]

with rearranged A-blocks). For if PT P = Ty, then P maps each generalized
a-eigenspace of To isomorphically onto the generalized M-eigenspace of Ti; hence I
the Jordan A-blocks are the same for To and Th. . or D,

In summary: ’ :

L D
Theorem 1 Let T ¢ L(E) be an operator; if E is real, assune all eigenvalues of where - -
T are real. Then E has a basis giving T a matriz in Jordan form, that 18, a malrix
made up of diagonal blocks of the form (1}. D [a —b 10
. b a]' h= [0 1]’
Except for the order of these blocks, the matrix is uniquely determined by T. Thus T | £, has & matrix of the form
Any operator similar to T has the same Jordan form. The Jordan form can be (3) T -
written A + B, where B is a diagonal matrix representing the gemisimple part of D T

T while A is a canonical nilpotent matrix which represents the nilpotent part of I
T:.and AB = BA.
Note that each elementary A-block contributes 1 to the dimension of Ker( T — A).

Therefore, i

N I D
Proposition In the Jordan form of an operator T, the number of elemeniary \-blocks . _
15 dimm Ker(T — )}. D

I
We turn now to an operator T on a real vector space E, allowing T to have non- .
real eigenvalues. Let Tc: Ec — Ec be the complexification of T. Then Ec has a
basis & putting T into Jordan form. This basis & is made up of bases for each .
generalized cigenspace of T.. We observed in Chapter 4, Section 2, that for a real I. D J
eigenvalue A, the generalized eigenspace Ec(Tc, M) is the complexification of a
subspace of E, and hence has a basis of vectors in E; the matrix of Tc | E (Tc, V)
in this basis is thus a real matrix which represents T | E(T, »). It isa Jordan A-block.
Lot u = a + b, b > 0 be a nonreal eigenvalue of T. Let

fzy + i, .o -y Ty T+ Wl I
A

be a basis for E(p, Te), giving Tc | s, Tc) a Jordan matrix belonging to a. .

Tn Section 2 we saw that

E(u, Tc) ® E(p, Tc) N I D

is the complexification of a subspace E, C £ which is T-invariant; and the vectors Combining these bases, we obtain

{4, T+« s Y ol
Theorem 2 ILet T: E — E be an operator on a real vector space. Then E has a basis

arc a basis for E. Tt is easy to see that in this basis, T | E, has a matrix comp piving T a malriz com :
i ; osed f posed of diagonal blocks of the forms (1) and (2). The diagonal
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elements are the real eigenvalues, with multiplicity. Each block $ 2, b > 0, appears
as many times as the multiplicity of the eigenvalue a + bi. Such a matriz fs unigquely

determined by the similarity class of T, except for the order of the blocks.

Definition  The matrix described in the theorem is called the real canonical form
of 7. 1f 1" has only real cigenvalues, it is the same as the Jordan form. If T ia nil-
potent, it is the same as the canonieal form discussed earlier for nilpotent operators.

The previous theory applies to Tc to show:

Proposition In the real canonical form of an operator T on a real veclor space, the
number of blocks of the form ‘
A ]

1

L 1A

s dim Ker (T — \). The number of blocks of the form (2) is dim Ker(Te — (a + th)).

The real canonical form of an operator T exhibits the eigenvalues as part of a
matrix for T. This ties them to T much more directly than their definition as roots
of the characteristic polynomial. For example, it is easy to prove:

Thearem 3 Let Ay, + .+ -, ha be the eigenvalues (with multiplicities) of an operator T.
Then

(&) Tr{T) =2+ -« + M,

(b) Det(T} = A+ A

Proof. Wemay replace a real operator by its complexification, without changing
its trace, determinant, or eigenvalues. Hence we may assume T operates on a com-
plex vector space. The trace is the sum of the diagonal elements of any matrix for
7 looking at the Jordan form proves {a}. Since the Jordan form is a triangular
matrix, the determinant of 7' is the produet of its diagonal elements. This proves
(hy.

T'o comptte the canonical form of an operator T' we apply Theorem 4 of Section
10 the nilpotent part of T — A for each real eigenvalue A, and to T¢ — (a + bi)
far each complex eigenvalue a + b4, b > 0. For each real eigenvalue A define v, (\) =
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number of k X k blocks of the form

A
1 -

in the real Jordan form of 7; and
3:(A) = dim Ker (T — »)*,

For each complex eigenvalue A = a 4 b, b > 0, define ». (A} = number of 2k % 2k
blocks of the form

[D i

I

I b |
in the real Jordan form of T; and

5(x) = dim Ker(T¢ — A)

a8 a complex vector space. One obtains:
Theorem 4 Let T be an operator on a real n-dimensional veclor
- space. Then the
real Jordan form of T is delermined by the following equations:
vg()l) = —6g_1(k) + 25;(R) — 5“.1(&), l S k S n,

tlvlwre‘ X runs through oll real eigenvalues and all compler eigenvalues with posilive
mmagqinary parl.

Example. Find the real canonical form of the operator

0 00 -8
1 0

T 0 16 .
010 —14
001 6
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The characteristic polynomial is
(t— Q4+t —-(1-0)—-2%
The eigenvalues are thus 1 +4, 1 — 4, 2, 2. Since 1 + i has multiplicity 1, there
can only be one block [} ~1]. A computation shows
5(2) =1L

This is proved most easily by showing that rank (T — 2) = 3. Hence there is only
one elementary 2-block. The real canonical form is thus:

2
1 2
1 -1
11

There remains the problem of finding a basis that puts an operator in real canon-
ical form. An algorithm can be derived from the procedure in Appendix ITL for
putting nilpotent operators in cancnical form. We shall have no need for it, however.

PROBLEMS

1. Find the Jordan forms of the following operators on C»:

{a) [ 0 I:I (b) [i —1] (©) [l+:’ 2 ]

-1 0 1 i 0 144
Find the real canonical forms of the operators in Problem 1, Section 2.
Find the real canonical forms of operators in Problem 4, Section 2.

What are the possible real canonical forms of an operator on R* for » < 57

Let 4 be a3 X 3 real matrix which is not diagonal. If (A + I)* = O, find the
real canonical form of A,

Sk N

6. let A be an operator. Suppose g(A) is a polynomial (not identically 0) such
that ¢{A4) = O. Then the eigenvalues of A are roots of g.

Let A, B be commuting operators on C* (respectively, R*). There is a basis
putting both of them in Jordan (respectively, real) canonieal form.

¥l

Every n X n matrix is similar to its transpose.

9. Let A be an operator on R*. An operator B on R~ is called a real logarithm
of A if e® = A. Show that A has a real logarithm if and only if A is an iso-
morphism and the number of Jordan A-blocks is even for each negative eigen-
value A
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10. Bhow that the number of real logarithms of an operator on R* is either 0, 1,
or countably infinite.

§5. Canonical Forms and Differential Equations

After a long algebraic digression we return to the differential equation
(1) ¥ =Az, Ac L(RY.
Suppose A is Jordan A-block, » € R:

A
1
1 A
From the decomposition B N
A=)+ N,
o -
1
N =
10

we find by the exponential method (Chapter 5) that the solution to (1) with initial
value 2(0) = C € R*is

z(t) = eMC = edeiNC

1N
= [ g8 ———
[«Z5]e
- rer
¢ 1
e
N
gt s
- Dl TR |
- - -
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In coordinates,
J=1

(2) I}(t) = ¢ z t C‘d_‘-.

k!

Note that the factorials can be absorbed into the constants.
Suppose instead that A = a + b, b # 0, and that 4 is a real A-block:

- 7

I

I D

L.

Let m be the number of blocks D so that n = 2m. The solution to (1) can be com-
puted using exponentials. It is easiest to consider the equation

(3) 2 = Bz,

where z: R — C" is an unknown map and B is the complex m X m matrix
p |

1

. u=a-+1

1 g

We identify C= with R* by the correspondence

(2"1 +iy1, ey :r,..+1'y,.) = (313 Y1, - ooy Tmy y'l)'
The solution to (3) is formally the same as (2) with a change of notation:
-1 .
(4) z,(t)=e-'z:ﬁc,-_*; i=1...,m
— K1
Put € = Le +iMy, k=1, ..., m, and take real and imaginary parts of (4);

using the identity _
eteBd = gsi(cos bt + 1 ain bt)

one obtains

=1

[ .
(5) () = et Y, — [Li_sconbt — M, ,sin bt],
oy

=1

() =e# 3 :—T [M s cos bt + L;_a sin bt];
| ]
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7 =1,..., m. This is the solution to (1) with initial conditions
n{0) = Ly, (0 =M,

The reader may verify directly that (5} is a solution to (1).
At this point we are not so much interesgted in the precise formulas (2) and (5)
as in the following observation:
(6) If Ais real, each coordinate x;(?) of any solution to (1) is & linear combination
(with constant coeflicients) of the functions

L 2l k=0 ...,n

(7Y Ifx =a+ bi,b=0,and n = 2m, then cach coordinate z;(t) of any solution
to (1) 18 a linear combination of the functions

es'tt cos bi, e**t* gin bi; 0<k <m

Consider now Eq. (1) where 4 is any real n X n matrix. By a suitable change
or coordinates x = Py we transform A into real canonical form B = PAP. The
equation

(8 ¥ =By
is equivalent to (1): every solution z(¢) to (1) has the form
z(f) = Py(d),

where ¥(t) solves (8).
Equation (8) breaks up into a set of uncoupled cquations, each of the form

u' = By,

where B, is one of the blocks in the real canonical form B of A. Therefore the co-
ordinates of solutiona to (8) are linear coordinates of the function described in (6)
and (7), where A or @ + bi is an eigenvalue of B (hence of A). The same therefore
is true of the original equation (1).

Theorem 1 Let A € L(R*) and let 2(!) be e solution of ©’ = Ax. Then each co-
ordinate x; (t) is a linear combination of the functions

*e' coa bt, tle* sin be,
where a 4 bi runs through all the eigenvalues of A with b > 0, and k and I run through

all the integers 0, ..., n — 1. Moreover, for each A = a + bi, k and | are less than
the size of the largest \-block in the real canonical form of A,

Notice that if A has real eigenvalues, then the functions displayed in Theorem 1
include these of the form e,

This result does not tell what the solutions of (1) are, but it tells us what form
the solutions take. The following is a typical and very important application of
Theorem 1.
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Theorem 2 Suppose every eigenvalue of A € L(R*) has negalive real part. Then
limz(t) =0

(54 ]
for every solution to &' = Azx.
Proof. This is an immediate consequence of Theorem 1, the inequalities
jeosbt| <1, |[sinbt| <1,
and the fact that

lim the*t =0  forallk ifa <0

[

The converse to Theorem 2 is easy:

Theorem 3 If every solution of ' = Ax tends to 0 as £ — o, then every efgenvalue
of A has negative real part.

Proof. Suppose u —a -+ tb is an eigenvalue with ¢ > 0. From (5) we obtain
a solution (in suitable coordinates)

$|(!) = ¢* cos bt,
() = e**gin b,
Zj(‘) - W(t) = 0, iz,

which does not tend to zero as { — <«

An argument similar to the proof of Theorem 2 shows:

Theorem 4 [f every eigenvalue of A € L(R"*) has positive real part, then

lim | z{t) | = =

f-eo0

for erevy solution lo ' = Ax.
The {ollowing corollary of Theorem 1 ia useful:

Theorem 5 If A € L{R"), then the coordinales of every solution lo ' = Azx are
infinilely differentiable functions (thal is, C™ for all m).

PROBLEMS

1. (a) Suppose that every eigenvalue of A € L(R") has real part less than
—a < 0. Prove that there exists a constant & > 0 such that if z(t) is a

§5.

5.
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solution to £’ = Az, then
fx(t) | < k] 2(0) |

for all ¢ > 0. Find such a k and a for each of the following operators A :
(b) I:—l l] (c) [—1 100]
0 —1 0 -1

(d) [los} 1 ] (e) [—1 -1:|
0 logi 1 -1
Let A ¢ L(R"). Suppose all solutions of 2’ = Az are periodic with the same

period. Then A is semisimple and the characteristic polynonial is a power of
4+ a*ac R,

Suppose at least one eigenvalue of A € L{R*) has positive real part. Prove
that for any a € R», ¢ > 0 there is a solution z({) to 2’ = Az such that

lim | z(8)] = .

i-u

|2(0) —a} <e and

Let A € L(R"), and suppose all eigenvalues of A have nonpositive real parts.
{a) If A is semisimple, show that every solution of ’ = Az is bounded (that
is, there is a constant M, depending on z(0), such that | z(f)] < M for
allt € R).
{b) Bhow by example that if A is not semisimple, there may exist s solution
such that
lim | z(t)| = =.
=
For any solution to ' = Ar, A € L(R~»), show that exactly one of the folow-
ing alternatives holds:
(a) lime..z(t) = 0andlim._g|z(f)] = o;
(b} limi.. | z(t)] = = and lim,._, z(!) = 0;
(¢) there exist constants M, N > 0 such that

M<|z(t)| <N
forall ¢t € R.

Let A ¢ L{R*) be semisimple and suppose the eigenvalues of A are +ai, +bi;
a>0,b>0 .

(a) If a/b is & rational number, every solution to ' = Az is periodic.

(b) If a/b is irrational, there is 8 nonperiodic solution z(f) such that

M<lzi)| <N
for suitable conatants M, N > (.
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§6. Higher Order Linear Equations

Consider the one-dimensional, nth order homogeneous linear differential equation
with constant coefficients

{1) g a4 -.- a8 =0.

Here s: R — R is an unknown function, a4, . . . , a are constanta, and &' means the
kth derivative of s.

Proposition 1 (8) A linear combination of solutions of (1} iz again a solulion,
{h)  The derivative of a solution of (1) 78 again a solution.

Proof. By a linear combination of functions fi, ..., f. having a common do-
main, and whose values are in a common vector space, we mean a function of the

form

f(z) = afi(z) + -+ + caful2),
where ¢, . . . , cm 8T€ conslants. Thus (a) means that if 5:(¢), . . . , 8a(¢) are solutions
of (1) and ¢, . . . , tm are constants, then ¢;8;(t) 4 -+ + s (t) is also a solution;
this follows from linearity of derivatives.

Part (b) is immediate by differentiating both sides of (1) —provided we know
that a solution is » 4 1 times differentiable! This is in fact true. To prove it, con-
sider the equivalent linear system

(2 = Ts,
In—l’ = Zn,
Tn' = Gall = Gpoady — ¢ — 1L,
If s is a solution to (1), then
r=1(s4,...,8"*1)

is a solution to (1). From Theorem 4, Section I we know that every solution to
(2) has derivatives of all orders.
The matrix of coefficients of the linear system (2) is the n X n matrix

(3

0 1

Oy . .-~ -a,
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A matrix of this form is called the companion matriz of the polynomial
(4) PA) = A+ a4 o o+ Guih + G

In Chapter 5 it was shown that this is the characteristic polynomial of A.
Companion matrices have special properties as operators. The key to solving (1)
ia the following fact.

Proposition 2 Let A € C be a real or complex eigenvalue of a companion malriz
A. Then the real canonical form of A has only one r-block.

Proof. We consider A as an operator on C*. The number of A bloeks ia
dim Ker{4 — )},

considering Ker(A — )) as a complex vector space.
The first n columns of A — A form the (n — 1) X n matrix

— o

_A 1
—A

~A
! 4

which has rank n — 1. Hence A — X has rank n or n — 1, but rank n is ruled out
since A is an eigenvalue. Hence A — AN hasrankn — 1,80 Ker(A — ) has dimension
1. This proves Proposition 2.

Definition A basis of solutions to (1) is a set of solutions ), . . ., 8. such that
every solution is ~xpressible as a linear combination of &, . . ., 2. in one and only
one way.

The following theorem is the basic result of this section.

Theorem The following n functions form a baasts for the solutions of (1):

(a) the function t'e®, where A runs through the distinet real rools of the charac-
Leristic polynomial (4), and k s a nonnegaiive inleger in the range 0 < k <
multiplicity of \; together with

{b) the functions

the*t cos bi and trert gin be,

where & + bi runs through the complex roois of (4) having b > O and k 1a o
nonnegative tnleger in the range 0 < k < multiplicity of a + bi.
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Proof. We call the functions listed in the proposition basic functions. It follows
from Theorem 1 of the previous section that every solution is a linear combination
of basic functions.

The proof that each basic function is in fact a solution is given in the next section.
By Proposition 1 it follows that the solutions to (1) are exactly the linear combina-
tions of basic functions.

Tt remains to prove that each solution is a unigue linear combination of basic
functions. For this we first note that there are precisely # functions listed in (a)
and (b): the number of funetions listed equals the sum of the multiplicities of the
real roots of p(x), plus twice the sum of the multiplicities of the complex roots with
positive imaginary parts. Since nonreal roots come in conjugate pairs, this total
is the sum of the multiplicities of all the roots, which is n.

Define a map ¢: R* — R~ as follows. Let fy, ..., f« be an ordering of the basic

functions. For each o = (ay, . .., as) € R* let 5.(¢) be the solution
3, = E al'fi'
o=l
Define
pla) = (5.(0}, 8/{(0), ..., 8. 0{0}) € R~

It is casy to see that ¢ is a linear map. Moreover, ¢ i8 surjective since for each
[ THRNN a,1) & R" there is some solution s such that
(") ${(0) =ag, ..., 8" V(0) = 2u,

and s = s, for some a. Tt follows that ¢ is injective.

From this we see at once that every solution s is a unique linear combination
of the basic functions, for if s. = 8, then ¢(a) = ¢(8) and hence o = 8.
This completes the proof of the theorem,

Theorem 1 reduces the solution of (1} to elementary linear algebra, provided
the roots and multiplicities of the characteristic polynomial are known. For example,
consider the equation

(6) 30 4 45 4 55 4 49" 4 48 = 0,
The roots of the characteristic polynomial

M- 5at 44N 44
are
-2, =2, i, —i.

Therefore the general solution is
(7) s(f) = Ae¥ 4 Ble™ +~ Ccost + Daint,
where A, B, C, D are arbitrary constants.
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To find a solution with given initial conditions, say,

(8) 3(0) =0,
g{0) = ~1,
s (0) = —4,
s(0) = 14,
we compute the left-hand side of (8} from (7}, to get:
(9 30) = A +C =0,
#(0) =—-244+ B + D= -1,
s®(0) = 44 - 4B-C = —4,
80} = —84 + 12B - D =14

The only solution to this system of equations is
A=C=0, B=1 D=-2
Therefore the solution to (6) and (8) is
8(t) =t — 2gin b

PROBLEMS

1. Find a map s: R — R such that
8™ — a3 4y’ — 45 = 0,
2(0) =1, #(0) = —1, £'(0) = 1.

2. Consider equation (8) in the text. Find out for which initial conditions £(0),
2'(0), 8''(0) there is & solution #(f) such that:
(a) #(t) is pericdic; (b) lim,.,2(¢) = 0;
{e) lime..]8(t)| = o; (d) | () ] is bounded for ¢ > 0;
{e) |a(t)|isbounded forall f € R.

3. Find all periodic solutions to

59 4 26 4 g = 0,

4. What is the smallest integer n > 0 for which there is a differential equation

8= 4 g s oo oga = 0,
having among its solutions the functions
sin2t, 486, —eg?
Find the constants a,, ..., a. € R.



142 6. LINEAR SYSTEMB AND CANONICAL FORMS OF OPERATORS

§7. Opecrators on Function Spaces

We discuss briefly another quite different approach to the equation
(1) s 4+ a3 4 e a8 =0; s:R—R.

Let ¥ be the set of all infinitely differentiable functions R. — R (one could also
use maps R — C). Under multiplication by constants and addition of functions, ¥
satisfies the axioms VS1, V82 for a vector space (Chapter 3, Section 1, Part A);
but ¥ is not finite dimensional.

Let D: § — § denote the differentiation operalor; that is,

Df = §".
Then ) is a linear operator. Some other operators on F are:

muliiplication of f by a constant A, which we denote simply by A; note that 1f = f
and 0f = 0;
multiplication of f by the function #{{) = {, which we denote by t.

New operators ean be built from these by composition, addition, and multiplica-

tion by constants. For example,
D5 -9
assigns to f the function
D(Df) = D{f) =§";

gimilarly Dnf = f®™, the nth derivative. The operator D — X assigns to f the func-
tion f' — Af.

More generally, let

pil) =t t+atr'+ -+ +an

be a polynomial. (There could also be a coefficient a of *.) There is defined an
operator

p(D) =D*+ aiD* '+ ++- + @D + a4,
which assigns to f the function
FO 4 a4 oo 4 g + adf.

We may then rephrase the problem of solving (1): find the kernel of the operator
p(D).

This way of looking at things suggests new ways of manipulating higher-order
equations. For example, if p(\) factors

P(A) = ¢(Mr(d),
then clearly,
Ker r(D) C Ker p(D)).
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Moreover,
Ker g{D) C Ker p(D)),

gince gr = rg. In addition, if f € Kerg(D) and g € Kerr(D), then f+ g€
Ker p(D}. )

We can now give a proof that if (¢ — A)* divides p(t}), then t'e® € Ker p(D),
0 < k < m — 1. It suffices to prove

(2) (D — \)*igte™ = 0, k=0,1,....
Note that D(e®} = Ae?, or
(D~ Ner =0
Next, observe the following relation between operators:
Dt—tb =1
(this means D (#f) — tDf = f, which follows from the Leibniz formula}. Hence also
(D—Wt—t(D-x) =1
It follows easily by induction that
(D=N#—8(D—2) =k-1;  k=1,2....
Therefore
(D — \H(the?) = (D — N*(D — 1) (the?)
= (D — NM[A(D —~ \) + kt+']e?)
= k(D — N)*(#%e).
Hence (2) is proved by induction on k.
If X is interpreted as a complex number and p(D) has complex coefficients, the
proof goes through without change. If p(D) has real coefficients but » = a + bi

is a nonrea! root, it follows that both the real and imaginary parts of #¢® are anni-
hilated by p(D). This shows that

e cos b, tet sin b
are in Ker p(D). .

We have proved part of Theorem 1, Section 6 by easy “formal” (but rigorous)
methods. The main part—that every solution is a lincar combination of basic
functiong—can be proved by similar means. [See Linear Algebra by 8. Lang, p. 213
{Reading, Massachusetts: Addison-Wesley, 1966).] Operators on function spaces
have many uses for both theoretical and practical work in differential equations.



Chapter 7

Contractions and Generic Properties
of Operators

In this chapter we study some important kinde of linear flows e'4, particularly
contractions. A (linear) contraction is characterired by the property that every
trajectory tends to 0 as ¢ — . Equivalently, the eigenvalues of 4 have negative
real parts. Buch flows form the basis for the study of asymptotic atability in Chapter
9. Contractions and their extreme opposites, expansions, are studied in Section 1.

Section 2 is devoted to hyperbolic flows e*4, characterized by the condition that
the eigenvalues of A have nonzero real parta. Such a flow is the direct sum of a
contraction and an expansion. Thus their qualitative behavior is very simple.

In Section 3 we introduce the notion of a generic property of operators on R»;
this means that the set of operators which have that property containsa dense
open subset of L(R"). It is shown that “‘semisimple’’ is a generic property, and
also, “‘generating hyperbolic flows’ is a generic property for operators.

The concept of a generic property of operators ia a mathematical way of making
precise the idea of ‘‘almost all”” operators, or of a "“typieal” operator. This point is
discussed in Section 4.

§1. Sinks and Sources

Suppose that s state of some “physical” (or mechanical, biological, economie,
etc.) system is determined by the values of n parameters; the apace of all states
is taken to be an open set U C R*. We suppose that the dynamic behavior of the
system is modeled mathematically by the solution curves of a differential equation
(or dynamical system)

n Z =f(z), fiU—-R~
We are interested in the long-run behavior of trajectories (that is, solution curves)
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of (1). Of especial interest are equilibrium siafes. Such a state £ € U is one that
does not change with time. Mathematically, this means that the constant map
t— % is & solution to (1) ; equivalently, f(£) = 0. Hence we define an equilib-
rium of {1) to be a point £ € IJ such that f(£) = 0. :

From a physical point of view only equilibria that are “stable” are of interest.
A pendulum balanced upright is in equilibrium, but this is very unlikely to occur;
moreover, the slightest disturbance will completely alter the pendulum’s behavior.
Such an equilibrium is unstable. On the other hand, the downward rest position is
stable; if slightly perturbed from it, the pendulum will swing arocund it and (because
of friction) graduslly approach it again.

Stability is studied in detail in Chapter 9. Here we restrict attention to linear
systems and concentrate on the simplest and most important type of stable
equilibrium.

Congider a linear equation
(2) ¥ = Az, A€ L(R").

The origin 0 € R" is called a sink if all the eigenvalues of A have negative real
parts. We also say the linear flow ¢'4 is a contraction.

In Chapter 6, Theorems 2 and 3, Section 5, it was shown that 0 is a sink if and
only if every trajectory tenda to 0 as ¢t — «. (This is called asymplotic stability.)
From Problem 1, Section 5 of that chapter, it follows that trajectoriea approach
a sink erponentially. The following result makes this more precise.

Theorem 1 Let A be an operator an a veclor space E. The following sialemenis are
equivalent:
() The origin iz a sink for the dynamical system ' = Axz.
(b) For any norm in E there are constanis k > 0, b > 0 such tha!
fetz| < ke |z}
forallt >0, z¢ E.
(¢) There exisis b > 0 and a basis ® of E whose corresponding norm satisfies
letzle <e®|zle
forallt >0,z € E.

Proof. Clearly, (¢) implies (b} by equivalence of norms; and (b) implies (a)
by Theorem 3 of Chapter 6, Section 5. That (a) implies (b) follows easily from
Theorem 1 of that section; the details are left to the reader.

It remains to prove that (a) implies {c). For this we use the following purely
algebraic fact, whose proof is postponed.

Recall that R X is the real part of A

Lemama Let A be an operator on a real veclor space E and suppose
(3) a<Rr<8
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for every eigenvalue \ of A. Then E has a basis such that in the corresponding inner
product and norm,

(4) alzlt < (Az, ) < Blzl

forall x ¢ E.

Assuming the truth of the lemma, we derive an estimate for solutions of = Azx
Lot {7, ..., r.) be coordinates on E corresponding to a besis & such that {(4)
holds, and let

z(t) = (n(t), ..., 2alt))

be a solution to 2 = Azx. Then for the norm and inner product defined by ® we have

il =S 0E @

- 2 2]
[ (z*3
Hence
il = 7)) _ Lz Az)
dt x| jzl
Therciore, from (4), we have
d/dt| z| <34
EZ

or
< =lo |:r[<ﬂ
a ; /'3 .

It follows by integration that

of < log | z(t)| — log | z(0)} < B¢;
hence
log | ()}
o < jog [z =P
or
e | z(0)] < [z(t)} < & z(0)].

Theorem 1 is proved by letting 8 = —b < 0 where the eigenvalues of A have
real parts less than —b.

We now prove the lemma; for simplicity we prove only the second inequality
of {4).
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Let ¢ € R be such that
Ri<ex<p

for every eigenvalue X of A.
Suppose first that A is semisimple. Then R* has a direct sum decomposition

Ror=E e ---0oFE. oaF e---eF,

where each E; is s one-dimensional subspace spanned by an eigenvector ¢; of 4
corresponding to & real eigenvalue A;; and each Fi is a two-dimensional subspace
invariant under A, having a basis (f;, ¢;} giving A | F, the matrix

m b
[b. a.]'
where a, -+ tb, is an eigenvalue of 4. By assumption
M <c¢ a < ¢
Given R" the inner product defined by

e &) = Uhf*) = {g, ;) = L,

and all other inner products among the e;, fi, and g being 0. Then & computation
shows
{des, ) =N <e, (Afh) = <¢;
it follows easily that
{Az, z) < c|zft

for all z € R, as required.

Now let A be any operator. We first give R* a basis 80 that A has a matrix in real
canonical form

A = diagfd,, ..., 4,],

where each A, has the form

®) o

or
Dy

o | oo b el R

I D,
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If we give a subspace E; of E, corresponding to & block A, a baais satinfying the
lemma for A;, then all these bases together fulfill the lemma for 4. Therefore we
may assume A is a single block. ‘

For the first kind of block (5), we can write A = § + N where S has the matrix
a;f and N has the matrix

0
1 0
Thus the basis vectors {ey, . .., e.) are eigenvectors of S, while
NG] = 0y,
Nel—l = €n,
Ne, =0,
Let « > 0 he very amall and consider a new basis
1 1
®, = {c.,—s,,...,:e.} = (&, ..., &]).
€ €
®, is again composed of eigenvectors of S, while now
Nﬁ. = ¢y,
Nél = ‘éls
Ne-—l ; ‘énr
Ne, =0,
Thus the ®, matrix of 4 is
oy
€
(M)
3 € ﬂj-‘

Let (r, 3}, denote the inner product corresponding to ®,. It is clear by considering

the matrix (7) that
(Axr x)l - (Sm, .1'.')

(x, x), |x |

e— 0,
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Therefore if ¢ is sufficiently small, the basis ®, satisfies the lemma for a block (5).
The case of a block (6) is similar and is left to the reader. This completes the proof
of the lemma.

The qualitative behavior of a flow near a sink has a simple geometrical inter-
pretation. Suppose § € R* is a sink for the linear differential equation r’ = f(z).
Consider the spheres

Sa={zeR||z|=al, a>0,

where | z | is the norm derived from an inner product as in the theorem. Since lz(t) |
has negative derivatives, the trajectories all point inside these spheres as in Fig. A.

FIG. A

We emphasize that this is true for the spheres in a special norm; it may be false
for some other norm,

The linear flow ¢4 that has the extreme opposite character to a contraction is an
expansion, for which the origin ia called a source: every eigenvalue of A has poditive
real part. The following result is the analogue of Theorem 1 for expangions.

Theorem 2 If A ¢ L(E), the following are equivalent:
(a) The origin i a source for the dynamical system 2’ = Az;
(b) For any norm on E, there are constants L > 0, a > 0 such that
fetdz| 2> Le=| 2|

forallt > 0,z¢ E.
{c) Thereexistaa)ﬂandabasismowahoucorrupondingmmisﬁa

|e4z e > e=| x|
Jorallt > 0,z ¢ E.
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The proof is like that of Theorem 1, using the lemma and the first inequality of
4).

PROBLEMS

1. (a) %how that the operator A = [7} _}] generates a contracting flow et4
(b} Sketch the phase portrait of »' = Az in standard coordinates.
{¢) Show that it is false that |e"x| < |z|forallt 20, 2 € R?, where | z |
is the Euclidean norm,
5 Let ¢4 be a contraction in R*. Show that for r > 0 sufficiently large, the norm
[| # 1] on R* defined by

||::||=L1e'4::|ds

satislies, for some A > 0,
Nedz|| < ez}
3. (a) If e® and *A are both contractions on R*, and BA = 4B, then et4+®
is a contraction. Similarly for expansions, .
(b) Show that (a) can be false if the assumption that AB = BA is dropped.

4. Consider a mass moving in a straight line under the influence of a spring. As-
sume there is a retarding frictional force proportional to the velocity but oppo-

site in sign. . )
(a) Using Newton’s second law, verify that the equation of motion has the

form
mz” = ar’ + bz; m>0, a<0, b<O
(b) Show that the corresponding first order system has a sink at (_0, 0). )
(¢) What do you conclude about the long-run behavior of this physical
system?

5. If e is s contraction (expansion), show that e!™#’ is an expansion (respec-
tively, contraction). Therefore & contraction is characterized %)y every t_ra_]ec-
tory going to % 83 { — — = ; and an expansion, by every trajectory going to
Oast— —w.

§2. Hyperbolic Flows

A tvpe of lincar flow ¢4 that is more general than contractions and expansions is
the hyperbolic flow: all eigenvalues of A have nonzero real part.
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After contractions and expansions, hyperbolic linear fows have the simplest
types of phase portraits. Their importance stems from the fact that almost every
linear flow is hyperbolic. This will be made precise, and proved, in the next section.

The following theorem says that a hyperbolic flow is the direct sum of a contrac-
tion and an expanston,

Theorem Let e'4 be a hyperbolic linear flow, A € L(E). Then E has a direct sum
decomposition
E =E g E*

tnvariant under A, such that the induced flow on E* is a conlraclion and the induced
Jlow on Ev is an expanston. This decomposilion is unique.

Proof. We give E a basis putting A into real canonical form (Chapter 6). We
order this basis s0 that the canonical form matrix first has blocks corresponding to
eigenvalues with negative real parts, followed by blocks corresponding to positive
eigenvalues. The first set of blocks represent the restrietion of A to a subspace
E* C E, while the remaining blocks represent the restriction of A to E* C E,

Since E* is invariant under A, it is invariant under ‘4. Put A | E* = A, and
A|E" = A,. Then ¢4 | E* = ¢ By Theorem 1, Section 1, e*4 | E* is a contraction.
Similarly, Theorem 2, Section 1 implies that ¢4 | E is an expansion.

Thus A = A, @ A, is the desired decomposition.

To cheek uniqueness of the decomposition, suppose F* @ FV is another decom-
posttion of E invariant under the flow such that /4 | F* is a contraction and e'4 | F*
is an expansion. Let € F*, We can write

r=y+z2, y € B z € Ev
Since ez — 0 as { — =, we have ¢4y — 0 and e*4z — 0. But
lethz| > e |z|, a>0,

for all ¢t > 0. Hence | z | = 0. This shows that F* C E*. The same argument shows
that E* C F*; hence E* = F*, Similar reasoning about ¢ ‘4 shows that E = Fu.
This completes the proof.

A hyperbolic flow may be a contraction (E* = 0) or an expansion (E* = 0).
If neither E» nor E* is 0, the phase portrait may look like Fig. A in the two-dimen-
gional case or like Fig. B in a three-dimensional case.

If, in addition, the eigenvalues of A | E* have nonzero imaginary part, all tra-
jectories will gpiral toward E (Fig. C).

Other three-dimensional phase portraits are obtained by reversing the arrows in
Figs. B and C.

The letters s and u stand for stable and unstable. E* and E are sometimes called
the stable and unstable subspaces of the hyperbolie fiow.



152 7. CONTRACTIONS AND GENERIC PROPERTIES OF OPERATORS

EII

FIG. A

m
€
p——

/
%

— 1\
—J.7
/’;’

L5
1S,

EIJ

FIG. C

$3. GENERIC PROPERTIES OF OPERATORS 153 -

PROBLEMS

1. Let the eigenvalues of A €,L.(R® be A, u, v. Notice that ¢"* is a hyperbolic flow
and sketch its phase portrait if :
(a) A<Cu<r <O
b) A< u=a+bi,a<0,b>0;
(¢} A<O,p=a+b,a>0b>0;
{(d) X <0 <y =rand A is semisimple;
(&) A<u<0<y

2. ¢4 is hyperbolic if and only if for each z # O either

jetz| = a8 o ®
or

letdz| = w as — — e,

3. Show that a hyperbolic flow has no nontrivial periodic solutions.

§3. Generic Properties of Operators

Let F be a normed vector space (Chapter 5). Recall that a set X  F is open
if whenever z € X there is an open ball about z contained in X; that is, for some
@ > 0 (depending on r) the open bal! about z of radius a,

e Fliy—z|<al,

is contained in X. From the equivalence of norms it follows that this definition is
independent of the norm; any other norm would have the same property (for
perhaps a different radius a).

Using geometrical language we say that if = belongs to an open set X, any point
sufficiently near to z also belongs to X.

Another kind of subset of F ia a dense set: X C F is dense if every point of F
is arbitrarily close to points of X. More precisely, if z ¢ F, then for every ¢« > 0
there exists some y € X with | # — y | < «. Equivalently, I/ N X is nonempty for
every nonempty open set U C F.
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An interesting kind of subset of X isaset X C F which is both open and dense, It
i characterized by the following properties: every point in the complement of F
ennn be approximated arhitrarily closely by points of X (hecause X s dense); but no
pomt i X can be approximated arbitrarily closely by points in the complement
thecuuse X 1s open).

Here is a simple example of & dense open set in R?:

X ={(z,y) € R*|zy# 1}

This, of course, is the complement of the hyperbola defined by zy = 1. If zoys 1
and | 1 — ro|, | ¥ — o | are small enough, then xy = 1; this proves X open. Given
any (7o, yo) ¢ R?, we can find (z, v) as close as we Jike to (2o, o) with zy # 1; this
proves X dense. .

More generally, one can show that the complement of any algebraic curve in
R? is dense and open. _

A dense open zet is a very fat set, as the following proposition shows:

Propowition Let Xy, ..., X.. be dense open sets in F. Then

X = X‘ﬂ et an
1s also dense and open.

Proof. It can be easily shown generally that the intersection of a finite number
of open sets is open, so X is open. To prove X dense let U C F be s nonempty
open set. Then U n X, is nonempty since X, is dense. Because U and X, are open,
U/ n X, is open. Since U 0 X; is open and nonempty, (Un X,) n X, is nonempty
because X 15 dense. Since X is open, UN X; 0 Xais open. Thus (U n X, 0 X3) N X
is nonempty, and so on. So U N X is nonempty, which proves that X is dense in F.

Now consider a subset X of the vector space L(R™). It makes sense to call X
dense, or open. In trying to prove this for a given X we may use any convenient
norm on L(R*). One such norm is the ®-max norm, where ® is a basis R*:

| T H{gme = max{] @ || [¢5] = @-matrix of T}.

A property @ that refers to operatora on R~ is & generic property if the set of opera-
tors having property ® contains a dense open set. Thus & property is generic if it is
shared by some dense open set of operators {and perhaps other operators as well).
Intuitively speaking, a generic propetty is one which “almoat all’’ operators have.

Theorem 1 The set S, of eperators on R* thal have n distincl eigenvalues 18 dense
and open in L(R*}.
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Proof. We first prove 8§, dense, Let 7 b 'Fix a basis
) : . ¢ an operato » i
ting 7 in real canonical form. perstor on R*. Fix a & put

The real canonical form of T can be written as the sum of two matrices

T =S+ N,
where
M 7
S = M
Dy '
L. D’
[a. —b,
D, = i _
‘Lo ak]' h>0ii=1...,8
and
"o _
1
N - 10
I 0 '
L 1s 0;_
1 0
I = ] 0 = 0 0
10 1 0 o

The eigenvalues of T i inliciti
ey of (with multiplicities) are i, ..., A, and a; =+ by, ..

Given ¢ > 0, let

’ ’
Al!"-sh:yal,...,ﬂ:
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be distinct real numbers such that

M =—a|<e and lal —a| < e
Put

AL

[t

D [a"‘ _b"], § = ¥ :
bg ai Dl

D
and 7' = & -+ N. Then the ®-max norm of T — T is less than e, and the eigen-
values of T/ are the n distinet numbers

k;,...,l;, tl;':t‘l.bh...,a:ii:b,.

This proves that §, is dense.

To prove that §, is open we argue by contradiction. If it is not open, then there
is a sequence 4,, Ay, ... of operators on R* that are not in §; but which converges
to an operator A in 8. There is an upper bound for the norms of the A, and hence
for their eigenvalues. By assumption each 4. has an eigenvalue A of multiplicity
at least two.

Suppose at first that all A, are real. Passing to a subsequence we may assume that
A — M € 8. For each %, there are two independent eigenvectors xs, v, for A, be-
longing to the eigenvalue A\.. We may clearly suppose | 2. | = | 3 | = 1. Moreover
we may assume Zx and y. orthogonal, otherwise replacing y: by

= (g, 200/ | e — G, )T |

Passing again to subsequences we may assume zx — z and y» — y. Then x and y
are independent vectors. From the relations A,z = Mae and Aun = Mg we find
in the limit that Az = Az and Ay = \y. But this contradicts A ¢ §,.

If some of the A are nonreal, the same contradiction is reached by considering
the complexifications of the Ay; now z, and y, are vectors in C*. In place of the
Euclidean inner product on R" we use the Hermitian inner product on C* defined
by (z, w) = Y.ju 24Dy, and the corresponding norm | 2| = (z, £)'®. The rest of the
argument is formally the same as before.

Note that the operators in $, are all semisimple, by Chapter 4. Therefore an
immediate consequence of Theorem 1 is
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Theorem 2 Semisimplicity is a generic property in L(R*).

The set of semisimple operators is not open. For example, every neighborhood
of the semisimple operator I € L(R?®) contains a nonsemisimple operator of the
form [% 1]

We also have

Theorem 3 The set
8 = |T € L(R") | e7 is a hyperbolic flow}
18 open and denze in L(R*).

Proof. In the proof of density of §, in Theorem 1, we can take the numbers
Al ..., M, al, ..., al (the real parts of eigenvalues of T") to be nonzero; this proves
density. Openness is proved by a convergence argument similar to (and easier than)
the one given in the proof of Thecrem 2.

PROBLEMS

1. Each of the following properties defines a set of real n X n matrices. Find out
which sets are dense, and which are open in the space L{R") of all Linear opera-
tors on R~:

(a) determinant = 0;

{b) trace is rational;

(e} entries are not integers;

(d) 3 < determinant < 4;

(e} —1 < |X]| < 1forevery eigenvalue );
{f) no real eigenvalues;

{g) each real eigenvalue has multiplicity one.

2. Which of the following properties of operators on R* are generic?
(a) | x| # 1{or every eigenvalue A;
(b} n = 2, some eigenvalue is not real;
(e} n = 3;some eigenvalue is not real;
(d) no solution of »* = Az is periodic (except the zero solution) ;
(e) there are n distinct eigenvalues, with distinct imaginary parts;
(fy Az zand Ar = —zforall z = 0.

3. The set of operators on R~ that generate contractiona is open, but not dense, in
L(R"). Likewise for expansions,
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4. A subset X of a vector space is residual if there are dense open sets A, CE,

k=12 ..., suchthat (4. CX.

{a} Prove the theorem of Baire: a residual set 1s dense.

(b) Show that if X, is residual, ¥ = 1,2, ..., then M} X, is residual.

{d) If the set @ C C is residual, show that the set of operators in R* whose
cigenvalues are in @, is residual in L{R"),

§4. The Significance of Genericity

1f an operator A € L(R~) is semisimple, the differential equation ' = Az breaks
down into s number of simple uncoupled equations in one or two dimensions. If
the cigenvalues of A have nonzero real parts, the differential equation might be
complicated from the analytic point of view, but the geometric structure of the
hyperbolic flow et4 is very simple: it is the direct sum of a contraction and
an expansion.

In Section 3 we showed that such nice operators A are in & sense typical. Pre-
cisely, operators that generate hyperbolic flows form a dense open set in L{(R");
while the set of semisimple operators contains a dense open set. Thus if A generates
& hyperbolic flow, so does any operator sufficiently near to A. If A does not, we can
approximate A arbitrarily closely by operators that do.

The significance of this for Jinear differential equations is the following. If there
is uncertainty as to the entries in a matrix 4, and no reason to assume the contrary,
we might as well assume that the flow ¢4 is hyperbolic. For example, A might be
obtained from physical observations; there is a limit to the accuracy of the measur-
ing instruments. Or the differentisl equation z’ = Ax may be used a8 an abstract
model of some general physical (or biological, chemical, etc.) phenomenon; indeed,
difierential equations are very popular as models. In this case it makes little sense
to insist on exact vaiues for the entries in A.

It is often helpful in such situations to assume that A is as simple as possible—
until compelled by logic, theory or observation to change that assumption. It is
reasonable, then, to ascribe to A any convenient generic property. Thus it is com-
forting to assume that A is semisimple, for then the operator A (and the flow )
are direct sums of very simple, easily analyzed one- and two-dimensional types.

There may, of course, be good reasons for not assuming a particular generic
property. If it is suspected that the differential equation z’ = Az has natural
symmetry properties, for example, or that the low must conserve some quantity
(for example, energy), then assumption of a generic property could be a mistake.

Chapter 8
Fundamental Theory

This chapter is more difficult than the preceding ones; it is also central to the
study of ordinary differential equations. We suggest that the reader browse through
the chapter, omitting the proofs until the purpose of the theorems begins to fit
into place.

§1. Dynamical Systems and Vector Fields

A dynamical system is a way of describing the passage in time of all points of a
given space 8, The space § could be thought of, for example, as the space of states
of some physical system. Mathematically, 8 might be a Euclidean apace or an open
subset of Euclidean space. In the Kepler problem of Chapter 2, 8 was the set of
possible positions and velocitiea; for the planar gravitational central foree problem,

§={(R'—0) X B* = [(z,v) € R* X R z 0}

A dynamical system on 8 tells us, for z in 8, where z is I unit of time later, 2 units
of time later, and 8o on. We denote these new positions of z by z,, x,, respectively. At
time zero, z is at x or z;. One unit before time zero, r was at z_,. If one extrapolates
to fill up the real numbers, one obtains the trajectory z. for all time {. The map
R — 8, which sends ¢ into z,, i8 a curve in 3 that represents the life history of z as
time runs from — o to ¢,

It is assumed that the map from R X § — 8 defined by (¢, ) — x, is continuously
differentiable or at least continuous and continuously differentiable in {. The map
$:: 3 — § that takes x into z, is defined for each t and from our interpretation as
states moving in time it is reasonable to expect ¢, to have as an inverse ¢_.. Also,
o (sh)ould be the identity and é:(¢,(z))} = éw.(2) is & natural condition (remember
&:(z) = ). )
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We formalize the above in the following definition:

A dynamical system is a C' map R X % § where § is an open set of Euclidean
space and writing ¢(¢f, z) = ¢:(z), the map ¢.: $ — & satisfies

{8) o § — §1s the identity;
(b) The composition ¢ * ¢, = ¢4, for each t, s in R.

Note that the definition implies that the map ¢,: $ — §is C* for each { and has a
Clinverse ¢_, (take s = —tin (b)). .

An example of a dynamical system is implicitly and approximately defined by
t¥e differential equations in the Newton—Kepler chapter. However, we give a pre-
cise example as follows.

Let A be an operator on & vector apace E; let £ = $ and ¢: R X § — § be de-

fined by #(t, ) = e*4z. Thus ¢, $ — $ can be represented by ¢, = ¢'4. Clearly,

$0 = ¢ = the identity operator and since e!"*#4 = ¢'de*4, we have defined a dy-
namical system on E (see Chapter 5).

This example of a dynamical aystem is related to the differential equation dx/dt =
Aron E. A dynamical system ¢, on 8 in general gives rise to a differential equation
on 8, that is, a vector field on 8, f: $ — E. Here § ia supposed to be an open set in
the vector space E. Given ¢,, define f by

d
) 1) = 6|

thus for r in 8, f{z) is a vector in E which we think of as the tangent vector to the
curve t — ¢(z) at ¢ = 0. Thus every dynamical system gives rize (o a differential
equation.

We may rewrite this in more conventional terms. If ¢,: § — 8 is a dynamical
gystem and z € §, let z(¢) = ¢.(z), and f: § — E be defined as in (1). Then we
may rewrite (1) as

(1) 2 = f().

Thus r{t) or ¢,(z) is the solution curve of (1') satisfying the initial condition
2{0) = z. There is a converse process to the above; given a differential equation
one has associated to it, an object that would be s dynamical system if it were
defined for all ¢. This process is the fundamental theory of differential equations
and the rest of this chapter is devoted to it.

The equation (1’) we are talking about is called an autenomous equation. This
means that the function f does not depend on time. One can also consider a O
map f: I X W — E where I is an interval and W is an open set in the vector space.
The equation in that case is

(2) r = f(t, 1)

and is called nonautonomous. The existence and uniqueness theory for (1) will
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be developed in this chapter; (2) will be treated in Chapter 15. Qur emphasis in
this book is completely on the autonomous case.

§2. The Fundamental Theorem

Throughout the rest of this chapter, E will denote a vector space mt.h & norm;
W C E, an open set in E; and f: W — E a continuous map. By a solution of the

differential equation
(1) ' = f(2)
we mean a differentiable function
uJJ—-Ww
defined on some interval J C R such that for all ¢ € J
u'(t) = flu(t)).

Here J could be an interval of real numbers which is open, closed, or half open, half
closed. That is,

(6,b) = [t Rja <t <b},
or

[e,b] = HER|a <t B,
or

(a,b] = {teR|a < t<b),

and 80 on. Also, a or b could be =, but intervals like (a, « ] are not sllowed.

Geometrically, u is a curve in E whose tangent vector u’(¢) equals f(u(l)); we
think of this vector as based at u(f). The map f: W — E is a vector fieldon W. A
solution & may be thought of as the path of & particle that moves in E s0 that at
time ¢, its tangent vector or velocity is given by the value of the vector field at the
position of the particle. Imagine & dust particle in a steady wind, for example, or
an electron moving through a constant magnetic field. See also Fig. A, where u{ty) =
z, w () = f(z).

rix)
u(r)

x = ultg)

FIG. A
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AR
e

FIG. B

An tnitial condition for a solution u: J — W is a condition of the form u(f) = z
where &, € J, 2, € W. For simplicity, we usually take & = 0,

A differential equation might have several solutions with a given initial condition.
For example, consider the equation in R,

¥ = 3,

Here W =R = E, f: R > Ris given by f(z) = 3221

The identically zero function u: R — R given by 4o{t) = 0 for all ¢ is evidently
& solution with initial condition 4(0} = 0. But so is the function defined by z(2) =
t*. The graphs of some solution curves are shown in Fig. B. '

Thus it is clear that to ensure unigque solutions, extra conditions must be imposed
on the function f. That f be continuously differentiable, turns out to be sufficient,
a3 we shall see. Thus the phenomenon of nonuniqueness of solutions with given
initial conditions is quite exceptional and rarely arises in practice.

In addition to uniqueness of solutions there is the question of existence. Up to
this point, we have been able to compute solutions explicitly. Often, however, this
is not possible, and in fact it is not a priori obvious that an arbitrary differential
equation has any solutions at all.

We do not give an example of & differential equation without a solution because
in fact (1} has a solution for all initial conditions provided f is continuous. We
shall not prove this; instead we give an easier proof under hypotheses that also
guarantee unigqueness.

The following is the fundamental local theorem of ordinary differential equations.
It is called a “local” theorem because it deals with the nature of the vector field
f: W — E near some point z, of W.

Theorem 1 Let W (C E be an open subset cf a normed vector space, f: W - E a O
(continuously differentiable} map, and 2, € W, Then there 1s some a > 0 and a unique
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solution
z: (~a,a) =W
of the differeniial equalion
= f(2)
saitsfying the initial condition
I(O) = Ia.

We will prove Theorem 1 in the next seetion.

$3. Existence and Uniqueness

A funetion f: W — E, W an open set of the normed vector space E, ia said to be
Lipschilz on W if there exists a constant K such that

) —f@) < K|y -z|

for all x, ¥ in W. We call K a Lipschitz constant for f.
We have assumed a norm for E. In a different norm f will still be Lipschitz be-
cause of the equivalence of norms (Chapter 5) ; the constant K may change, however.
More generally, we call f locally Lipschitz if each point of W (the domain of f)
has a neighborhood W, in W such that the restriction f | W, is Lipschits. The Lip-
schitz constant of f| We may vary with Wo.

Lemma Let the function f: W — E be C'. Then f is locally Lipschilz.

Before giving the proof we reeall the meaning of the derivative Df(z) for z € W.
This is a linear operator on E; it assigns to a vector u € E, the vector

Di(z)u = liﬂn1 (f(z 4+ su) — f(z)), 8€ER,
a-+0 L

which will exist if Df(z) is defined.
In coordinates (21, - .., %} on E, let f(z) = (filzs, .-, za), -y falmn, -0y 22))5
then Df(z) is represented by the n X n matrix of partial derivatives
(8/8x) ( filzy, ..., Ta)).

Conversely, if all the partial derivatives exist and are continuous, then f is C'. For
each = € W, therc is defined the operator norm || Df(z) || of the linear operator
Df(z) € L(E) (sce Chapter 5). If u € E, then

(1) | Df()u | < || DA ul.

That f: W — E is ¢! implics that the map W — L(E)} which sends x — Df(z) isa
continuous map (see, for example, the notes at end of this chapter).
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Proof of the lemma. Suppose that f: WoEisCandzn € W.Letb> Obe

so small that the ball By(z) is contained in W, where
Bu(m) = lz€ W{|z— 2| £ b}

Denote by W, this ball By(zs). Let K be an upper bound for || Df(z) || on Wy; this
cxists because Df is continuous and W, is compact. The set W, is convez; that is, if
w.z ¢ W, then the line segment going from y to 2 is in Wo. (In fact, any compact
comvex neighborhood of re would work here.) Let y and zbe in Woand put 4 =z —
y. Theny +su € Wefor0 <s <1 Let ¢(8) = f(i, y + au); thus ¢: [0, 1] = E
is the composition [0, 1] W, !, E where the first map sends s into y + su. By
the chain rule .
(2) ¢'(s) = Df(y + su)u.
Therefore

§2) = () = $(1) — $(0)
=f¢ma
and, by (2), )
- [:Df(y+su)uda-
Hence, by (1),
J® ~ 1@ S [ Klulde=Kle=yl

This proves the lemma.

The following remark is implicit in the proof of the lemma:

If W, is convex, and if || Df(z)|| < K for all z € W, then K is a Lipschita con-
stant for J | Wo.

We proceed now to the proof of the existence part of Theorem 1 of Section 2.
Let x, ¢ W and W, be as in the proof of the previous lemma. Suppose J is an open
interval containing zero and z: J — W satisfies

(3 ' (t) = f(x(t))

and x(0) = 7, Then by integration we have

(4) ) = n+ f £(z(8)) da.
L]

Conversely, if z: J — W satisfies (4), then z(0) = z, and z satisfies (3) as is seen
by differentiation.

Thus (4) is equivalent to (3) as an equation for z: J — W.

By our choice of W, we have a Lipschitz constant K for f on W,. Fur-
thermore, | f(z)| is bounded on Wy, say, by the constant M. Let a > 0 satisfy
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e < minf{b/M, 1/K}, and define J = [—a, a]. Recall that b is the radius of the
ball W,. We shall define a sequence of funections wuy, u,, . . . from J to W, We shall
prove they converge uniformly to a function satisfying (4), and later that there
are no other solutions of (4). The lemma that is used to obtain the convergence
of the u;: J — Wy ia the following:

Lemma from analysla Suppose wy: J o E, k=0, 1, 2, ... is a sequence of
continuous functions from a closed interval J lo a normed vector space E which satisfy:
Given ¢ > 0, there is some N > 0 such that for every p, g > N

max | u,{t) — u (f)] < e
s

Then there 1s a confinuous function u: J - E such that

max | u(f) — u()] >0 as k— o,
s

This is called uniform convergenee of the functions u;. This lemma is proved in
elementary analysis books and will not be proved here.
The sequence of functions u, is defined as follows:

Let

U(t) = .
Let

u® = 20+ [ f(u(e)) ds.
a

Assuming that u;(!) has been defined and that

| walt) —2g| < b forall t€ J,
let

U1 (f) = 2y +.f'f(ut(3)) ds.
a

This makes sense since ux (s} € Wy 80 the integrand is defined. We show that
| eg1(t) — 2| < B or g (t) € Wy for teJ;

this will imply that the sequence can be continued to u.,s, us4s, and so on.
We have .

luan(® — 2| < [ 1fGu()] ds
]

t
SfMds
¢

< Ma < b,
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Next, we prove that there is & constant L > ¢ such that for all k > 0:
[ #a (6} — w()| < (Ka)*L.
Put I = max{| w(f) — u(t)|: | t| < a}. We have

| ue () — wi(t}| =U SFlu(8) = fluo(s)) ds
]

< f;Klun(S) — u(8)| ds

< aKL. )
Assuming by induction that, for some & > 2, we have already proved

| 1 (t) — wea()| < (aK)*'L, jt| <a,
we have

lsa(®) = w(®] < [ 150 = fonas)| ds
o

<K f | (8) — wms(s)| ds
[}
< (aK) (@KL = (aK)'L.

Therefore we see that, puttingaK = a < 1, foranyr > s> N

l(t) — w O] € T | tann(®) — u(d)]
=N

<% oL

N
<e
for any prescribed ¢ > 0 provided N is large enough.

By the lemma from analysis, this shows that the sequence of functions wo, uy, . . .

converges uniformly to a continuous function z: J — E. From the identity
wal®) =2+ [ fu) ds,
0
we find by taking limits of both sides that

2()) = 2+ lim [ f(a(o)) ds
hew "0

- 2o+ [ Oim f(u ()] ds
0 kew
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{by uniform convergence)
= 2 + ds
Zo j; F(z(e))

{by continuity of f).

Therefore z: J — W, satisfies (4) and hence is a solution of (3). In particular,
J — Wyis O

This takes care of the existence part of Theorem 1 {of Section 1) and we now
prove the uniqueness part.

Let z, y: J — W be two solutions of (1) satisfying z(0) = y(0) = z,, where
we may suppose that J is the closed interval [—a, ¢]. We will show that z(¢) =
y(t} for all ¢t € J. Let Q = maxns | () — y(f)|. This maximum is attained at
some point & € J. Then

Q=120 ~ vl = | [ @) ~ y(0) ]
0 I

< [ 15629 = f(y())] do

>

s[olxlz(s)—y(snm

< aKQ.
Since aK < 1, this is impossible unless @ = 0. Thus

z{t) = y(1).

Another proof of uniqueness follows from the lemma of the next section.

We have proved Theorem 1 of Section 2. Note that in the course of the proof
the following was shown: Given any ball W, C W of radius b about z,, with
max,.w, | f{z)| < M, where f on W, has Lipschitz constant K and 0 < a <
min}{b/M, 1/K}, then there is a unique solution z: {—~a, a) — W of (3) such that
z(0) = z,

Some remarks are in order.

Consider the situation in Theorem 1 with a ' map f: W — E, W open in E.
Two solution curves of ' = f(z) cannot cross. This ig an immediate consequence of
uniqueness but is worth emphasizing geometrically. Suppose ¢: J —» W, $:J, = W
are two solutions of 2’ = f(z) such that ¢(f;) = ¥(&). Then (4} is not & crossing
because if we let y(1) = ¢ (& — & + 1), then ¢, is also & solution. Since ¥i(f)) =
¥(t:) = ¢(h), it follows that ¢, and ¢ agree near 4 by the uniqueness statement of
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Theorem 1. Thus the situation of Fig. A is prevented. Similarly, a solution curve
eannot cross itself as in Fig. B.

v ¥

yaeints vl

FIG. A FIG. B

If, in fact, & solution curve ¢: J — W of 2’ = f(z) satisfies ¢(4) = el + w)
for some &, and w > 0, then that solution curve must close up as in Fig. C.

@ lr tw) = QUA)

FIG.C

Let us see how the “iteration scheme” used in the proof in this section applies
to a very simple differential equation. Consider W = R and f{z) = z, and search
for & solution of ' = z in R (we know already that the solution z(t) satisfying
2(0) = xo i3 given by z(t) = '),

Set,

U () = 0,

w(t) = xo+f Zo ds, wi{t) = 2o + Lxo
n .
]

w(®) =2+ [ (ot tz0) db
1]

#
us(t) =3o+t10+§i5m

u (t)

Zo + f‘ux(a) ds,
[ ]
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and so
LT
wunlt) = 3302 s
i t!
As k— =, w,({) converges to
- t-‘
w5 = xet = u(l),
at!

which is, of course, the solution of our original equation.

§4, Continuity of Solutions in Initial Conditions

For Theorem 1 of Section 2 to be at all interesting in any physical sense (or even
mathematically) it needs to be complemented by the property that the solution
z(t) depends continuously on the initial condition z(0). The next theorem gives a
precise statement of this property.

Theorem ILet W C E be open and suppose f: W — E has Lipschilz conslant K.
Let y(1), 2(t) be solutions to
(1) ¥ = f(z)
on the closed interval [t, &, Then, for allt € [4, 6,]:
ly(&) — 2()] < | y(ta) ~ 2z(k)| exp(K{l — &)).

The proof depends on a useful inequality (Gronwall's) which we prove first.
Lemma Let u: [0, a] — R be continuous and nonnegative. Suppose C 2 0, K > 0
are such that

t
w(®) < C+ [ Ku(s) da
[ ]
for all t € [0, a). Then

ult) < Ce®
Jor alt € [0, «]



170 8. FUNDAMENTAL THEORY

Proof. First, suppose C > 0, let

14
U® =C+ [ Ku@) ds > 0;
.
then
u(t) < U().
By differentiation of U we find
U'(t) = Ku(t);

hence
u'e Ku(t)
v "o <K
Hence
2 log UW) < K
z <
80

log U() < log U(0) + Kt
by integration. Since {/{0) = C, we have by exponentiation
Ut) < Cek,

and so

u(t) < Cext,

If C = 0, then apply the above argument for a sequence of positive ¢, that tend
to 0 a8 { — «. This proves the lemma,

We turn to the proof of the theorem.

Define
. v(t) = | y(t) — 2(8)].
Since
¥ = 20 = y(&) ~ 2@ + [ [fye) - fea(6) ]ds,
[™Y
we have

o(t) < v(te) + f Kov(s) ds.
[}

Now apply the lemma to the function u(f) = v{t; 4 t) to get
v(t) < v(ty) exp(K (I — L)),

which is just the conclusion of the theorem.

§5. ON EXTENDING SOLUTIONB im

§5. On Extending Solutions

Lemma Let a C* map f: W — E be qiven. Suppose two solutions u(l}, v(l) of
z' = f(z) are defined on the same open interval J containing iy and salisfy ully) =
v(to). Then u(t) = v(t) forallt € J.

We know from Theorem 1 of Section 2 that u(f) = v(¢) in some open interval
around f. The union of all such open intervals is the largest open interval J* in
J around & on which u = v. But J* must equal J. For, if not, J* has an end point
#, € J; we suppose 4 is the right-hand end point, the other case being similar. By
continuity, u(t) = v(f). But, by Theorem 1 of Section 2, u = o in some J', an
interval around #. Then u = vinJ* UJ” which is larger than J*. This contradiction
proves the lemma.

There is no guarantee that a solution z(t) to s differential equsation c¢an be de-
fined for all £. For example, the equation in R,

¥ =1+,
has as solutions the functions
x = tan(t — ¢), ¢ = constant.

Such s function cannot be extended over an interval larger than
r x
¢~ 3 <t<c+ 3

gince z({) — o asl—c X x/2,

Now consider & general equation (1) ' = f(z) where the " function f is defined
on an open set W (C E. For each zo € W there is a mazimum open tnterval (a, A)
conlaining O on which there is & solution z(t) with 2(0) = zo. There is some such
interval by Theorem 1 of Section 2; let (a, B) be the union of all open intervals
containing 0 on which there is a solution with z(0) = z. (Possibly, a = — = or
8 = 4+, or hoth.) By the lemma the solutions on any two intervals in the union
agree on the intersections of the two intervals. Hence there is & solution on all of
(as B).

Next, we investigate what happens to & solution as the limits of its domain are
approached. We state the result only for the right-hand limit; the other case is
similar.

Theorem Let W C E be open, let f: W — E be a C* map. Let y(i) be a solution
on a mazrimal open interval J = (a, #) C R with 8 < . Then given any compact
set K C W, there is some t € (a, 8) with y(8} 4 K.
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Thifa theorem says that if a solution y(t) cannot be extended to a larger interval,
then it leaves any compact set. This implies that as t — 8 either y(1) tends fo the
boundary of W or | y(t)| tends to « (or both).

Proof of t_he theorem. Supposey(t) € K forallt € {(a, 8). Since fis continu-
ous, there exists M > 0 such that | f(z)| < Mifz € K.

Let v € (o, B). Now we prove that y extends to a continuous map (v, 8] — E.
By a lemma from analysis it suffices to prove y: J — E uniformly continuous. For
t, < & inJ we have

|y} = w(t)| =

[vwal

< ["lrwEie < 6 -0,
]

Now the extended curve y: [a, 8] — E is differentiable at 8. For

y(8) = yix) +1lim [ y(0) do
-t Ty
=y +1im [ () do
- Ty

s
=y + [ S ds;

hence

v® =y + [ Jwe) ds

for all ¢ bet.w?en + and 8. Hence y is differentiable at 8, and in fact '(8) = f (w(B)).
Therefore y is a solution on [y, 8] Since there is a solution on an interval (8, ).
3 > B, we can extend y to the interval (a, §). Hence (a, 8) could not be a mnx:lmal
domain of a solution. This completes the proof of the theorem.

The following important fact follows immediately from the theorem.

Proposition Let A be a compact subset of the open set W C E and let f: W~ E
be €. Lel yo € A and suppose it is knoun that every solution curve of the form

[0, 81—-W, y(0) =y
lies entirely in A. Then there is a solution

y:[0, o) =W, y(0) =y, and yHEA
forallt > 0.
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Proof. Let[0,§) bethe maximal half-open interval on which there ia a solution
y as above. Then ¥([0,8)) C A,andso 8 cannot be finite by the theorem.

§6. Global Solutions

We give here a stronger theorem on the continuity of solutions in terms of initial

conditions.
In the theorem of Section 4 we assumed that both solutions were defined on the

same interval. In the next theorem it is not necessary to assume this. The theorem
ghows that solutions starting at nearby points will be defined on the same closed
interval and remain near to each other in this interval.

Theorem Let f(z) be C. Let y(t) be a solution to ¥ = f(x) defined on the closed
interval [t, U], with y{k) = Yo There is a neighborhood U C E of ys and a constant
K such that if 24 € U, then there 18 a unique solution z(t) also defined on [ts, 1] with
2(ly) =z, and z salisfies

|y®) —2()] € Klwo— 2| exp(K(t — &)
for a.ll ¢ e [tﬁl ‘l]'

For the proof we will use the following lemma.

Lemma If f: W— E is locally Lipschitz ond AC W 12 0 compact {closed and
bounded) set, then f| A 18 Lipschitz.

Proof. Suppose not. Then for every K > 0, no matter how large, we can find
rand y in A with

|f(z) —fl > Klz -yl

In particular, we can find za, ¥ such that
(1) |f(z) — fydt 2 nlza —un|  for n=12 ...

Since A is compact, we can choose convergent subsequences of the z, and ¥
Relabeling, we may assume z, — 2* and y..-—by“withz’andy‘inA.Weom
that z* = y*, since we have, for all »n,

|2* — g* | = lim |z — va | <77 | f20) — W] < ni2ZM,
where M is the maximum value of f on A. There is a neighborhood W, of z* for
which f | W has a Lipschitz constant K in z. There is an ne such that z, € W, i
n > ng. Therefore, for n > ne

If(zn) -.f(yn)l <Kl|z.— ¥» b
which contradicts (1) for = > K. This proves the lemma.
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The proof of the theorem now goes as follows,

By compactness of [t, 1], there exists ¢ > O such that z € Wif |z — y(8)] < e
The set of all such points is a compact subset A of W. The " map f is
locally Lipschits (Section 3). By the lemma, it follows that f| A has a Lipachitz
constant k.

Tet 3 > 0 be so small that § < e and Sexp(k|& — &|) < e. We assert that if
| 20 — %o | < &, then there is a unique solution through z, defined on all of [, &].
First of all, 2, € W since | 20 — y(k}| < ¢, 80 there is a solution 2(¢) through z, on
a maximal interval [l, 8). We prove 8 > 4. For suppose 8 < #i. Then by the ex-
ponential estimate in Section 4, for all ¢ € [f, ), we have '

2(t) — ()} < |20 — to|exp(k|t — )
<éexplk|t—t])
<e

Thus z({) Lies in the compact set 4 ; by the theorem of Section 5, [, 8) could not
be a mazimal solution domain. Therefore z(f) is defined on (4, t,]. The exponential
estimate follows from Section 4, and the uniqueness from the lemma of Section 5.
We interpret the theorem in another way. Given f(z) as in the theorem and a
solution y(¢) defined on [, &), we see that for all 2z sufficiently close to yo = y(b),
there is & unique solution on [, & starting at z; at time sero. Let us note this
solution by ¢ — u(l, z); thus u(0, z) = 2o, and u(¢, o) = y(?).
Then the theorem implies:
Him u(t, 2) = ult, %),
n*n
uniformly on [f, h]. In other words, the solution through z, depends continuously
on zg.

§7. The Flow of a Differential Equation

In this section we consider an equation
(1) 7 = f(z)

defined by a C* function f: W — E, W C E open.
For each y €W there is a unique solution ¢(t) with ¢(0) = y defined on a maxi-
mal open interval J{y) C R. To indicate the dependence of ¢(f) on y, we write

o) = o(t, ).
Thus ¢{0, ¥) = 1.
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Let 2 C R X W be the following set:
Q=1{(ty) ERXW|teJw}.
The map (¢, ¥) — ¢(4, y) ia then a function

¢:a—- W,
We call ¢ the flow of equation (1).
We shall often write

¢t z) = ().
Example. Let f(z) = Az, A € L(E). Then ¢:{z} = et4z.

Theorem 1 The map ¢ has the following property:
(2) ¢l+|(x) = ¢l(¢l(1))
in the sense that if one gide of (2} is defined, s0 i3 the other, and they are equal.

Proof. First, suppose 8 and ¢ are positive and ¢,(¢.(z)) is defined. This means
L€ J(x) and 8 € J(¢.(2)). Suppose J(x) = (a, 8)}. Then a < t < 8; we shall
show 8 > 3 + & Define

y: (aq,84+]—=W

#{r, z)
¥() =
ol(r — 1, ¢(z)) if t<r<i4s

Then y is a solution and y(0) = z, Hence 8 + t € J(z). Moreover,
¢l+¢(x) = y(s + !) = ¢I(¢‘(z))'
The rest of the proof of Theorem 1 uses the same ideas and is left to the reader.

by
if e<r<i;

Theorem 2 0 i3 an open sel in R X W and ¢: @ — W ig a continuous map.

Proof. To prove @ open, let (f, z) € 2. We suppose > 0, the other case
being similar. Then the solution curve { — ¢{¢, o) is defined on [0, &}, and hence
on an interval [—¢, & + ¢}, ¢ > 0. By the theorem of Section 6, there is a neighbor-
hood U C W of z, such that the solution ¢ — ¢(2, 2) is defined on [—¢, & + €]
for alt zin U. Thus (—¢, &, + ¢} X U C I, which proves 2 open.

To prove ¢: 2 — W continuous at (f, 7y}, let U and ¢ be as above. We may sup-
pose that U has compact closure U ¢ W. Since f is locally Lipschitz and the set
A = ¢([—¢ to + €] X U) is compact, there is a Lipschitz constant K for f| A.
Let M = max{|f(z) |:z € A}. Let 8 > Osatisfy 8§ < ¢, and if | 2y — 24 | < &, then
o1 € U. Suppose

[t —t| <3, |z—nl|<s



176 8. FUNDAMENTAL THEORY .

Then
| @(t, 1) — d{te, T}| < | #(l, 22) — bty )| + | ol 2} — bl 7).

The second term on the right goes to 0 with 8 because the solution through z, is
continuous (even differentiabie) in ¢. The first term on the right, by the estimate
in Section 6, is bounded by 3™ which also goea to 0 with 8, This proves Theorem 2.

In Chapter 16 we shall show that in fact ¢ is .
Now suppose (I, Zo) € £; then o has a neighborhood U C W with ¢t X U C 4,
sinee we know @ is open in R X W. The function £ — ¢.(z) defines a map

[ 7S U-W.

Theorem 3 The map ¢ sends U onlo an open sei V and ¢, is defined on V and
sends V onlo U. The composition ¢_.$, 13 the identity map of U; the composilion ¢.9_,
13 the identity map of V.

Proof. If y = ¢:(z), then ¢ € J(2). It is easy to see that then —! € J(y),
for the function
& — i (3)

is a solution on [ —¢, 0] sending O to y. Thus ¢_, is defined on ¢(U) = V; the state-
ment aboul compositions is obvious. It remains to prove V is open. Let V* D V
be the maximal subset of W on which ¢_, is defined. V* is open because 01 is open,
and ¢_,; V* — W is continuous because ¢ is continuous. Therefore the inverse
image of the open set U under ¢_. is open. But this inverse image is exactly V.

We summarize the results of this section:

Corresponding to the autonomous equation z’ = f(z), with locally Lipschitz
f: W = E, there is a map ¢: # — W where (, z) € 0 if and only if there ia a solu-
tion on {0, t] (or [, 0] if ¢ < 0) sending 0 to z. The set @ is open. ¢ is defined by
letting t — @.(z) = @(f, z) be the maximal solution curve taking 0 to z. There
is an open set U, CC W on which the map ¢.: U, — W is defined. The maps ¢, satisfy
$ud:(2) = ¢use(2) a8 in Theorem 1. Each map ¢, is a homeomorphism; that is, ¢.
18 one-to-one and has & tontinuous inverse; the inverse is ¢_..

If

f(z) = Az, A € L(E),
then
¢z) = etdr.

In this case & = R X E and each ¢, is defined in all of E.
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PROBLEMS

1. Write out the first few terms of the Picard iteration scheme (Section 3) for
each of the following initial value problems, Where possible, use any method
to find explicit solutions. Discuss the domain of the solution.

(8) 2’ =z+4+2;z(0) = 2.
(b} & =24, z(0) =0.
(¢) 2 =20 z(0) =1,
(dy 2’ =sinz;z(0) =0.
(&) ' =1/2z;z(1) = 1.

2. Let A be an n X n matrix. Show that the Picard method for solving ' = Az,
z(0} = u gives the solution e'4u.

3. Derive the Taylor series for sin ¢ by applying the Pirard method to the first
order system corresponding to the second order initial value problem

= —g; () =0, ' (0) = 1.
4. For each of the following functions, find a Lipschitz constant on the region
indicated, or prove there is none:
(8) fla} =[z]|, —» <z < .
(b) f(z) =27 —1<2< 1.
() f@) =1/r1<z< >,
(d) f(xr !l) = (J: + 2_!], -y)l (Iy y) € R

(e} flz,9) = 242 <4

_
1422+ 4

5. Consider the differential equation

2 = 2B

{a) There are infinitely many solutions satisfying x(0) = 0 on every in-

terval [0, 3]
(b) For what values of « are there infinitely many solutions on [0, a] satisfy-
ing z(0) = —17
6. Let f: E — E be continuous; suppose f(z) < M. Foreachn =1,2, ..., let

Z.: [0, 1] — E be a solution to 2’ = f(z). If z,(0) converges, show that a
subsequence of {z.} converges uniformly to a solution. {(Hint: Look up Ascoli’s
theorem in a book on analysis.)

7. Use Problem 6 to show that continuity of solutions in initial conditions follows
from uniqueness and existence of solutions.
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8. Prove the following general fact (see also Section 4) :if ¢ > 0 and u, »: [0, 8]~
R are continuous and nonnegative, and

w(t) <C+ f‘u(a)v(s) d  forall £ [0,8]
[]
then

u(t) < Ce¥™, V() = f‘v(s) ds.
L]

9. Definef: R =R by
flz) =1 if 2<1;  flz) =2 if z> 1
There is no solution to 2’ = f(z) on any open interval around ¢ = 1.
10. Let g: R — R be Lipschitz and f: R — R continuous. S8how that the system
= g{z),
v = f(z}w,

has at most one solution on any interval, for a given initial value. (Hini: Use
Gronwall’s inequslity.)

Notes

Qur treatment of caleulus tends to be from the modern point of view. The deriva-
tive is viewed a8 a linear transformation.

Suppose that U is an open set of & vector space E and that g: U — F is some map,
F a second vector space. What is the derivative of g at z, € U,? We say that this
derivative exists and is denoted by Dg(z,) € L(E, F) if

li 123+ #) = g(z0) ~ Dyglzu|
lut+0 lwl

el
wel}

Then, if, for each z € U, the derivative Dg(z) exists, this derivative defines a
map

0.

U—L(E,F}y, z-Dg(x).

If this map is continuous, then g is said to be €. If this map is C! itself, then ¢ is
said to be C1.
Now suppose F, G, H are three vector spaces and u, v are open sets of F, G, re-
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spectively. Consider C* maps f, g,
vLvLa
The chain rule of calculus can be stated as: the derivative of the composition is the
composition of the derivatives. In other words, if x € U, then
D{gf){z) = Dg{f(z)) -Df(2) € L(F, H).
Consider the case where F = R and U is an interval; writing ¢ € U, /() = Df (1),
the chain rule reads
(af)'(t) = Dg(f()(F(B)).
In case H also equals R, the forrula becomes

(gfy' (&) = {grad g( (1)), f'(§)).

For more details on this and a further development of calculus along these lines,
see 8. Lang’s Second Course in Caleulus [12], S. Lang’s Analysis I [11] also covers
these questions as well as the lemina from analysis used in Section 3 and the uni-
form continuity statement used in the proof of the theorem of Section 5.



Chapter 9

Stability of Equilibria

In this chapter we introduce the important idea of stability o)t an eq}ulibnu_m
point of a dynamical system. In later chapters other kinds of sta!)}hty will be dis-
cussed, such as stability of periodic solutions and structural st.abllft.y. _

An equilibrium £ is stable if all nearby solutions stay nearby. It is asymptotically
stable if all nearby solutions not only stay nearby, but also tend to £ Of course,
precise definitions are required; these are given in Section 2. In_Sectlor} 1. s special
kind of asymptotically stable equilibrium is studied first: t:he sink. This is charac-
terized by exponential approach to £ of all nearby solutions. In Chapter 7 the
special case of linear sinks was considered. Sinks are useful beca'use they can _be
deteeted by the eigenvalues of the linear part of the system {that is, the derivative
of the vector field at £). . )

In Section 3 the famous stability theorems of Liapunov are proved. Ti‘us section
also contains a rather refined theorem (Theorem 2) which is not essential for the
rest of the book, except in Chapter 10.

Sections 4 and 5 treat the important epecial case of gradient flows. These have
special properties that make their analysis fairly simple; moreover, they are of
frequent occurrence.

§1. Nonlinear Sinks

Consider & differential equation
(1 2 =flx); fiW-—->RYy W C R” open.
We suppose fis C1. A point £ € W is called an equilibrium point of (1) if f(£) = 0.

Clearly, the constant function z(t) = £ is a solution of (1.). By uniqueness of
solutions, no other solution curve can pass through 2. If W is the state apace of
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some physical {or biological, economic, or the like) system described by (1), then
£ is an "equilibrium state’: if the system is at £ it always will be (and alwaya
was) at £.

Let ¢: 2 — W be the flow associated with (1); 2 C R X W is an open set, and
for each z € W the map t — (£, )} = ¢.(z) is the solution passing through z when
t = 0; it is defined for ¢ in some open interval. If £ is an equilibrium, then ¢.(Z) = £
for all { € R. For this reason, £ is also called a stationary point, or fized point, of
the flow. Another name for £ is a zero or singular point of the veetor field f.

Suppose f is linear: W = R* and f(z) = Az where A is a linear operator on R*»,
Then the origin 0 € R~ is an equilibrium of (1). In Chapter 7 we saw that when
A < 0 is greater than the real parts of the eigenvalues of A, then solutions ¢.(x)
approach 0 exponentially: :

| o) < Ce
for some C > 0.

Now suppose f is 8 C! vector field (not necessarily linear) with equilibrium
point 0 € R*. We think of the derivative Df{0) = A of f at O as a linear vector
field which approximates f near 0. We call it the linear part of f at 0. If all eigen-
values of Df(0) have negative real paris, we call 0 s sink. More generally, an
equilibrium 7 of (1) is a sink if all eigenvalues of Df(£} have negative real parts.

The foliowing theorem says that a nonlinear sink £ behaves locally like a linear
sink: nearby aolutions approach £ exponentially.

Theorem Let £ € W be a sink of equation (1). Suppose every eigenvalue of Df (£}
has real part less than —c, ¢ > 0. Then there is a neighborhood U C W of F such that

(8) c(x) is defined and in U forallz € U, ¢ > 0.
(b) There is ¢ Euclidean norm on R* such that

[o2) —2| S ez~ £
forallz ¢ Ut > 0.
(¢} For any norm on R*, there i3 a constant B > 0 such that
| #(z) — 2| < Bet|z — |
Joralz c U, t 2 0.
In particular, ¢.(z) v Zast— o forallz € U.

Proof. For convenience we assume £ = 0. {If not, give R* new coordinaies
¥ = T — %;in y-coordinates f has an equilibrium at 0; etc.)

Put A = Df(0). Choose b > 0 so that the real parts of eigenvalues of A are
less than —b < —e¢. The lemma in Chapter 7, Section 1 shows that R* has a basis
® whose corresponding norm and inner product satisfy

(Az, z) < ~b |z
forall z € R,
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Since A = Df{0) and f{0) = 0, by the definition of derivative,

: — Arx
i L2 = Az _
x—+0 ! xz |
Therefore by Cauchy’s inequality,
. {flz) — Az, z)
lim —————— = 0.

=0 |z
It follows that there exists & > 0 so small that if | z | < 3, then z € W and
{f(x), 2) < —¢ |zt
Put ' = {re R" | fr} <8l Let z(f), 0 <t <l be a solution curve in U,
z{t) # 0. Then .

d 1,

— = — {(2', z}.

dtirl III(
Hence, since 2’ = f(x):

d

— < —clz|
@ Zlel< —els

i i ing; Uforallt € [0 &)
This shows, first, that | z(¢) | is decreasing; hence | z{f} | € .
Since U/ is compact, it follows from Section 5, Chapter 8 that the trajectory z(1)
is defined and in U for all ¢ > 0. Secondly, {2) implies that

|z(0) | € e | 2(0) |

for all ¢t > 0. Thus {a) and (b) are proved and (c) follows fr-om equivalence of
rms. )

noTl:e phase portrait at a nonlinear sink # looks like that of the lmear_ part of the

vector field: in a suitable norm the trajectories point inside all sufficiently small

spheres about & (Fig, A).

FIG. A. Nonlinear sink.
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Remember that the spheres are not necessarily “round’’ spheres; they are spheres
in a special norm. In standard coordinates they may be ellipsoids.

A simple physical example of a nonlinear sink is given by a pendulum moving in
& vertical plane (Fig. B). We assume a constant downward gravitational force
equal to the mass m of the bob; we neglect the mass of the rod supporting the
bob. We assume there i a frietional (or viscous) force resisting the motion, pro-
portional to the speed of the bob. .

Let I be the (constant) length of the rod. The bob of the pendulum moves along
& circle of radius [. If #(¢) is the counterclockwise angle from the vertical to the
rod at time ¢, then the angular velocity of the bob iz df/dt and the velocity is
I dg/dt. Therefore the frictional force is —kI d8/dt, k & nonnegative constant ; this
force is tangent to the circle.

The downward gravitational force m has component —m sin 8(¢) tangent to the

circle; this is the force on the bob that produces motion. Therefore the total force
tangent to the circle at time ¢ is

dae
= [(m% : )
F (Idt-fmsma)

The acceleration of the bob tangent to the circle is

a9

hence, from Newton's law a = F/m, we have

kL
/) = ——¢ — siné
m
or
k
F o= — —a’—lsinﬂ.
m {
Introducing a new variable
w=4#
{
m

FIG. B. Pendulum.
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(interpreted as angular velocity), we obtain the equivalent first order system
(3) ¢ = w,

1

= ——gnéd — —w
4 m

()

I

“I'his nonlinear, autonomous equation in R? has equilibria at the points
(8, w} = (nr, 0); n=0 %1, 4£2,....

We concentrate on the equilibrium (0, 0).
The vector field defining (3) is

LN k )
f(8,w) = (w — 7sin ne)
Its derivative at (8, w) is

0
Df(or w) = 1
]

Hence

with eigenvalues

40~

The real part —k/2m is negative a8 long as the coefficient of friction k is positive
and the mass is positive. Therefore the equilibrium ¢ = w = ¢ is & sink. We con-
clude: for all sufficiently small initial angles and velocities, the pendulum tends
toward the equilibrium position (0, 0).

This, of course, is not surprising. In fact, from experience it seems obvious that
from any initial position and velocity the pendulum will tend toward the down-
ward equilibrium state, except for a few starting states which tend toward the
vertically balanced position. To verify this physical conclusion mathematically
takes more work, however. We return to this queation in Bection 3.

Before leaving the pendulum we point out a paradox: the pendulum cannotl come
to resi. That is, once it is in motion—not in equilibrium—it cannot reach an equi-
librium state, but only approach one arbitrarily closely. This followa from unique-
ness of solutions of differential equations! Of course, one knows that pendulums
actually do come to rest. One can argue that the pendulum is not “really’ at rest,
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but its motion is too small to observe. A better explanation is that the mathematical
model (3) of ite motion is only an approximation to reality.

PROBLEMS

1. (a) State and prove a converse to the theorem of Section 1.
(b} Define “sources” for nonlinear vector fields and prove an interesting
theorem about them.

2, Show by example that if f iz a nonlinear  vector field and f(0) = 0, it is
possible that lim.., (£} = 0 for all solutions to 2’ = f(z), without the eigen-
values of Df(0) having negative real parts.

3. Assume f is a C* vector field on R* and f(0} = 0. Suppose some eigenvalue of
Df(0) has positive real part. Show that in every neighborhood of 0 there iz a
golution z(£) for which | z(£) | is increasing on some interval [0, 6], & > 0.

4. If #is a sink of a dynamical system, it has a neighborhood containing no other
equilibrium.

§2. Stability

The study of equilibria plays a central role in ordinary differential equations

and their applications. An equilibrium point, however, must satisfy a certain _

stability criterion in order to be very significant physically. (Here, a8 in several
other places in this book, we use the word physical in a broad sense; thus, in some
contexts, physical could be replaced by biological, chemical, or even ecological.)

The notion of stability most often considered is that usually attributed to
Liapunov. An equilibrium is stable if nearby sclutions stay nearby for all future
time. Since in applications of dynamical systems one cannot pinpoint a state
exactly, but only approximately, an equilibrium must be stable to be physically
meaningful.

The mathematical definition is:

Definition 1 Suppose £ € W is an equilibrium of the differential equation

(1) = f(x)r

where f: W — E is a C' map from an open set W of the vector space E into E.
Then £ is a slable equilibrium if for every neighborhood U of Z in W there is a
neighborhood U, of £ in U/ such that every solution z(t) with z(0) in U, is defined
and in U for all £ > 0. {See Fig. A.)
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N

v, vl -

186

FIG. A. Stability.

Definition 2 If U, can be chosen so that in addition to the propertiex.a described
in Definition 1, lim;.. z(f) = &, then 2 in asymptotically stablfz. {See Fig. B.)

P
4

U, U ,o;

]

FIG. B. Asymptotic stability.

Definition 3 An equilibrium £ that is not stable is called unstable. This means
there is a neighborhood U of £ such that for every neighborhood U, of £ in U, there
is at least one solution z(t) starting at z(0) € U,, which does not lie entirely in U.

(See Fig. C.)
/

5

FIG. C. Instability.

A sink is asymptotically stable and therefore stable. An example of an equi-
brium that s stable but not asymptotically stable is the origin in R* for a linear
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equation
(2) r = Az,
where A has pure imaginary eigenvalues. The orbits are all ellipses (Fig. D).

F1G. D. Stable, but not asymptotically stable.

The importance of this example in application is limited (despite the famed
harmenic oscillator) because the slightest nonlinear perturbation will destroy its
character. Even a small linear perturbation can make it into a sink or a source
since “hypetbolicity” is a generic property for linear flows (see Chapter 7).

A source is an example of an unstable equilibrium.

To complement the main theorem of Section 2 we have the following instability
theorem. The proof is not essential to the rest of the book.

Theorem Lel W C E be open and f: W — E continuously differentiable. Suppose
F(£) = 0 and Z iz & stable equilibrium poini of the equation

@ = f(z).
Then no eigenvalue of Df(£) has posilive real part.

We say that an equilibrium £ is hyperbolic if the derivative Df(Z) has no eigen-
value with real part zero.

Corollary A hyperbolic equilibrium poin is either unastable or asymplotically siable.

Proof of the theorem. Suppose some eigenvalue has positive real part; we
shall prove Z is not stable,. We may assume £ = 0, replacing f(z) by f{z — £)
otherwise. By the canonical form theorem (Chapter 2), E has a splitting B, e B,
invariant under Df(0), such that eigenvalues of A = Df(0) | Ey all have positive
real part, while those of B = Df(0) | E¢ all bave negative or 0 real part.

Let @ > 0 be such that every eigenvalue of A has real part >a. Then there is
a Euclidean norm on E; such that

(3) Az, 2}y 2 o]z [} all r¢€ E.
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Similarly, for any b > 0 there exists a Euclidean norm on E; such that

(4) By,y) <blyp, all y€Es

We choose b so that '
0<b<a

We take the inner product on E = E; e E, to be the direct sum of these inner
products on E; and Ey; we also use the norms associated to these inner products
onE,Ey EIfz = (z,y) € Eye Ey,thenjz| = zpP4 |y m

We shall use the Taylor expansion of f around 0:

f(x:l y) = (AI + R(l', y): B!J + S(I, y)) = (fl(z, y)vf!(z:‘y))
with
(z,y) =2, (R(z, ¥, S{z,») = Qa).
Thus, given any ¢ > 0, there exists § > O such that if U = Bi(0) (the ball of
radius & about 0),

(5) [ Qfz) | € ¢ 2| for z¢ U,
We define thecone € = {(z, %) € Bro B |z 2 |V}

FIG. E. The cone C is shaded.

Lemma There exisis 8 > 0 such that if U 1s the closed ball By(0) C W, then for
allz = (r,y) € CN U,

(8) {x filx,y)) — W folz, )} > 0if z # 0, and
(b} there erists & > O with (f{2),z) 2 a| 2 |’.‘

This lemma yields our instability theorem as follows. We interpret first condi-
tion (a). Let g: By X By — R be defined by g(z, ) = 3(| 2 [ — | y [*}. Then
gis O, [0, o) = C, and g~1(0) is the boundary of C.
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Furthermore, if (z,y) = z € U, then Dg(2) (f(2)) = Dg(z, ¥} (h(z, ), iz, 1)) =
&, filz, 4) ) — (, fa(, y) ) which will be positive if z € g~ (0) by (a). This implies
that on & solution z(f) in ¥/ passing through the boundary of C, g is increasing
since by the chain rule, (d/dt) (g(z(t)) = Dg{z(t) }f(2(t)). Therefore no solution
which starts in C can leave C before it leaves [/, Figure E gives the idea.

Geometrically (b} implies that each vector f{z} at z € C points outward from
the sphere about 0 passing through z. See Fig. F.

FIG. F

Condition (b} has the following quantitative implication. If z = 2(t) isa solution
curve in C N U, then

(2}, 2) = ()2} =

[z,

so {(b) implies

1l zalzp
or
afdt|z[®
—_—2
ep 2
d
— 3
o8zl 2 2a,
log | 2(8) |t 2 2af + log | 2(0) %,
[2(t) [* = &= | 2(0) %
thus

lz(t) | = e | 2(0) |
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Thus each nontrivial solution z({) starting in C # U moves away from 0 at an
exponential rate as long as it is defined and in C' 0 u.

If y(f) is not defined for all ¢ > 0, then, by Chapter 8, Section 5, it must leave
the compaet set C N U; as we have seen above, it must therefore leave U. On the
other hand, if y(t) is defined for all ¢, it must also leave U since U is the ball of
radius 5 and e | 2(0) | > & for large t. Therefore there are solutions starting arbi-
trarily close to 0 and leaving /. Thus (assuming the truth of the lemma), the
vector field f does not have 0 a8 a point of stable equilibrium.

We now give the proof of the lemma. First, part (b):if (z,y) =z€ Cn U,

(f(2), 2) = {Ax, 2) + (By, v} + Q(2), 2),
so, by (3), (4), (8):
@), 2y zelzpl—blylt—elz
InG,|z|>|y|andjzr = 4|z + ¥ = 4|z Thus ((2), 2) 2 (a/2 —
b/2 — ¢) | z |*. We choose ¢ > 0 and then 5 > 0 o that « =a/2 —bf2 —e>0.

This proves (b).
To check (a), note that the left-hand side of (a) is

{4z, 1) — (B!h y) + {z, R{z, U)) - (ys S(z, ) h
but
| (z, R(z, 1)) = {u Sz, 1)) | £ 2] Q&) .

We may proceed just as in the previous part; finally, § > 01is chosen so that a/2 —
b/2 — 2¢ > 0. This yields the proposition.

In Chapter 7 we introduced hyperbolic linear flows. The nonlinear analogue ia
a hyperbolic equilibrium point £ of a dynamical system & = f(z); and to repeat,
this means that the eigenvalues of Df{#) have nonsero real parts. 1f these real parts
are all negative, # is, of course, & sink; if they are all positive, £ is called a source. If
both signs oceur, £ is a saddle point. From the preceding theorem we see that a
saddle point iz unsiable.

If £ is an asymptotic equilibrium of a dynamical system, by definition there is
a neighborhood N of Z such that any solution curve starting in N tends toward Z.
The union of all solution curves that tend toward x (as t — =) is called the basin
of £, denoted by B(Z).

It in clear that any solution curve which meets N is in B{£); and, conversely,
any solution curve in B(£) inust meet N. It follows that B(2) is an open set; for,
by continuity of the flow, if the trajectory of z meets N, the trajectory of any
nearby point also meeta N.

Notice that B(£) and B{§) are disjoint if £ and § are different asymptotically
stable equilibria. For if & trajectory tends toward Z, it cannot also tend toward 7.

If a dynamical system represents a physical system, one can practically identify
the states in B (%) with £. For every state in B(£) will, after s period of transition,
stay 8o close to £ as to be indistinguishable from it. For some frequently oceurring
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types of dynamical systems (the gradient systems of Section 4), almost every
state iz in the basin of some sink; other states are “improbable” (they constitute
a set of measure 0). For such a system, the sinks represent the different types of
long term behavior.

It is often a matter of practical importance to determine the basin of a sink #.
For cxample, suppose £ represents some desired equilibrium state of a physical
system. The extent of the basin tells us how large a perturbation from equilibrium
we can allow and still be sure that the system will return to equilibrium.

We conclude this section by remarking that James Clerk Maxwell applied
stability theory to the study of the rings of the planet Saturn. He decided that
they must be composed of many small separate bodies, rather than being solid or
fluid, for only in the former case are there stable solutions of the equations of mo-
tion, He discovered that while solid or fluid rings were mathematically possible,
the slightest perturbation would destrov their configuration.

PROBLEMS

1. (a) Let 7 be a stable equilibrium of a dynamical system corresponding to a

C? vector field on an open set W C E. Show that for every neighborhood
U of £in W, there is a neighborhood /' of £ in I/ such that every solution
eurve z(1) with z(0) € U’ is defined and in U for all £ > 0.

(b) @i £ is asymptotically stable, the neighborhood U’ in (a) can be chosen
to have the additional property that lim,.., x(f) = £if 2(0) € U".

(Hint: Consider the set of all points of I/ whose trajectories for ¢ > 0O enter

the set Uy in Definition 1 or 2.)

2. For which of the following linear operators A on R" is 0 € R* a stable equi-

librium of 2’ = Ax?

(a) A=0 by [0 -1 {c) |0 =1 ¢ 0
1 0 1 0 00

01 1 0o 01

-1 0 0 0 -1 20

(d) [0 l] (e) [1 2]
0 0 2 -2

3. Let 4 be a linear operator on R* all of whose eigenvalues have real part 0.

Then 0 € R~ is a stable equilibrium of ¥’ = Az if and only if A is semisimple;
and 0 is never asymptotically stable.
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4. Show that the dynamical system in R?, where equations in polar coordinates
are
Bgn (1/r}, r>0,

0, r=0,

has a stable equilibrium at the origin. (Hint: Every neighborhood of the
origin contains a solution curve encircling the origin.)

5. Let f: R* — R~ be (" and suppose f(0) = 0. If some eigenvalue of Df(0) has
positive real part, there is a nonzero solution z{f), — = <1 <0,toz’ = f(z),
such that lim,_,_ z(t) = 0. (Hint: Use the instability theorem of Section 3 to
find a sequence of solutions za(t), t. < ¢ £ 0, in By(0) with | 2.(0) | = 5 and
liMaew Lalls) = 0.}

6. Let g: R — R~ be €' and suppose f(0) = 0. If some eigenvalue of Dg(C) has
negative real part, there is a solution g(#),0 € t-< =, to x' = g(z), such that
lim,.. ¢(f) = 0. (Hint: Compare previous problem.)

$3. Liapunov Functions

In Section 2 we defined stability and asymptotic stability of an equilibrium 2
of a dynamieal system

1) 7 = f(z),

where f: W — R* is a C! map on an open set W C R~ If £ is a sink, stability can
be detected by examining the eigenvalues of the linear part Df(2). Other than that,
however, as yet we have no way of determining stability except by actually finding
all solutions to (1), which may be difficult if not impossible.

The Russian mathematician and engineer A. M. Liapunov, in his 1802 doctoral
thesis, found a very useful criterion for stability. It is & generalization of the idea
that for & sink there is & norm on R* such that | z{f) — 2 | decreases for solutions
r(t) near 2. Liapunov showed that certain other functions could be used instead
of the norm to guarantee stability.

It 1: ! = R be a differentiable function defined in a neighborhood U C W
of £. We denate by V: U — R the function defined by

V(z) = DV(2}(f(z}).

Here the right-hand eide is simply the operator DV (x) applied to the vector
7(2). Then if ¢.(z) is the solution to (1) passing through z whent = 0,

Viz) = :llt V{¢.2)
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by the chain rule. Consequently, if V{(z) is negative, then V decreases along the
solution of (1) through .
We can now state Liapunov’s stability theorem:

Theorem 1 Let £ € W be an equilibrium for (1). Let V: U — R be a conlinuous
Junction defined on a neighborhood U C W of z, differentiable on U — 2, such that

(8) V(£) =0and V(z) > 0ifz » %,
by V<oinlU-— %

Then £ 1 stable. Furthermore, if also
(c) V<0inlU — 2,
then £ is asymplotically stable.

A function V satisfying (a) and (b) is called & Ligpunov féhction for 2. If (¢)
also holds, we eall V a strict Liapunov function. The only equilibrium 1= the onigin
r=y =0

We emphasize that Liapunov’s theorem can be applied without solving the
differential equation. On the other hand, there is no cut-and-dried method of
finding Liapunov functions; it is a matter of ingenuity and trial and error in each
case. Sometimes there are natural functions to try. In the ecase of mechanical or
electrical systems, energy is often a Liapunov function.

Ezample 1 Consider the dynamical system on R? described by the system of
differential equations

2 = 2y(z — 1},
¥ = ~z(z — 1},
2 = -2,

The z-axis (= {(z, ¥, z) | £ = y = 0}) consists entirely of equilibrium pointa.
Let us investigate the origin for stability.
The linear part of the system at (0, 0, 0} is the matrix

0 -2 0
1 00
o 00

There are two imaginary eigenvalues and onhe zero eigenvalue. All we ean conclude
from this is that-the origin is not a sink.

Let ua look for a Liapunov funetion for (0, 0, 0) of the form V{z,y, 1) = az* +
b2 + ct, with @, b, ¢ > 0. For sucha V,

V = 2(azz’ + byy’ + cz2');

3V = 2azy(z — 1) — bry(z — 1) — ezt
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We want V = 0; thiscan be accomplished by setting ¢ = 1and 2a = b.We conclude
that 22 + 2¢* + 2% 15 a Liapunov function; therefore the origin is a stable equi-
librium . Moreover, the origin is asymptotically stable, since our Liapunov function
V' is clearly strict, that is, it satisfies (¢) of p. 193,

Example 2 Consider a (constant}) mass m moving under the influence of a
conservative force field —grad ®(z) defined by a potential function &: W, — R
on an open set Wo C R, (See Chapter 2.) The corresponding dynamical system
on the state space W = W, X R* C R* X Rlisg, for {x, ¢) € W, X RY:

dz
di

1

v,
dv
dt

Let (£, ) € Wy X R? be an equilibrium point. Then # = 0 and grad ®(£) = 0.
To investigate stability at (£, 0), we try to use the total energy

= —grad ®{z).

E(x, vy =bm|v] + md(x)

to construct a Liapunov function. Since a Liapunov function must vanish at
(£, 0), we subtract from E(z, ») the energy of the state (£, 0), which is &(£), and
define V: W, X R* - R by

Vi, v} = E(x,v) — E(£,0)
=tm|v]* + mOr) - mdbG).

By conservation of energy, ¥V = 0. Sinee dmst > 0, we assume ${z) > $(z) for
rnear £, r # £, in order to make V' a Liapunov function. Therefore we have proved
the wiil-hnown theorem of Lagrange: an equilibrium (£, 0) of @ conservative force
Jiell is stable if the polential energy has a local absolule minimum ai £.

Proof of Liapunov’s theorem. 1et § > 0 be so small that the closed ball
Bi(2} around £ of radius § lies entirely in U, Let « be the minimum value of V
on the boundary of By(Z), that is, on the sphere S;(2) of radius  and center .
Then a > 0by (a). Let Uy, = |z € Bi(£) | V(2) < «}. Then no solution starting
in 1/, can meet S)(%) since V is nonincreasing on solution curves. Hence every
solution starting in {7, never leaves By(£). This proves # is stable. Now assume
(c) holds as well, so that V is strictly decreasing on orbits in &/ — £ Let z({} be a
solution starting in {’y — £ and suppose r(t.} — 2, € Bi(Z) for some sequence
tn — o ; such a sequence exists by compactness of By(2). We assert 2, = 2. To see
this. ohserve that V{z(£)) > V(z) for all ¢ > 0 since V(r(f)) decreases and
Vir{ta)y — V(z} by continuity of V. If zy # £, let 2(f) be the solution starting
at z. Forany s > 0, we have V{(z{s)) < V(zy). Hence for any solution y(s) starting

§3. LIAPUNOV FUNCTIONS 105

sufficiently near z; we have
Vig(n)) < V(a);
putting ¥{0) = z(&,) for sufficiently large n yields the contradiction
Viz(t. + 8)) < Vi(z).

Therefore z, = £. This proves that £ is the only possible limit point of the set
fz(t) | t > 0}. This completes the proof of Liapunov’s theorem.

FIG. A. Level surfaces of a Liapunov funetion.

Figure A makes the theorem intuitively obvious. The condition V < 0 means
that when a trajectory crosses a “level surface’” V-'(¢), it moves inside the aet
where ¥V < ¢ and can never come out again. Unfortunately, it is difficult to justify
the diagram; why should the sets V—*(c} shrink down to £? Of course, in many
cases, Fig. A is indeed correct; for example, if V is a positive definite quadratic
form, such as #* -+ 2j?. But what if the level surfaces look like Fig. B? It is hard
to imagine such a ¥ that fulfills all the requirements of a Lispunov function; but
rather than trying to rule out that possibility, it is simpler to give the analytic
proof as above.

Liapunov functions not only detect stable equilibria; they can be used to esti-
mate the extent of the basin of an asymptotically stable equilibrium, as the follow-
ing theorem shows. In order to state it, we make two definitions. A set P is positively
tnvariant for a dynamical system if for each z in P, ¢.(r) is defined and in P for all
t > 0 (where ¢ denotes the flow of the system). An enlire orbit of the system is a

F1G. B Level surfaces of i Lgsunoy fueetion?
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set of the form
{dfz) 2 € R},
where ¢.(z) is defined for all ¢t € R.

Theorem 2 Let £ € W be an equilibrium of the dynamical system (1) and lel V:
7 — R be @ Liapunov function for 2, U a neighborhood of 2. Let P C U bea netghbor-
hood of £ which is closed in W. Suppose that P is posilively invariant, and that there
is no entire orbil in P — 2 on which V s constant. Then 2 is asymptolically slable,
and P C B(#).

Before proving Theorem 2 we apply it to the equilibrium £ = {0, 0) of the
pendulum discussed in Section 1. For a Liapunov function we try the total energy
E, which we expect to decrease along trajectories because of friction. Now

E = kinetic energy -+ potential energy;
kinetic energy = dm?
= ym(lf)?
= dmir,
For potential energy we take mass times height above the lowest point of the circle:

potential energy = m(l — Icos 6).
Thus
E = ymBut + ml(1l - cos 8)

= ml(}l? 4+ 1 — cos #§).
Then
B = ml(lo' + ¢ sin 8);

using (3) of Section 1 this simplifies to
B = —kPut.

Thus £ < 0 and E(0, 0) = 0, so that E is indeed a Liapunov function.
To estimate the basin of (0, 0), fix & number ¢, 0 < ¢ < 2ml, and define

P.= (6w | E@w <¢c and |8]| <nx]

Clearly, {0, 0) € P.. We shall prove P. C B(0, 0).
P, is positively invariant. For suppose

(00, w(t)), 0<t<a a>0

is a trajectory with (8(0), «(0)) € P.. To see that (#(a}, w(a)) € P., observe
that E(8(a), w(a)) < csince B < 0.1f | 8(a) | = =, there must exist a smallest
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& € [0, a] such that 8(ty) = *=. Then

E(0(t), u(t)) = E(xx, o(t))
mi Hw(t)? + 2]
> 2ml.

But
E(8{(L)), w(k)) < c < 2mi.

This contradiction shows that 8(a) < =, and so P.is positively invariant.

We assert that P. fulfills the second condition of Theorem 2. For suppose E is
constant on a trajectory. Then, along that trajectory, P = 0and so w = 0. Hence,
from (3) of Section 1, & = 0 so 8 is constant on the orbit and also sin § = @. Since
|81 < =, it follows that @ = G. Thus the only entire orbit in P, on which E is con-
stant is the equilibrium orbit (0, 0.

Finally, P, is a closed set. For if (s, wo) 18 & limit point of P, then |8 | < =,
and E(fs, wo) < ¢ by continuity of E. But | 6 | = » implies E{f, wy) > ¢. Hence
‘00' <de50(anr‘l‘0) € P.

From Theorem 2 we conclude that each P. C B(0, 0) ; hence the set

P =1JIP.]10 < ¢ < 2mi}
is contained in B(0, 0). Note that
P={(8w|E@w <2nl and |8] <xl

This result is quite natural on physical grounds. For 2ml is the total energy of
the state (x, 0) where the bob of the pendulum is balanced above the pivot. Thus
if the pendulum is not pointing straight up, and the total energy is less than the
total energy of the balanced upward state, then the pendulum will gradually
approach the state (0, 0).

There will be other states in the basin of (0, 0) that are not in the set P. Con-~
gider a state (x, u), where u is very small but not zero. Then (r, u) ¢ P, but the
pendulum moves immediately into & state in P, and therefore approaches (0, 0).
Hence (x, u) € B(0,0). See Exercises 5 and 6 for other examples.

Proof of Theorem 2. Imagine a trajectory 2(f), 0 < ¢ < o, in the positively
invariant set P. Suppose z (1) does not tend to £ as t — . Then there must be a
point @ # £ in P and a sequence £, -+ such that

lim z(f.} = a.

-
If a = V(a), then a iz the greatest lower bound of {V{z(t)) | ¢ = 0); this follows
from econtinuity of V and the fact that ¥ decreases along trajectories.

Let L be the set of all such points @ in W:

L = {a € W | there exist {, — o with z(t) —al,
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where z(f) is the trajectory postulated above. Since every point of L is a limit
of points in P, and P is closed in W, it follows that L C P. Moreover, ifa € L,
then the entire orbit of a is in L; that is, #.(a) is defined and in L for all ¢ € R.
For ¢.{(a) is defined for all t > 0 since P is positively invariant. On the other hand,
each point ¢.(z(t)) is defined for all ¢ in the interval [—t., 0]; since z(L) —a
and we may assume 4 < & < - -, it follows from Chapter 8 that ¢,(a) is defined
forallt € [—£a,0),n =1,2,....8ince —ty, = — =, ¢,{a) is defined for all t < 0.
To see that ¢,{(a) € L, for any particular & € R, note that if z(&) — 4, then
x(ty + 8) —b¢.(ﬂ).

We reach a contradiction, for V(a) = a for all a € L; hence V is constant on
an entire orbit in P. This is impossible; hence lim.., z(f) = £ for all trajectories
in P. This proves that # is asymptotically stable, and also that P C B(%). This
completes the proof of Theorem 2.

The set L defined above is called the set of wlimit points, or the w-limil set, of
the trajectory z(f) (or of any point on the trajectory). Similarly, we define the
set of a-limit points, or the a-limit set, of a trajectory y(t) to be the set of all points
b such that lima-. y(&) = b for some sequence {, — — . (The reason, such as
it is, for this terminology is that « is the first letter and « the last letter of the
Greek alphabet.) We will make extensive use of .these concepts in Chapter 11.

A sct A in the domain W of & dynamical system is invarignt if for every z € A4,
&) is defined and in 4 for all ¢ € R. The following facts, essentially proved in
the proof of Theorem 2, will be used in Chapter 11.

Proposition  The a-limit set and the w-limit set of a trajectory which 18 defined for all
t € R are closed invariant sets.

PROBLEMS

1. Find a strict Liapunov function for the equilibrium (0, 0) of
¥ =—2r—
¥ o= —y—
Find 5 > O as large a8 you can such that the open disk of radius & and center
(0, 0) is contained in the basin of (0, 0).
2. Discuss the stability and basins of the equilibria of Example 1 in the text.

3. A particle moves on the straight line R under the influence of s Newtonian
force depending only upon the position of the particle. If the force is alwaya
directed toward 0 € R, and vanishea at 0, then 0 is a stable equilibrium. (Hint:
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The total energy E is a Liapunov function for the corresponding first order
system

’

r =1

’

¥ = —g(x);

fE is kinetic energy plus potential energy, and the potential energy at z € R
is the work required to move the mass from 0 to z.)

4. In Problem 3 suppose also that there is a frictional force opposing the motion,
of tlTe form —f(z}v, f(x) = 0, where v is the velocity, and z the position of the
par.tlcle. If f-1(0) = 0, then (0, 0) is asymptotically stable, and in fact every
trajectory tends toward (0, 0).

5. Sketch the phase portraits of

{a} the pendulum with friction (see also Problem 6);
(b) the pendulum without friction.

6. (a) For the frictional pendulum, show that for every integer n and every
angle 8 there is an initial state (), w) whose trajectory tends toward
(0, 0, and which travels n times, but not n 4 1 times, around the circle.

(b) Discuss the set of trajectories tending toward the equilibrium (x, 0).

7. Prove the following instability theorem: Let V be a ¢ real-valued function
defined on a neighborhoqd U of an equilibrium £ of a dynamical system.
Suppose V() = 0and V > 0in U — £ If V(z.) > O for some sequence
z, =+ &, then £ is unstable.

8. Let V be a strict Liapunov function for an equilibrium # of a dynamical system.

Let ¢ > 0 be such that V-'[0, ] is compact and contains no other equilibrium.
Then V1[0, ¢] C B(£).

§4. Gradient Systems

A gradient system on an open set W C R~ is a dynamica) system of the form
(1) = —grad V(2),
where
V:U>R

av d
a.dV=(--—,...,—V)
& ar, oz,

is the gradient vector field
grad V: UV — R

is a C? function, and
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of V. (The negative sign in (1) is traditional. Note that —gradV(z) =
grad(~V (2)).) ,

Gradient systems have special properties that make their flows rather simple.
The following equality is fundamental:

(2) DV(z)y = (grad V(z), ¥).

This says that the derivative of V at 2z (which is a linear map R* — R), evaluated
ony € R, gives the inner product of the vectors grad V(z) and y. To prove (2),
we observe that

£14 ’
DV (z)y =E. 7, (2)us

which is exactly the inner product of grad V{z) and ¥ = (w1,..., ¥a).
Let V: I/ — R be the derivative of V along trajectories of (1); that is,

Viz) = %t V(z(t)) .

Theorem ! V(z) < Oforall z € U; and Viz) = 0 if and only #f z is an equi-
librium of (1).

Proof. By the chain rule
V(z) = DV(2)z'

= (grad V(2), —grad V(z))
by (2); hence
V(z) = — | grad V(2) *
This proves the theorem.

Corollary Let £ be an isolated minimum of V. Then £ {8 an asymplotically stable
cquilibrium of the gradient system ' = —grad V(z).

Proof. It is easy to verify that the function z — V(z) — V(Z) is a strict
Liapunov funetion for #, in some neighborhood of 2.

To understand a gradient flow geometrically one looks at the level surfaces of
the funetion V: U/ — R. These are the subsets V-1(c},c € R. If u € V'(¢) is a
regular point, that is, grad V(x) #= 0, then V1(¢) looks like a “‘surface’ of dimen-
sion » — 1 near z. To see this, assume (by renumbering the coordinates) that
aV/dr.{u) # 0. Using the implicit function theorem, we find a function g:
R~ - R such that for x near u we have identically

V(El, e ey Taaly 9(11, seey zn-l)) = C;

hence near u, ¥-1{¢) looks like the graph of the function g.
The tangent plane to this graph is exactly the kernel of DV {u). But, by (2),
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this kernel is the (n — 1)-dimensional subspace of vectors perpendicular to grad
V{u) (translated parallelly to «). Therefore we have shown:

Theorem 2 At regular poinds, the veclor field —grad V(z) ia perpendicular to the
level surfaces of V.

] Note by (2) that the nonregular or critical points of V are precisely the equi-
librium points of the system (1}.

Since the trajectories of the gradient system (1) are tangent to —grad V(x),
we have the following geometric description of the flow of a gradient system:

Theorem 3 Let
' = —grad V(x)
be a gradient system. Al regular potnts the trajectories cross level surfaces orthogonally.

Nonregular points are equilibria of the system. Isolated minima are asympiotically
stable.

Example. Let V:R! — R be the function V(z, y) = z#(z — 1)* + ¢*. Then we
have, putting z = (z, ¥):

—aeV —a
flz2} = —grad V(z) = (—a; , a_yV) = (—=2z(zx ~ 1)(2z — 1}, —2y)
or
Z = r{x — 1)(2x — 1),
dy
a‘ = —2y.

The study of this differential equation starts with the equilibria. These are
found by setting the right-hand sides equal to 0, or —22(z — 1)(2z — 1) = 0,
=2y =40.

We obtain precisely three equilibria: 21 = (0, 0), 2n = (4, 0), 2m = (1,0). To
check their stability properties, we compute the derivative Df(z) which in eo-

. ordinates is

d
e (—2z(z — 1)(2z — 1)) 0

d
0 - (=
o "W
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)
FIG. A. Graphof V = x3(z — 1% + ¢,

or
—2(6s2 — 6z + 1) 0]
D, = .
o = _2
Evaluating this at the three equilibria gives:

T O] R _[1 0] o )_[-2 0]
Bftzp -[ 0 —a2l’ f(2n) = o —2)". f(2n) = o —a2l°

We conclude from the main result on nonlinear sinks that z;, ziy are sinks while 2;1
is a saddle. By the theorem of Section 2, z;; ia not a stable equilibrium.

The graph of V looks like that in Fig. A. The curves on the graph represent
intersections with horizontal planes. The level “surfaces”” (curves, in this case)
look like those in Fig. B. Level curves of V(z, y) = 2*(z — 1)* 4 y* and the phase

FIG. B. Lavel curves of V(z, y).
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\ -

Fon
7

FIG. C. Level curves of V(z, ¥) and gradient lines of (z*, ') = —grad V(z, y}).

portrait of (2', '} = —grad V(z, y), superimposed on Fig. B, look like Fig. C.
The level curve shaped like a reclining figure eight is V-1(¢).
More information about a gradient flow is given by:

Theorem 4 Let z be an a-limit point or an w-limif point {Section 3) of a trajectory
of a gradient flow. Then 2 i2 an equilibrium.

Proof. Suppose z is an w-limit point. As in the proof of Theorem 2, Section 3,
one shows that V is constant along the trajectory of z. Thus V(z) = 0; by Theorem
1, 2 is an equilibrium. The case of a-limit points is similar. In fact, an e-limit point
zof ¥ = —grad V(z) is an w-limit point of 2’ = grad V(z), whence grad V (z) = 0.

In the case of isolated equilibria this result implies that an orbit must either run
off to infinity or else tend to an equilibrium. In the example above we see that
the zets

V—l([_c’ c])l cE Rn

are compact and positively invariant under the gradient flow. Therefore each
trajectory entering such a set is defined for all £ > 0, and tends to one of the three
equilibria (0, 0), {1, 0}, or (4, 0). And the trajectory of every point does enter
such a set, since the trajectory through (2, y) enters the set

V_l(['_cn C]), c = V(Z, y)

The geometrical analysis of this flow is completed by obseerving that the line
x = } is made up of the equilibrium (3, 0) and two trajectories which approach
it, while no other trajectory tends to (}, 0). This is because the derivative with
respect to t of [z — 4| is positive if 0 < x < § or § < z < 1, as & computation
shows.

We have shown: trajectories to the left of the line z = } tend toward (0, 0)
(8 t — + = ); and trajectories to the right tend toward (1, 0). Trajectories on
the line z = § tend toward (}, 0). This gives a description of the basins of the
equilibria (1, 0) and (1, 0). They are the two half planes

B(0,0) = {(z,¥) € R* |z < }),
B(1,0) = {(z,p) € R*| z > }}.
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PROBLEMS

1. For each of the following functions V (u), sketch the phase portrait of the gradi-
ent flow v = —grad V(u). Identify the equilibria and classify them as to
stability or instability. Sketch the level surfaces of V on the same diagram.
(8) 2!+ 29 (b) 2—yPp—22+4y+5
(¢} ysinz (d) 22— 2zy + 58 +4z+ 4y +4
{e) 4+t —2 N DMe-DH+pry—2)+2

2. Suppuse a dynamical system is given. A trajectory z(1),0 <t < oo, i5 called
recurrent if x(t.) — 2(0) for some sequence &, — «. Prove that a gradient
dynamical system has no nonconstant recurrent trajectories,

3. Let V: E — R be C* and suppose V—!(— e, c] is compact for every ¢ € R,
Suppose also DV (z) #» 0 except for a finite number of points p,, . . . , p.. Prove:
(a) Every solution z(t) of z’ = —grad V(z) is defined for all ¢ > O;
(b) lim,., z(f) exists and equals one of the equilibrium points py, . . ., Pn
for every solution z(t).

85. Gradients and Inner Products

Here we treat the gradient of a real-valued function V on a vector space E
equipped with an inner product (, ). Even if E is R®, the inner product might
not be the standard one. Even if it is, the new definition, while equivalent to the
old, has the advantage of being coordinate free. As an application we study further
the equilibria of a gradient flow.

We define the dual of a (real) vector space E to be the vector apace

E* = L(E, R}
of all linear maps E — R,

Theorem 1 E* is isomorphic to E and thus has the same dimension.

Proof. lLet {e;, ..., e} be a basis for E and (, ) the induced inner product.
Then define u: £ — E* by z — u, where u.(y)} = {(z, ). Clearly, u is a linear map.
Also, u, # 0 if z # 0 since u,(z) = (z, ) » 0. It remains to show that u ig sur-
jective. Let v € E* and v(e;) = li. Define z = 3 lie;, 80 ue) = (&, L Les} = b
and u, = v. This proves the theorem.

Since E and E* have the same dimension, say n, E* has a basis of n elements,
If fes, . . ., ex) = ® is & basis for E, they determine a basis {e, .. ., et} = @*
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for E* by defining
e;: E 2R,
(T led) = L
i

for7,j = 1,..., n. Thus ¢} is characterized by
6?(8;) = bij.
®@* is called the basis dual to ®.

No; BIEI'DDOS;J f‘? is given an arbitrary inner product (, ). We define an asociated
map $: E — (as in Theorem 1) by ®(x}{y) = (= i i

: , ¥). Clearly, ® is an
morphism by Theorem 1, since its kernel is Q. v -

Next, let V: W — R be a continuously di .
y differentiable map defined
set W C E. The derivative of V is a continuous map P af a0 open

DV:W — L{(E,R) = E*

A map W — E* is called & 1-form on W. An ordin i i ion i

. ary differential equation is th
same a8 a vector field on W, that is, a map W — E. Weuse@“':]i;]—bEtoconf
vert the 1-form DV: W — E* into a vector field grad V: W — E:

Definition grad V(z) = #Y(DV(2)), z € W.

From the definition of ¢ we cbtain the equivalent formulation

(n DV{(z)y = {grad V(z}, y) forall yc E.

The reader can verify that if E = R~ with the usual inner prod i i
. t" g
tion of grad V(z) is the same as er product, then this defin

14
(?— (:c),...,-a—g(z)).
0z,

ox

We rt1.ow prove some resultas of the preceding section concerning the diﬂereﬁtia.l
equation

(2) 7 = —grad V(z),
using our new definition of grad V,

Tl:de.orem2 Let V: W — R be a C* function {(that is, DV: W > E*is O': or V has
continuous second partial derivatives) on an £ ; E wi
e o )] open set W in a vector space E with an

. {(a) % i3 on equilibrium point of the di tial Y i ]
i  fFeren equation (2) if and only if



206 9. snmm-ry.ov EQUILIBRIA
(b)Y If (1) 1s a solution of (2}, then
d
i V(z(t)) = —|grad V(z(t)) |1

(e} If () is not constant, then V (z(t)) is a decreasing function of t.

Proof. Since V is (3, the right side of (2) is a C" function of r; therefore the
basic uniqueness and existence theory of Chapter 8 applies to (2).

By the definitions —grad V(£) = 0if and only if DV (£) = 0, since ®: E — E*
18 a linear isomorphism ; this proves (a). To prove (b) we use the chain rule:

d
5 V(@) = DV(z)z()

= DV (z()) (—grad V(z(t));
by (1) this equals

(grad V(z(t)), —grad V{(z(8))} = — | grad V(z()) |*.
If x(t) is not constant, then by (a), grad V{(z(1)) = 0; so (b) implies

d
% Viz(t)) < 0.
This proves {c).

The dual vector space is also used to study linear operators. We define the
adjoint of an operator

T:-E— E

(where E has some fixed inner product) to be the operator
T«-E—E
defined by the equality
Tz, y) = (2, T%)
for all 7, y in E. To make sense of this, first keep y fixed and note that the map

¥ — {(Tr, y) is a linear map £ —+ R; hence it defines an element A(y) € E* We
define

Tey = ¢A(y),

where
% E— E*
is the isomorphism defined earlier. It is easy to see that T'* is linear.
If ® is an orthonormal basis for E, that is, ® = [e}, ..., e.} and
(ei, ) = 84y,

then the ®-matrix of 7'* turns out to be the transpoee of the ®-matrix for T, as is
eagily verified.
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An operator T € L{E) is self-adjointif T* = T, that is,
(Tz, ¥} = {z, Ty), forall zr, y € E.

In an orthonormal basis this means the matrix [a;] of T is symmetric, that is,
aij = Gji.

Theorem 3 Let E be a real veclor space with an inner product and let T be a self-
adjoint operalor on E. Then the eigenvalues of T are real.

Proof. Let E¢ be the complexification of E. We extend { , ) to a function
Ec X Ec — C as follows. If z 4+ 1y and u + iv are in E¢, define
Et+yutiv)=@uw+i@yw-— (@) + @)
1t is easy to verify the following foralia, b € E¢, x € C:
(3 (@, a} >0 if a#=0,
(4) A(ﬁ, b) = (AG, b) = (al Xb)!
where — denotes the complex conjugate.
Let T¢: Ec — E¢ be the complexification of T; thua Tc(z + iy} = Tz + i(Ty).
Let (T*)c be the complexification of T*. It is easy to verify that
(5) (Tca, b) = {(a, (T*)cb).

{This is true even if T is not self-adjoint.)
Suppose A € C is an ¢igenvalue for T and a € Ec an eigenvector for A; then
Tca = Agd.
By (5)
(Tca, a) = {a, (T*)ca)
= (a, Tca).
since T* = T. Hence

{(Aa, a) = (a, xa).
But, by (4),

Ma, a) = {\a, a),
while

so, by (3}, » = X and X is real.

Corollary A symmelric real n X n matriz has real eigenvaluea.

Consider again a gradient vector field
F(z) = —grad V{z).
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For simplicity we assume the vector space is R*, equipped with the usual inner
product. Let £ be an equilibrium of the system

' = —grad V{z).
The operator
DF(£)

av
B [az.az, @) ]

in the standard basis. Since this matrix is symmetrie, we conclude:

has the matrix

Theorem 4 At an equilibrium of a gradient system, the eigenvalues are real,

This theorem is also true for gradients defined by arbitrary inner products.
For example, a gradient system in the plane cannot have spirals or centers at
equilibria. In fact, neither can it have improper nodes because of :

Theorem 5 Let E be a real veclor space with an inner product. Then any self-
adjoint operator on E can be diagonalized.

Proof. Let T: E — E be self-adjoint. Since the eigenvaluca of T are real, there
is & nonzero vector ¢, € E such that Te, = Mgy, A € R. Let

E,={zc E|{(z,ey) = 0},
the orthogonal complement of .. If z € E,, then Tz ¢ E,, for
Tz, e1) = {2, Ter) = {z, her) = Az, ¢4) = 0.
Hence T leaves E, invariant. Give E) the same inner product as E; then the operator
T, = T|E € L(E)
is self-adjoint. In the same way we find a nonsero vector e; ¢ E, such that
Tex = ey} MER,

Note that e, and e, are independent, since {e:, &) = 0. Continuing in this way, we
find & maximal independent set 8 = {e,, . . ., .} of eigenvectors of 7. These must
span E, otherwise we could enlarge the set by looking at the restriction of 7' to
the subspace orthogonal to ey, . . . , ¢.. In this basis ®, T is diagonal.

We have actually proved more. Note that ey, . . . , ¢, are mutuslly orthogonal ;
and we can take them to have norm 1. Therefore a self-adjoint operator (or a aym-
melric matrix) can be diagonalized by an orthonormal basis.

For gradient sysfems we have proved:
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Theorem 6 At an equilibrium of a gradient flow the linear part of the vector field
12 diagonalizable by an orthonormal basis.

PROBLEMS

1. Find an orthonormal disgonalizing basis for each of the following operators:
(a) [2 1] (b) [ 0 "2] (@ [o o 1
11 -2 0. 01 2
1 2 -1

2. Let A be a self-adjoint operator. If r and y are eigenvectors belonging to
different eigenvalues then (z, y) = 0.

3. Bhow that for each operator A of Problem 1, the vector field r — Az is the
gradient of some function.

4. 1f A is a symmetric operator, show that the vector field z — Az ia the gradient
of some funection.

Notes

A statement and proof of the implicit funetion theorem used in Section 4, is
given in Appendix 4. See P. Halmoe’ Finite Dimensional Vector Spaces [8] for a
more extended treatment of self-adjoint linear operators. One can find more on
Liapunov theory in LaSalle and Lefschetz's Stability by Liapunov's Direct Method
with Applications [14]. Pontryagin's text [10] on ordinary differential equations
is recommended; in particular, he has an interesting application of Liapunov
theory to the study of the governor of a steam engine.



Chapter 10

Differential Equations

for Electrical Circuits

First a simple but very basic circuit example is described and the differential
equations governing the circuit are derived. Our derivation is done in such a way
that the ideas extend to general circuit equations. That is why we are so care.ful
to make the maps explicit and to describe precisely the sets of states obt?ymg
physical laws. This is in contrast to the more typical ad hoc approach to nonlinear
circuit theory. . .

The equations for this example are analyzed from the purely. mthen_\stlcal
point of view in the next three sections; these are the ¢lassical equations of Lienard
and Van der Pol. In particular Van der Pol’s equation could perhaps be regarded
as the fundamental example of a nonlinear ordinary differential equation. It
possesses an oscillation or periodic solution that is a periodic attractor. Ever_y
nontrivial solution tends to this periodic solution; no linear flow can have this

property. On the other hand, for a periodic solution to be viable in applied mathe-

matics, this or some related stability property must be satisfied.

The construction of the phase portrait of Van der Pol in Section 3 involves
some nontrivial mathematical arguments and many readers may wish to ski;? or
postpone this part of the book. On the other hand, the methods have some wider
use in studying phase portraits. ‘ ‘

Asymptotically stable equilibria connote death in a system, while attrs,(%t.fng
oscillators connote life. We give an example in Section 4 of a continuous transition
from one to the other. :

In Section 5 we give an introduction to the mathematical foundations of elec-
trical circuit theory, especislly oriented toward the analysis of nonlinear circuita.
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$§1. An RLC Circuit

We give an example of an electrical circuit and derive from it a differential
equation that shows how the state of the circuit varies in time. The differential
equation is analyzed in the following section. Later we shall describe in greater
generality clements of the mathematical theory of electrical circuits.

Our discussion of the example here is done in & way that extends to the more
general case.

The circuit of our example is the simple but fundamental seriea RLC cireuit in
Fig. A. We will try to communicate what this means, especially in mathematical
terms., The circuit has three branches, one resistor marked by R, one inductor
marked by L, and one capacitor marked by C. One can think of a branch as being
a certain electrical deviee with two terminals. In the cireuit, branch R has terminals
a, 8 for example and these terminals are wired together to form the points or
nodes o, 8, 7.

The electrical devices we consider in this book are of the three types: resistors,
inductors, and capacitors, which we will characterize mathematically shortly.

In the circuit one has flowing through each branch a current which is measured
by a real number. More precisely the currents in the circuit are given by the three
numbers iz, {1, 1¢; iz Measures the current through the resistor, and so on. Current
in & branch is analogous to water flowing in a pipe; the corresponding measure for
water would be the amount flowing in unit time, or better, the rate at which water
passes by a fixed point in the pipe. The arrows in the diagram that orient the
branches tell us which way the current (read water!} is flowing; if for example iz
18 positive, then according to the arrow current flows through the resistor from
g to a (the choice of the arrows is made once and for all at the astart).

The state of the currents at a given time in the circuit is thus represented by a
point 7 = (ig, 11, fe) € R But Kirchhoff's current low (KCL) says that in reality
there is a strong restriction on what ¢ can occur. IKCL asserts that the total current
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flowing into & node is equal to the total current flowing out of that node. (Think of
the water analogy to make this plausible.} For our circuit this is equivalent to

KCL: g = 1:;, = —i:c.

This defines & one-dimensional subspace K, of R* of physical current stales. Our
choice of orientation of the eapacitor branch may seem unnatural. In fact the
oricntations are arbitrary; in the example they were chosen so that the equations
eventually obtained relate most directly to the history of the subject.

The state of the circuit is characterized by the current ¢ together with the voltage
{or better, voltage drop) across each branch. These voltages are denoted by vs, vy, ve
for the resistor branch, induetor branch, and capacitor branch, respectively. In the
water analogy one thinks of the voltage drop as the difference in pressures at the
two ends of a pipe. T'o measure voltage one placesa voltmeter (imaginea water pres-
sure meter) at each of the nodes a, B, ¥ which reads V (a) at «, and 8o on. Then ve
is the difference in the reading at « and 8

V() — Via) = va.

The orientation or arrow tells us that ve = V(8) — V () rather than V{a) —~ V(8).
An unrestricted vollage state of the circuit is then a point v = (v, v, ve) in RY,
Again a Kirchhoff law puts a physical restriction on v:

KVL: ve+ve—ve=10

This defines a two-dimensional linear subspace K, of R*. From our explanation of
the vg, vy, te in terms of voltmeters, KVL is clear; that is,

v+ v —ve = (V(8) — V(@) + (V(a) — V() — (V(B) — V(v)) =0

In a general circuit, one version of KVL asserts that the voltages can be derived
from a ‘“voltage potential” function V on the nodes as above.
We summarize that in the product space, R* X R? = &, those states (4, v) satis-

[£.]

FIG. B
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fying Kirchhoff’s laws form a three-dimensional subspace X of the form K = K; X
K, CR* X R,

Next, we give a mathematical definition of the three kinds of electrical devices
of the circuit.

) First consider the resistor element. A resistor in the R branch imposes a “func-
tional relationship” on iz, ve. We take in our example this relationship to be de-
fined by a C" real function f of a real variable, so that ve = f(iz). If R denotes a
conventional linear resistor, then f is linear and vg = f(ig) is a statement of Ohm’s
law. The graph of f in the (iz, vz) plane is called the characleristic of the resistor.
A couple of examples of characteristics are given in Figs. B and C. (A characteristic
like that in Fig. C occurs in the “tunnel diode.”)

A -physical state (i, v) € R* X R?* = § will be one which aatisfies KCL and KVL
or (i, v} € K and also f(i,) = »,. These conditions define asubset T C K C §
Thus the set of physical states Z is that set of points (ig, i1, fc, va, ¥, vc) in R X R?
satisfying: '

ik =1L = —ip (KCL),
g+ v, —ve =0 {KVL},
J(ir) = (generalized Ohm's law).

Nex:o we concern ourselves with the passage in time of a state; this defines a
curve in the state space §:

t— (i(t): ”(t)) = (iR(t)] il’-(t), ic(t), ﬂg(t), vl-(t)l vC(t))-

The inductor (which one may think of as a coil; it is hard to find a water analogy)
specifies that
dic(t
L % = v, (1) (Faraday’s law),

where L is a positive constant called the inductance.

Va

‘n

FIG. C
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On the other hand, the capacitor (which may be thought of as two metal plates
separated by some insulator; in the water model it is a tank) impbses the condition

dvc(t)

i@ (),

where € is a positive constant called the capacitance.

We summarize our development so far: a state of our circuit is given by the fix
numbers (ix, iz, ic, ¥, UL, vc), that is, an element of R* X R?. These numbers are
subject to three restrictions: Kirchhoff’s current law, Kirchhoff’s voltage law, and
the resistor characteristic or “generalized Ohm’s law.” Therefore the space of
physical states is a certain subset Z C R* X R3. The way a state changes in time
is determined by two diflerential equations.

Next, we simplify the state space T by observing that i, and ve determine the
other four coordinates, since tg = i and i¢c = —ir by KCL, v = f(in) = f(tr) by
the generalized Ohm’s law, and v, = vc — vx = vc — f(i1) by KVL. Therefore
we can use R? as the state space, interpreting the coordinates as (i, vc). Formally,
we define 8 map x: R* X R? — R?, gending (3, v) € R? X R to (i, ve}. Then we
set xy = | Z, the restriction of x to Z; this map =y Z — R! is one-to-one and onto;
its inverse is given by the map ¢: Rt — Z,

elis, vc) = (ir, i1, —iL, (1), ve — f(iL), ve)-

It is easy to check that (i, vc) satisfies KCL, KVL, and the generalized Ohm’s
law, so ¢ does map R? into Z; it is also easy to see that p and ¢ are inverse to each
other.

We therefore adopt R? as our state space. The differential equations governing
the change of state must be rewritten in terms of our new coordinates (ir, ve):

LEE = v = 0o - fi0),

dv . ,
C 'd'?c = 1o WM —1L.
For simplicity, since this is only an example, we make L = 1, C = 1.
If we write z = iz, ¥ == V¢, we have aa differential equations on the (z, ¥} Car-
tesian space:
dx
dt

¥ - f(z)l

dy
dt

= —z,

These equations are analyzed in the following section.

§2. ANALYSIS OF THE CIRCUIT EQUATIONS 215

PROBLEMS

i. Find the differential equations for the network in Fig. D, where the resistor is
v_olta,ge controlled, that is, the resistor characteristic is the graph of a C' func-
tion g: R = R, g{ve) = ix.

ﬁg ~c

00009

FiG. D

2. Show that the LC circuit consisting of one inductor and one capacitor wired

in & closed loop oscillates.

§2. Analysis of the Circuit Equations
I-.Iere we begin a study of the phase portrait of the planar differential equation
derived from the circuit of the previous section, namely:

d
(1) = = v @),

4y
di
This is one form of Lienard’s equation. If f(xr) = 2 — z, then (1) ig a form of
Van der Pol's equation. .
First consider the most simple case of linear f {(or ordinary resistor of Section 1).
Let f(x) = Kz, K > 0. Then (1) takes the form
—-K 1
-1 0
The eig.envalum of A are given by A = §[—K £ (K? — 4)}'17]. Since A always
has negative real part, the zero state (0, 0) is an asymptotically stable equilibrium,

= —I

z = Az, A=|: :l, z=(z,¥).
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in fact a sink. Every state tends to zero; physically this is the dissipative eﬁef:t of
the resistor. Furthermore, one can gee that (0, 0) will be a spiral 'aink precisely
when K < 2,

Next we consider the equilibria of (1) for a general C* function f.

There is in fact a unique equilibrium £ of (1) obtained by setting

y—flz) =0,
—z =0,

or
z = (0, £(0}).

The matrix of first partial derivatives of (1).at Zis

[4%)1
-1 0
whose eigenvalues are given by
A= 3[—S(0) = (f(0)* - 4)'7].
We conclude that this equilibrium satisfies:
Z is a sink if F)y >0,
and

z isasourceif f'(0) <O

{see Chapter 9). ) )
In particular for Van der Pol's equation (f(z) = 28 — z) the unique equi-
librium is a source.
To analyze (1) further we define a function W: R?* — R* by IEV‘(::, !.I) = (22 +
y?); thus W is half of the norm squared. The following proposition is simple but
important in the study of (1}.

Propoesition Lel z(f) = (z(f), y(£)) be @ solution curve of Lienard's equalion (1).
Then

%Wmm=mmmm»

Proof. Apply the chain rule to the composition

JLRrR LR
to obtain

%‘W(z(t)) = DW () (2'(1)) = z()z'(8) + v(O)y' (D);
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suppressing ¢, this is equal to

2y — f(z)) — yx = —zf(2)

by (1). Here J could be any interval of real numbers in the domain of z.

The statement of the proposition has an interpretation for the eleetric circuit
that gave rise to (1) and which we will pursue later: energy decreases along the
solution curves according to the power dissipated in the resistor.

In circuit theory, a resistor whose characteristic is the graph of f: R — R, is
called passive if its characteristic is contained in the set consisting of (0, 0) and
the interior of the first and third quadrant (Fig. A for example). Thus in the case
of a passive resistor —zf(z) is negative except when x = 0.

FIG. A

From Theotem 2 of Chapter 9, Section 3, it follows that the origin is asymptoti-
cally stable and its basin of attraction is the whole plane. Thus the word passive
correctly describes the dynamics of such a eircuit.

§3. Van der Pol’s Equation

The goal here is to continue the study of Lienard’s equation for a certain func-
tion f.

dz
(1) E ¥y - f(x}m f(I) =z~ x,

ay
dt
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This is called Van der Pol's equation; equivalently
dr :

2 —=y—2 .

(2) oY + =

dy

dt

In this case we can give a fairly complete phase portrait analysis.

= —r

Theorem There is one nontrivial periodic solution of (1) and every nonequilibrium
solution tends o this periodic solution. “The system oscillates.”

We know from the previous section that {2) has a unique equilibrium at (0, 0),
and it is a source. The next step is to show that every nonequilibrium solution
“rotates” in & certain sense around the equilibrium in a clockwise direction. To
this end we divide the (r, ¥} plane into four disjoint regions (open sets) A, B,
C, D in Fig. A. These regions make up the complement of the curves

(3) y"‘f(l) =OJ
—z =0

These curves (3) thus form the boundaries of the four regions. et us make this
more preeise. Define four curves

vt = {{z,y) |y >0,z = 0],
gt=1{xylz>0y=72 — 2z,
v = [(ny) |y <0,z =0}
F=Hnnle<Oy=2—z

3. v ! ]
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Thesge curves are disjoint; together with the origin they form the boundaries of
the four regions. '

!\'ext we see how the vector field (', ) of (1) behaves on the boundary eurves
It is clear that ' = 0 at (0, 0) and on v* U, and nowhere clse; and 2’ = 0 exn.ctl).r
on_g‘* Ug U (0, 0). Furthermore the vector (', ¥’) is horizontal on v+ U and
Pomta right on o*, and left on v— (Fig. B}. And (£, y) is vertical on g* u ¢, point-
ing downward on g+ and upward on g~. In each region A, B, C, D the ;igns of
z" and ¥’ are constant. Thus in A, for example, we have 2’ > 0, ¥’ < 0, and so the
vector field always points into the fourth quadrant. 1

The _next pz?.rt of our analysis concerns the nature of the flow in the interior of
the regions. Figure B suggests that trajectories spiral around the origin clockwise
The next two propositions make this precise. -

“ - /
o' € 8
B |
y-
FIG. B

Proposition 1  Any trajectory starting on v+ enters A. Any trajectory starting in A
meels g*; furthermore il meels g+ before 1t meets v—, g or v+.

+Proo_f. See Fig. B. Let (2(2), ¥(t)) be a solution curve to (1). If (£(0), y(0)) €
v+, then z(0) = 0 and y(0) > 0. Since z'(0) > 0, z(¢) increases for amall { and
80 (1) > 0 which implies that y(t) decreases for small . Hence the curve enters A.
Before the curve leaves A (if it does), z’ must become 0 again, so the curve must
eross g* before it meets v—, g~ or v*. Thus the first and last statements of the propo-
sition are proved.

It remains to show that if (z(0), y(0)) € A then (x{t}, y(t)) € g* for some
¢ > 0. Suppose not.

I_;et. P C R*be the compact set bounded by (0, 0) and v*, g* and the line y = y(0)
as in Fig, C The solution curve (z{), y(1)},0 < ¢t < gisin P. From Chapter 8
it fc?llowa gince (z(f), y(t)) does not meet g*, it is defined for all ¢t > 0. '

Since 2’ > 0in A4, z(t) > afor t > 0. Hence from (1), (1) £ —afort > 0.
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v
&

Tad

—a-
ol ylon

FIG.C
For these values of ¢, then
v = [ V@ d <0 -t
This is impossible, unless our trajectory meets g*, proving Proposition 1.

Similar arguments prove (see Fig. D):

vt
—
c o ¢
-
'y & A
-
v

FIG. D. Trajectories apiral clockwise.

Proposition 2 Every irajectory is defined for (af least) au t20 )?'zcept for (0, ?),
each trajectory repealedly crosses the curves »*, g+, v—, g, in clockwise order, passing
among the regions A, B, C, D in clockwise order.

To analyze further the flow of the Van der Pol oscillator we define & map

g vt — vt
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as follows, Let p € v*; the solution curve £ — ¢.(p)} through p is defined for all
t 2 0. There will be a smallest t;(p) = & > 0such that ¢.,(p) € v+. Weputo(p) =
¢:,(p). Thus ¢ (p) is the first point after p on the trajectory of p (for ¢t > 0) which
is again on v+ (Fig. E). The map p — 4(p) is continuous; while this should be
intuitively clear, it follows rigorously from Chapter 11. Hence « is also continuous.
Note that ¢ is one to one by uniqueness of solutions.

The importance of this section map o: v+ — v+ comes from ita intimate relation-
ship to the phase portrait of the flow. For example:

Proposition 3 Let p € v+, Then p is a fized point of o (that is, o(p) = p) if and
only if p 18 on a periodic solution of (1) (thal is, ¢.(p) = p for some t = 0). Moreover
every periodic solulton curve meets v+,

Proof. If o(p) = p, then ¢, (p) = p, where &, = f(p) ia as in the definition
of . Suppose on the other hand that o(p} # p. Let v* = v* v (0, 0). We observe
first that ¢ extends to a map v* — v* which is again continuous and one to one,
sending (0, 0) to itself. Next we identify v* with {y € R | y > 0} by asaigning to
each point its y-coordinate. Hence there is a natural order or #*: (0, y) < (0, 2) if
¥ < z It follows from the intermediate value theorem that o: v* — ¢* is order
preserving. If o(p) > p, then o*(p) > ¢(p) > p and by induction ¢*(p) > p,
n = 1,2, ... This means that the trajectory of p never crosses v* again at p.
Henee ¢:(p) # pforallt # 0. A similar argument applies if ¢(p} < p. Therefore
if #(p) # p, pis not on a periodic trajectory. The last statement of Proposition 3
follows from Proposition 2 which implies that every trajectory (except (0, 0))
meets v+,

For every point p € v* let ta(p) = t, be the smallest ¢ > 0 such that ¢.(p) € v.
Define a continuous map

a vt — o,

a{p} = du(p).

V‘

por ( )

{0,0)

[ 4

FIG. E. The map «: v* — v*.



222 10. DIFFERENTIAL EQUATIONS FOR ELECTRICAL CIRCUITS

y-t

Po 4
» '\
(1,0 X-axis
alp)

v-
FIG. F. The map a:v* — v,

8ee Fig. F. The map « is also one to one by uniqueness of solutions and thus mono-
tone.

Using the methods in the proof of Proposition 1 it can be shown that there is a
unique point p, € v* such that the solution curve

fepo) |0 £t < ta(po)}

intersects the curve g+ at the point (1, 0) where g* meets the z-axis. Let r = | 1 |.
Define & continuous map
s:vr = R,

ap) =lalp) P - |p |*)

where | p | means the usual Euclidean norm of the vector p. Further analysis of
the flow of {1) is based on the following rather delicate result:

Proposition4 (a) &(p) > 00 <|p| < r;
{b) &(p) decreasrs monolonely to —w as|p|— oo, |p| = 1.

Part of the graph of §(p} as a function of | p | is shown schematically in Fig. G.
The intermediste value theorem and Proposition 4 imply that there is a unigue
o € v with 8(gs} = 0.

We will prove Proposition 4 shortly; first we use it to complete the proof of the
main theorem of this section. We exploit the skew symmetry of the vector field

g,y =y -2 +x -2
given by the right-hand side of (2}, namely,

g('—x: _y) = _U(I, y)'

Thix means that if £ — (z(t), y(t)) is a solution curve, sois t — (—z(t), —y(f)).
Consider the trajectory of the unique point g € v+ such that 5(q) = 0. This
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point has the property that | a(g) | = | go |, hence that

¢ul®) = — g
From skew symmetry we have also
$u(—0) = —(~%) = o
hence putting A = 26 > 0 we have

s} = ¢
Thus ¢, lies on a nontrivial periodic trajectory v.
Since 8 is monotone, similar reasoning shows that the trajectory through g, is
the unique nontrivial periodic solution.
To investigate other trajectories we define a map #: v~ — v+, sending each point
of v~ to the first intersection of ita trajectory (for t > 0) with v*. By symmetry

B(p) = —a(—p).
Note that ¢ = fSa.

We identify the y-axis with the real numbers in the y-coordinate. Thus if p,
¢ € v* Vv~ we write p > ¢ if p is above g. Note that « and 8 reverse this ordering
while o preserves it.

Nowlet p € vy, p > qu. Since a(q) = —gowe have a(p) < —qgeand o{p) > g
On the other hand, §(p) < 0 which means the same thing as a(p) > —p. There-
fore ¢(p) = Ba(p) < p. We have shown that p > g, implies p > o(p) > g Simi-
larly o(p}) > o*(p) > go and by induction ¢*(p) > o™ {(p) > g, n = 1,2, .. ..

The sequence ¢™(p) has a limit ¢ > g in v+. Note that ¢ is a fixed point of o,
for by continuity of ¢ we have

o(q) ~ @ = lim ¢{e~(p)) — @
=h —H = 0.
5(p}
spzo %! el

FIG. G
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Since ¢ has only one fixed point ¢ = ¢. This shows that the trajectory of p spirals
toward v as t — =, The same thing is true if p < gy; the details are left to the
reader. Since every trajectory except (0, 0) meets v+, the proof of the main theorem
i8 complete.

It remains to prove Proposition 4.

We adopt the following notation. Let ¥: [a, b] — R? be a C! curve in the plane,
written ¥ {t) = (z(t), y{1)). If F:R' = R is (!, define

3
[P = [ PO, v0)
¥ -
It may happen that 2'(t) » 0 fora < ¢ < b, so that along v, ¥ is a function of
z, ¥y = y(z). In this case we can change varables: '

1 (b di
f F(x(t), y(8)) dt = F(z, y(z}) = dz;
. x{s} z

hence

f’“’ F(z.y(z) .

F(z, =
f,(z W) -zl

Similarly if y'(¢) #= 0.
Recall the function

Wiz, v} = (=" + ).

Let (¢} = (z(6), ¥{8)),0 €t < &y = t(p) be the solution eurve joining p € v
to a(p) € v~. By definition §(p) = W(z{ts}, y(ts)) — W(z(0), ¥(0)). Thus

1} d
) = [ G WE0,v0) &
By the proposition of Section 2 we have

0 = [ —20 GO - 20) &
0

1@ = [ 2@ = 2(0m @
]

This immediately proves (a) of Proposition 4 because the integrand is positive for
0< rit) <1

We may rewrite the last equality as
sp) = [ 20— ).
b

We restrict attention to points p € v+ with | p | > r. We divide the correaponding
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e

¥
alp)

FIG. H

solution curve v into three curves vi, s, 71 88 in Fig. H. Then

§(p) = &,(p) + &(p) + &(p),
where

5:(p) =[ 21—, i=1,23

Notice that along v, ¥ (1) is a function of z(t). Hence

1 —
a(p) = j; %/hdti)dx

CfBAa -
_f, Y —Jo) &

where f(z) = #* — z. As p moves up the y-axis, y — f(z) increases (for (z, )
on 7). Hence 8 (p) decreases as { p | — . Similarly &(p) decreases as | p | — =.
On y,, z in a function of y, and z > 1. Therefore, since dy/dt = —g,

aip) = [ ~2) (1 = 2w} dy

= ["zma -z @y <.

As | p | increases, the domain [y, 4] of integration becomes steadily larger.
The function y — z(y) depends on p; we write it z,(y). As | p | increases, the
curves v move to the right; hence x,(y) increases and so r,{y) (1 — z,(y)") de-
creases. It follows that 3,(p) decreases as |p| increases; and evidently
lim)yi.y $(p) = — =. This completes the proof of Proposition 4
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PROBLEMS

—

Find the phase portrait for the differential cquation

F=y—fln, [flr) =2,

¥y = —1I

[

Give a proof of Proposition 2,

3. (Hartman [9, Chapter 7, Theorem 10.2]) Find the phase portrait of the
following differential equation and in particular show there is a unique non-
trivial periodic solution:

=y = flx),

f

¥y = —g(r),

where all of the following are assumed:

(y f, gareCY;

(i) g(—&) = —g(r) and rg(s} > Oforall x = 0;
(i) f(—=1) = ~f(z) and f(r) < O0for0 <z < a;
(iv) for r > a, f(x) is positive and increasing;

{(¥) flx) = = asr— =,
{ Hint: Imitate the proof of the theorem in Seetion 3.)

4. (Hard!) Consider the equation
7 y_f(z)l f:R—'R,C‘,

Y= -z

Given f, how many periodic solutions does this system have? This would be
interesting to know for many broad classes of funetions f. Good results on this
would probably make an interesting research article.

FIG. I
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5. Consider the equation

=ply-@ -} np>0

il

¥y = —z.

It has a unique nontrivial periodic solution ¥, by Problem 3. Show that as
5 — ®, v, tends to the closed curve consisting of two horizontal line segments
and two arcson y = 2 — zasin Fig. L. ’

§4. Hopf Bifurcation

Often one encounters a differential equation with parameter. Precisely, one is
given a C' map g,: W — E where W is an open set of the vector space Eand pis
allowed to vary over some parameter space, say u € J = [—1, 1]. Furthermore
it is convenient to suppose that g, is differentiable in u, or that the map

J X W-—E, (p ¥) = gu(2)

is .
Then one considers the differential equation
(1) ' = gu(z) on W.

One is especially concerned how the phase portrait of (1} changes as u varies.
A value ps where there is a basic structural change in this phase portrait is called
a bifurcation point. Rather than try to develop any sort of systematic bifurcation
theory here, we will give one fundamental example, or a realization of what is
called Hopf bifureation.

Return to the circuit example of Section 1, where we now suppose that the
resistor characteristic depends on a parameter  and is denoted by f,: R = R,
—1 < p < 1. {Maybe x iz the temperature of the resistor.) The physical behavior
of the cireuit is then described by the differential equation on R%:

dz
@ ek Lu{z),
Y
a7
Consider as an example the special case where f, is described by
(2a) f.(z) = 2 — ur.

Then we apply the results of Sections 2 and 3 to see what happens as u is varied
from —1 to 1.

For each 4, —1 < u < 0, the resistor is passive and the proposition of Section 2
implies that all solutions tend asymptotically to zero as t — «. Physically the
circuit is dead, in that after a period of transition all the currents and voltages
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. @
-lg psO O<psgl

FI1G. A, Bifurcation.

stav at 0 {or as close to 0 as we want). But note that as u crosses 0, the clrcuft,
becomes alive. It will begin to oscillate. This follows from the fact,.that. the anal.ysls
of Section 3 applies to (2) when 0 < u < 1} in this case (2) will have a unique
periodic solution v, and the origin becomes a source. I_n fac_t every nontrivial
solution tends to v, as ¢ — . Further elaboration of the ideas in Section 3 can be
to show thaty, —»0asu—0,u > 0. )
US;dor (2), p = 0‘{; the bifurcation value of the parameter. The l_)asn: structure of
the phase portrait changes as p passes through the value 0. See Fig. A. .,
The mathematician E. Hopf proved that for fairly general one-pefmmete.r families
of equations z' = f,(z), there must be a closed orbit for _> e if the eigenvalue
character of an equilibrium changes suddenly at uo from a sink to a source.

PROBLEMS

1. Find all values of 4 which are the bifurcation points for the linear differential

equation:
dr
— =pur+ Y
at o Y
dy
= =z — 2
dat y

2 Prove the statement in the text that v, = 0 as u — G u>0.

§5. More General Circuit Equations

We give here a way of finding the ordinary differential equat.ioms'for a class qf
electrical networks or circuits, We consider networks made up of resistors, capacl-
tors, and inductors. Later we discuss briefly the nature of these obje(fta, ca.l'led the
branches of the circuit; at present it suffices to consider them as devices with two

§5. MORE GENERAL CIRCUIT EQUATIONS 229

terminals. The circuit is formed by connecting together various terminals. The
connection points are called nodes.

Toward giving a mathematical description of the network, we define in R? a
linear graph which corresponds to the network. This linear graph consists of the
following data:

{a) A finite set A of points (called nodes} in R:. The number of nodes is de-
noted by a, a typical node by a.

(b) A finite set B of line segments in R? (called branches). The end points of a
branch must be nodes. Distinct branches can meet only at a node. The number of
branches is &; a typical branch is denoted by 3.

We assume that each branch g8 is oriented in the sense that one is given a direction
from one terminal to the other, say from a (—) terminal 8~ to a (4) terminal g*.
The boundary of § € B is the set 8 = g+ u g~

For the moment we ignore the exact nature of a branch, whether it is a resistor,
capacitor, or inductor.

We suppose also that the set of nodes and the set of branches are ordered, so
that it makes sense to speak of the kth branch, and so on.

A current stale of the network will be some point 7 = (1;, ..., ) € R* where
1, represents the current flowing through the kth branch at a certain moment.
In this case we will often write 4 for R

The Kirchhoff current law or KCL states that the amount of current flowing
into a node at a given moment is equal to the amount flowing out. The water
analogy of Section 1 makes this plausible. We want to express this condition in a
mathematical way which will be especially convenient for our development.
Toward this end we construct a linear map d: § — D where D is the Cartesian
space R® (recall a is the number of nodes).

If i € 4 is a current state and « is a node we define the ath coordinate of di € D

to be
(d‘)l = E fnfiﬂr
pes
where
1 if §t=a
€ = 1—1 if g~ =oa,
0 otherwise.

One may interpret (df). as the net current flow into node o when the circuit ia in
the current state <.

Theorem 1 A current slale £ € 4 satisfies KCL if and only if di = 0.
Proof, It issufficient to check the condition for each node a € A. Thus (dt), =
0 if and only if
E ‘lﬁi’ = 01

gen
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or from the definition of e.s,

Tt =2 4
ren sen
£oma -

This last is just the expression of KCL at the node a. This proves the theorem.

Next, a voltage state of our network is defined tobeapointv = (v, ..., %) € RY,
where in this context we denote R* by U. The kth coordinate v, represents the
voltage drop across the kth branch. The Kirchhoff voltage law (KVL) may be
stated as asserting that there is a real function on the set of nodes, a voltage potential
{given, for example, by voltmeter readings), V: A — R, so that v = V(") —
V(g) foreach § € 8.

To relate KCL to KVL and to prove what is called Tellegen’s theorem in net-
work theory, we make a shott excursion into linear algebra. Let E, F be vector
spaces whose dual vector spaces (Chapter 9) are denoted by E*, F*, respectively.
If w: £ — F is a linear transformation, then its adjoint or dual is a linear map
u*: F* — E* defined by u*(x) (y) = z{u(y)), where r ¢ F* y € E. (Here u*(x)
is an clement of E* and maps £ — R.}

Now let ¢ be the natural bilinear map defined on the Cartesian product vector
space E X E* with values in R: if (¢, €*) € E X E* then ¢(e, €*) = e*(¢).

Proposition Let 1. E — F be a linear map and let K = (Ker #) x MIm u*) C
E x E*.Then ¢iszeroon K.

Proof. Let (e, e*) € K so that u(e) = 0and e* = u*y for some y € F*. Then
dle, e*) = d(e, uty) = (uy)(e) = y(ule)) = 0.

This proves the proposition.

Remark. A further argument shows that dim K = dim E.

We return to the analysis of the voltage and current states of a network. It
turns out to be useful, as we shall see presently, to identify the space U with the
dual space g* of 4. Mathematically this is no problem since both T and ¢* are
naturally isomorphic to RY. With this identification, the voltage which a voltage
stiute r - ¢* assigns to the kth branch 8 is just v(fs), where i € 4 i the vector
where the kth coordinate is 1 and where other coordinates are 0.

We can now express IKVL more elegantly

Theorem 2 A vollage state v € 3* satisfies KVL if and only if it i3 in the image
of the adjoint d*: ¥ — 9* of d: 9 — .

Proof. Suppose v satisfies Kirchhoff’s voltage law. Then there is a voltage
potential V mapping the set of nodes to the real numbers, with v(8) = V(8*) -
V{g) for each branch 8. Recalling that © = R®, a = number of nodes, we define
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a linear map V: D — R by

Viz, ..., 2) = iIgV(a‘).

Thus V € D*.

To see that d*V = v, consider first the current state is € 9 defined above just
before Theorem 2. Then

(d*V)is

V{dis)
Vigt) — v(g)
v(8).

Since the states ts, 8 ¢ B form a basis for 4, this shows that v = d* V. Hence v is in
the image of 4*.

Conversely, assume that v = d*W, W ¢ D*. For the kth node « define Via) =
W( f.}, where f, € D has kth coordinate 1 and all other coordinates 0. Then V is
a voltage potential for v since the voltage which v assigns to the branch 8 is

v(ig) = d*W (ip)

Wife) — W{fs)
Vig*) - V).
This completes the proof of Theerem 2.

0

I

I

The space of unrestricted states of the circuit is the Cartesian space § X 9% Those

states which satisfy KCL and KVL constitute a linear subspace X C g X #*. By
Theorems 1 and 2,

K =Kerd X Imd* C 3 X 3*,

An actual or physical state of the network must lie in K.

The power ¢ in a network is a real function defined on the big state space § X $*
and in fact is just the natural pairing discussed earlier. Thus if (i,v) € 8§ X #°,
the power ¢{i, #) = ¢(1¢) or in terms of Cartesian coordinates

¢(tl !’!) = E i’v’l
a

i=(f,...,4), v= (t,...,n).

The previous proposition gives us

Theorem 3  (Tellegen's theorem)  The power is zero on stales salisfying Kirchhofl's
laws.

Mathematically this is the same thing as saying that ¢: 8 X $* — R restricted
to K is zero.
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Now we describe in mathematical terms the three different types of devir:'efs in
the network : the resistor, inductor, and capacitor. These devices impose conditions
on the state, or on how the state changes in time, in the corrcsponfling branch. )

Each resistor p imposes a relation on the current and voltage in.lts l?n?.nch. Th}B
relation might be an equation of the form F,(1,, 4,) = 0; but for slmlphclty we will
assume that (i,, v,) satisfy f,(1,) = v, for some real-valued ! f‘unctlon_ f» of a real
variable. Thus f is a “generalized Ohm’s law.” The graph of J, in the (4,, v,) pltme
is called the characteristic of the pth resistor and is determined by the thslcal
properties of the resistor. (Compare Section 1.) For example,‘ & battery is a re-
sistor in this context, and its characteristic is of the form [(4, v) € R* lo, =

ant;.
cofriaincjucmr or capacitor does not impose conditions directly on the state, but
only on how the state in that branch changes in time. In pa.rtlcu.]nr let A be an
inductor branch with current, voltage in that branch denoted by #, va. Then the
ath inductor imposes the condition:

., diy
(1a) Ly(h) & = .

Hore I, is determined by the inductor and is calied the inductance. It is assumed
to be a (" positive function of #\. N .

Similarly & capacitor in the yth branch defines & C" positive funct.lon. uy — Cy(1y)
called the capacitance; and the current, voltage in the yth branch satisfy.

dv .
(1b) Cyley) o = i

We now examine the resistor conditions more carefully. These are conditions on
the states themselves and have an effect similar to Kirchhoff’s laws in that they
place physical restrictions on the space of all atates, 4 X 8 . \_Ne define Z to be the
subset of 4 X g* consisting of states that satisfy the two Kirchhoff laws an.d the
resistor conditions. This space I is called the space of physical stales and is de-
seribed by

= Hi;l’) ngs*i(i:”) € Kﬂf’(i’) =, p = 1,,..,T|.

Here (i, v,) denotes the components of ¢, » in the pth branch and p varies over
the resistor branches, r in number. ) ) ]

Under rather generic conditions, Z will be a manifold, that s, the hlgh.er dimen-
sional analog of a surface. Differential equations ean be ‘deﬁned' on ma.m.folds; the
capacitors and inductors in our circuit will determine differential eq}mt:(.ms on Z
whose corresponding flow ®,: £ — I describes how a state changes with time.

Because we do not have at our disposal the notions of differentiable m.amfolds,
we will make a simplifying assumption before proceeding to the diﬂ'eren_tml equa-
tions of the circuit. ‘This is the assumption that the space of currents in the in-
ductors and voltages in the capacitors may be used to give coordinates to Z. We
make this more precise.
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Let £ be the space of all currents in the induetor branches, so that £ is naturally
isomorphie to R, where I is the number of inductors. A point i of £ will be denoted
by ¢ = (4, ..., 1) where 1, is the current in the Ath branch. There is & natural
map (a projection) ¢{.: § — £ which just sends a current state into ita components
in the inductors.

Similarly we let ©* be the space of all voltages in the capacitor branches so
that €* is isomorphic to R+, where ¢ is the number of capacitors. Also ve: 9* — €*
will denote the eorresponding projection.

Consider the map 1, X ve: § X 8* — £ X €* restricted to Z C # X #*. Call
this map «: £ — £ X €*, (It will help in foliowing this rather abstract presentation
to follow it along with the example in Section 1.)

Hypothesis The map r:  ~+ £ X ©* has an tnverse which is a C' map
LXe*aZC4 X%

Under this hypothesis, we may identify the space of physical states of the net-
work with the space £ X €*, This is convenient because, as we shall see, the dif-
ferential equations of the circuit have a simple formulation on £ X €©*. In words
the hypothesis may be stated: the current in the inductors and the voltages in
the capacitors, via Kirchhoff’s laws and the laws of the resistor characteristics,
determine the currents and voltages in all the branches,

Although this hypothesis is strong, it makes some sense when one realizes that
the “dimension” of Z should be expected to be the same as the dimension of
£ X e*. This follows from the remark after the proposition on dim K, and the fact
that T is defined by r additional equations.

To state the equations in this case we define a function P; 4 X 4* — R ecalled
the mized potential. We will follow the convention that indices p refer to resistor
branches and sums over such p means summation over the resistor branches.
Similarly A is used for inductor branches and v for capacitor branches. Then
P: g X #* — R is defined by

PG,0) = imy + 5 [ 1,6 di,

Here the integral refers to the indefinite integral so that P is defined only up to an
arbitrary constant. Now P by restriction may be considered as a map P: Z — R
and finally by our hypothesis may even be considered as a map

P:2 X e*—>R.

(By an “‘abuse of language’ we use the same letter P for all three maps.)

Now assume we have a particular circuit of the type we have been considering.
At a given instant {4 the circuit is in a particular current-voltage state. The states
will change as time goes on. In this way a curve in 4§ X #* is obtained, depending
on the initial state of the circuit.
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The components 15(f), va(t), 8 € B of this curve must satisfy the conditions
imposed by Kirchhofl's laws and the resistor characteristics; that is, they must
be in Z. In addition at each instant of time the components dt,/dt and dv,/d! of
the tangent vectors of the eurve must satisfy the relations imposed by (1a) and
(1h). A curve satisfying these conditions we call a physical trajectory.

If the cireuit satisfies our special hypothesis, each physical trajectory is identi-
fied with a curve in £ X @*. The following theorem says that the curves so obtained
are exactly the solution curves of a certain system of differential equations in
£ X e

Theorem 4 (Bravton-Moser) Each physical trajeclory of an electrical circuit
salisfying the special hypothesis 13 a solution curve of the system

din aP
La(ia) — = — —,
B 5 Py

dv ar
C'r{”'r) -d—tl = 5 '
v

where N ared v run through all induclors and capacilors of the circutt respectively.

Conversely, every solution curve lo these equations is a physical trajectory.

Here P is the map £ X €* — R defined above. The right-hand sides of the
differential equations are thus functions of all the 7,, v,.

Proof. Consider an arbitrary C' curve in £ X @* Because of our hypothesis
we identify £ X @€* with £ C 9 X #*; hence we write the curve

t— (1(t), v(t)) € 9 X 8~

By Kirchhoff's law (Theorem 1) 7(¢) € Ker d. Hence ¢'({) ¢ Ker d. By Theorem 2
ey - T d* By Tellegen’s theoremn, for all ¢

Z (D) da(8) = 0.

sca
We rewrite this as

Tu, + Xui+ g, =0
From Leibniz’ rule we get

Zoogdy' = (Zvyiy)’ — T iy,
Substituting this into the preceding equation gives

. . . . dP
=X i + Ziwy’ = (L) + Xui,/ = I

§5. MORE GENEKAL CIRCUIT EQUATIONS 235

from the definition of P and the generalized Ohm’s laws. By the chain rule

dP ar ar
E=Z_ +Ea_v_1v1-

—
Eh,.

From the last two equations we find

apP . aP
(& )i () -o

Since 1)’ and v, can take any values,

9P v P
3, o, b
The theorem now follows from (1a) and (1b).

Some remarks on this theorem are in order. First, one can follow this develop-
ment for the example of Section 1 to bring the generality of the above down to
earth. Secondly, note that if there are either no inductors or no capacitors, the
Brayton-Moser equations have many features of gradient equations and mueh of
the material of Chapter 9 can be applied; see Problem 9. In the more genera! case
the equations have the character of a gradient with respect to an indefinite metric.

We add some final remarks on an energy theorem. Suppose for simplicity that
all the L, and €, are constant and let

W.8 X e*—R

be the function W(4, #) = 4 X5 Lais? + } ¥, Cyv,2. Thus W has the form of a
norm square and its level surfaces are generalized ellipsoids; W may be interpreted
88 the energy in the inductor and capacitor branches, Define P,: £ X €* — R
{power in the resistors) to be the composition

EXE HZCs xR,

where P, (i, v) = ¥ i,b, (summed over resistor branches). We state without proof

Theorem 5 Let ¢: I — £ X ©* be any solution of the equations of the previous
theorem. Then

d
al (We(t)) = —P(s(1)).

Theorem 5 may be interpreted as asserting that in a circuit the energy in the
inductors and capacitors varies according to power dissipated in the resistors.

See the early sections where W appeared and was used in the analysis of Lienard's
equation. Theorem 5 provides criteria for asymptotic stability in eircuits.
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PROBLEMS

o

Let N be a finite set and P C N X N a symmetric binary relation on N {that is,
(z,y) € Pif (y, z) € P). SBuppose z # y for all (z, y) € P, Bhow that there
is a linear graph in R? whose nodes are in one-to-one correspondence with N,
such that the two nodes corresponding to z, y are joined by a branch if and
only if (x, y) € N.

Show that Kirchhoff's voltage law as stated in the text is equivalent to the
following condition (“the voltage drop around a loop is zero”): Let as, oy, . . .,
a: = ap be nodes such that e and aw—1 &re end points of & branch gn., m =
1, ...,k Then

E et (fm) = 0,

where ¢, = =1 according a8 (fm)t = Otm OT @tm_1.

Prove that dim X = dim E (see the proposition in the text and the remark
after it).

Prove Theorem 5.

Consider resistors whose characteristic is of the form F (i, v,) = 0, where F is
a real-valued ¢! function. Show that an RLC cireuit (Fig. A) with this kind of
resistor satisfies the special hypothesis if and only if the resistor is eurrent
controiled, that is, F has the form

Fit, 1) = v — f(i,).

~

FIG. A
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C

C
FI1G. B

6. Show that the differential equations for the circuit in Fig. B are given by:

t~
|
[

dt - (”7 + U-,'),

1A,

do,
U e (O

Here ¢ = f(v) gives the resistor characteristic.

Suppose given a circuit satisfying the basic hypothesis of this section and all
the other assumptions except that the characteristic of one resistor is given
by & voltage-controlled characterigtic i = Sf(v), not necessarily current con-
trolled. Show that if the corresponding term of the mixed potential P ia replaced
by fof'(v) dv, then Theorem 4 is still true.

Find the differential equations for thia cireuit {Brayton) (Fig. C). Here ||||
denotes a battery (resistor with characteristic: v = const.), AAA- denctes &

AV

040080
It
1\




238 10. DIFFERENTIAL EQUATIONS FOR ELECTRICAL CIRCUITS

linear resistor, and the box is a resistor with characteristic given by i = f(v).
Find the mixed potential and the phase portrait for some choice of f. See
Problem 7.

9. We refer to the Brayton—Moser equations. Suppose there are no capacitors.
(a} Show that the function P: £ — R decreases along nonequilibrium tra-
jectories of the Brayton-Moser equations.
(h) Lot n be the number of inductors. If cach function I, is a constant,
find an inner product on R* = £ which makes the vector

(LaP _l__aP
Lyon, ' " "' L.,

the gradient of P in the sense of Chapter 9, Section 5.

Notes

This chapter follows to a large extent *‘Mathematical foundations of electrical
etreuits" by Smale in the Journal of Differential Geometry |22), The undergraduate
text on clectrical circuit theory by Desoer and Kuh [5] is excellent for a treatment
of many related subjects. Hartman’s book [9], mentioned also in Chapter i},
goes extensively into the material of our Sections 2 and 3 with many historicsl
references. Lefschetz's book Differential Equations, Geometrical Theory [14] also
discusses these nonlinear planar equations. Van der Pol himself retated his equation
to heartbeat and recently E. C. Zeeman has done very interesting work on this
subject. For some physical background of circuit theory, one can see The Feynman
Lectures on Physics [6].

Chapter 1 ].

The Poincaré~Bendixson Theorem

We have already seen how periodic solutions in planar dynamical systems play
an important role in electrical cireuit theory. In fact the periodic solution in Van
der Pol's equation, coming from the simple circuit equation in the previous chapter,
has features that go well bevond circuit theory. This periodic solution is & “limit
cycle,” a concept we make precise in this chapter,

The Poincaré-Bendixson theorem gives a criterion for the detection of limit
cvelesintheplane ; thiseriterion could have been used to find the Van der Pol oseilla-
tor. On the other hand, this approach would have missed the uniqueness.

Poincaré-Bendixson is a basic tool for understanding planar dynamical systems
but for differentisl equations in higher dimensions it has no generalization or
counterpart. Thus after the first two rather basic sections, we restrict ourselves to
planar dynamical systems. The first section gives some properties of the limiting
behavior of orbita on the level of abstract topological dynamics while in the next
section we analyze the flow near nonequilibrium points of a dynamical system.

Throughout this chapter we coneider a dynamical system on an open set W in a
vector space E, that is, the flow ¢, defined by a C! vector field f: W — E,

§l. Limit Sets

We recall from Chapter 9, Section 3 that y ¢ W is an w-limil point of z € W
if there is a sequence ¢, — = such that lim,., ¢..(z) = y. The set of all w-limit
points of y is the w-limit sel L.(y). We define a-limit points and the a-limit set L.(y)
by replacing {, — = with {, — — = in the above definition. By a limit set we
mean a set of the form L {(y) or L. (y).

Here are some examples of limit sets. If £ is an asymptotically stable equilib-
rium, it is the «-limit set of every point in its basin (see Chapter 9, Section 2). Any
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FIG. A

FIG. B

equilibrium is its own a-limit set and w-limit set. A closed orbit is the a-limit and
«w-limit set of every point on it. In the Van der Pol oscillator there is & unique closed
orbit v; it is the w-limit of every point exeept the origin (Fig. A). The origin is the
«limit set of every point inside v. If y is outside v, then L.(y) is empty.

There are examples of limit sets that are neither closed orbits nor equilibria, for
example the figure 8 in the flow suggested by Fig. B. There are three equilibria, two
sources, and one saddle. The figure 8 is the w-limit set of all pointa outside it. The
right half of the 8 is the w-limit set of all points inside it except the equilibrium, and
similarly for the left half.

In three dimensions there are extremely complicated examples of limit sets,
although they are not easy to describe. In the plane, however, limit sets are fairly
simple. In fact Fig. B is typical, in that one can show that a limit set other than a
closed orbit or equilibrium is made up of equilibria and trajectories joining them.
The Poincaré—Bendixson theorem says that if a compact limit set in the plane
contains no equilibria it is a closed orbit,

We recall from Chapter 9 that a limit set is closed in W, and is invariant under
the flow. We shall also need the following result:

Proposition (a) If z and £ are on the same trajectory, then L.(z) = L.(2); simi-
larly for a-limita.
(b) I D is a closed posilively invariant set and z € D, then L.(z) C D; similarly
for negatively invariant sels and a-limils.
(¢} A closed invariant sel, in particular a limit sel, contains the a-limit and w-limit
setx of every point in 1l
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Proof. (a) Suppose y € L.(z),and ¢,(z) = z. If $..(z) — y, then ¢ (2) = ¥.
Hence ¥ € L.(2).

(b) If tu— = and ¢,(2) ~y € Lu(2), then £, 20 for sufficiently large n
so that ¢,.(z) € D. Hencey € D = D.
(¢) Follows from (b}.

PROBLEMS

1. Show thatacompact klimit set is connected (that is, not the union of two disjoint
non-empty closed sets.

2. Identify R* with C* having two complex coordinates (w, z), and consider the
linear system

(+) w = 25w,
' = 2xbiz,

where # is an irrational real number.

(8} Put a = & and show that the set |[a*|{r = 1, 2, ...} is dense in the
unit circle ¢ = fz € C{|z| = 1}.

(b} Let ¢, be the flow of (). Show that for n an integer,

¢ (w, 2) = (w, a*z).
{e) Let (wx, zs) belong to the torus € X € C C*. Use (a), (b) to show that
Lu(tws, ) = Lu(tn, 22) = C X C. '
(d) Find L, and L. of an arbitrary point of C*.

3. Find a linear system on R® = C* such that if a belongs to the k-torus
CX - X CCCH then

L.(a) = L.{a) = C*

4. In Problem 2, suppose instead that 0 is rational. Identify L, and L, of every
point.

5. Let X be a nonempty compact invariant set for a C* dynamical system. SBuppose

that X is minimal, that is, X contains no compact invariant nonempty proper
subset. Prove the following:

{a} Every trajectory in X is dense in X;

{b) L.{x) = L,(z) = X foreach z € X;

{¢) For any (relatively) open set U C X, there is a number P > 0 such that
:()Jranyz € X, i € R, there exists ¢ such that ¢,(z) € Usnd |1 — L] <
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(dy  For any x, y in X there are sequences ly — <, 83 = — @ such that

| ta — tanr | < 2P, | 80 — 8upa| < 2P,
and
é.(x) =y, . lz) =W

6. Let X be a closed invariant set for a C' dynamical system on R", such that
#:(2) is defined for all ¢t ¢ R, x € X. Suppose that L.(z) = L.(z) = X for

.

all z © X. Prove that X is compact.

§2. Local Sections and Flow Bozxes

We consider again the flow &, of the C! vector field /: W — E. Suppose the origin
0 ¢ E belongs to W.

A local section at 0 of £ is an open set S containing 0 in a hyperplane f C E which
is transverse to f. By a hyperplane we mean a linear subspace whose dimension
is one less than dim E. To say that 8 C H is transverse to f means that f(z) ¢ H
for all z € &. In particular f(x) » 0 forz € 8. '

Our first use of & local section at 0 will be to construet a “flow box'’ in a neighbor-
hood of 0. A flow box gives a complete description of a flow in a neighborhood of
any nonequilibrium point of any flow, by means of special (nonlinear) coordinates.
The description is simple: points move in parallel straight lines at constant speed.

We make this precise as follows, A diffesmorphism ¥: U —V isa differentiable
map from one open set of & vector space to-another with a differentiable inverse.
A flow bor is a diffeomorphism

RXHDONSW

of 8 neighborhood N of (0, 0) onto & neighborhood of 0 in W, which transforms
the veetor field f: W — E into the constant vector field (1,0} on R X H. The flow
of f is thereby converted to a simple flow on R X H:

va(t, ) = (t+ 8 1),
The map ¥ is defined by

‘I’("r y) = ¢-(Il);

for (¢, y) in a sufficiently small neighborhood of (0, 0) in R X H. One appesls to
Chapter 15 to see that ¥ is a C! map. The derivative of ¥ at (0, 0) is easily computed
to be the linear map which is the identity on 0 X H,andon R = R X 0 it sends
1 to f(0). Since f(0) is transverse to H, it follows that D¥ (0, 0) is an isomorphism,
Hence by the inverse function theorem ¥ maps an open neighborhood N of (0,0)
diffcomorphically onto a neighborhood V of 0 in E. We take N of the forp |
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H

N Vin)

FIG. A. The flow box.

8 X (—o, o), where § C H is a section 8t 0 and & > 0. In this case we sometimes

.write V, = ¥(N) and call ¥V, a flow box at {or about) 0 in E. See Fig. A. An

ltmepo(rtant ;))roporty of a flow box is that if x € V,, then ¢.(z) & 8 for a unique
—0, o).

From the definition of ¥ it follows that if ¥'(p} = (s, ¥), then ¥ (¢:(p)) =
{8 + t, y) for sufficiently small | 8|, | ¢].

We remark that a flow box can be defined about any nonequilibrium point x,.
The assumption that zo = 0 is no resl restriction since if zo is any point, one can
replace f{z)} by f(z — x,) to convert the point to 0.

If S is a local section, the trajectory through a point 2, (perhaps far from §) may
feach 0 € Sin a certain time &; see Fig. B. We show that in a certain local sense, &
is a continuous function of z,. More precisely:

b 0= ¢, (2o)

FIG. B

Proposition Let S be a local section af 0 ez above, and suppose ¢.,(zs) = 0. There

ﬁa:dopensetUCWcmminingzqandauniqueC‘mapr:U-—»Rsuchlha!r(zg) =
ha

¢t(:) (I) € S
Jorallx € U.

,Pf"’"f' Let h: K — R be a linear map whose kernel H is the hyperplane con-
taining S. Then A (f{0)) » 0. The function

G(Ir t) = h¢l(z)
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is C1, and
2 (s ) = AIO)) 0.

By the implicit function theorem there is a unique ! map = — r{z)} € R defined
ana neighborhood U of z, in W osuch that #(z,) = £, and Gix, r(x)) = 0. Hence
#::(2) € H;if U C U, is a sufficiently small neighborhood of 2 then dmi(x) € 8.
This proves the propoazition,

For later reference note that

aq 1 1
Df(?-n) = - [E (z.l “)T :';G ("0: ’0) = - [g (zb 'O)T .h'D‘lo(fC)-

§3. Monotone Sequences in Planar Dynamical Systems

We now restrict our discussion to planar dynamical systems.

Let 2y, 1y, . .. be a finite or infinite sequence of distinct points on the solution
curve C = {¢,(2)| 0 <t < a}. We say the sequence is monotone along the tro-
Jectory if ¢ (20} = za With0 £ 4 < -+ < a.

Let ys, 31, . . . be a finite or infinite sequence of points on a line segment [ in R2.
We say the sequence is monotone along I if the vector ¥ — ¥ is & scalar multiple
My —ydwithl << n< ... n=23, ... . Another way to say this is that
Y. 1s between y, _, and y, ., in the natural order alongf,n=1,2,....

*o
s ——————

2

——
x D FIG. A
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A sequence of points may be on the intersection of a solution curve and a segment
I; they may be monotone along the solution curve but not along the segment, or
vice versa; see Fig. A. However, this is impossible if the segment is a local section.
Figure B shows an example; we suggest the reader experiment with paper and
pencil!

Proposition 1 Let 8 be a local section of a C' planar dynamical system and 3, 1,
Y1, . - - @ sequence of disitncl poinis of S thal are on the same solulion curve C. If the
sequence 18 monolone along C, ¥ 1s also monolone along 8.

Proaf. 1t suffices to consider three points g, 1, ¥2. Let Z be the simple closed
curve made up of the part B of C between y; and 3 and the segment T C S between
%o and 3. Let D be the closed bounded region bounded by Z. We suppose that the
trajectory of y leaves D at y, (Fig. C); if it enters, the argument is similar,

We assert that at any point of T the trajectory leaves D, For it either leaves or
enters because, T being transverse to the flow, it crosses the boundary of D, The
set of points in T whose trajectory leaves D is a nonempty open subset T_ C T, by

I| )’1

FIG. C



246 11. THE POINCARE-BENDIXSON THEOREM

continaity of the flow; the set T, C T where trajectories enter 9 is also open in
T.osinee T and T oare digjoint and T = T_uU T, it follows from connectedness
of the interval that T, must be empty.

It fullows that the complement of I} is positively mvariant. For no trajectory
can enter 72 at a peint of T; nor can it cross B, by uniqueness of solutions.

Therefore ¢ ¢ R2 — D for all ¢ > 0. In particular, y, ¢ 8§ ~ T,

The set & — T is the union of two half open intervals /o and f, with ¥, an end-
point of Iy and 1 an endpoint of I1. One can draw an arc from a point ¢.(y,) (with
¢ > 0 very small) to a point of I;, without crossing Z. Therefore I, is outside D.
Similarly [, is inside D. It follows that y, € I, since it must be outside D, This
shows that 1 is between yo and y. in I, proving Proposition 1,

We come to an important property of limit points.

Proposition 2 Lel y € L,(x) UL.{z). Then the trajectory of y crosses any local
seelion at not more than one point.

Proof. Suppose y, and y, are distinct points on the trajectory of y and S is a
local section eontaining y; and ys. Suppose y € Lo{r) (the argument for L.(z) is
similar). Then yi € Lu(z), k = 1, 2. Let V¢, be flow boxes at y defined by some
intervals.Jy C S; we assume J, and J; disjoint (Fig. D). The trajectory of z enters
V., infinitely often; hence it crosses J, infinitely often. Hence there is a sequence

ahbl!a!)bha“lpbip-..,

5

Vi

Ya

FIG. D
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which is monotone along the trajectory of x, with a, € Jy, b € Jyyn =1,2, . ...
But such a sequence cannot be monotone along 8 since J, and Jy are disjoint, con-
tradicting Proposition 1.

PROBLEM S

1. Let 4 C R?be the annulus
A={ze Rl <|zf <2}

Let f be a C' vector field on a neighborhood of A which points inward along
the two boundary circles of A, Suppose also that every radial segment of A
is local section (Fig. E). Prove there is a periodic trajectory in A.

FIG. E

(Hint: Let 8 be a radial segment. Show that if z ¢ & then ¢.{(z) £ S fora
smallest ¢ = t{z) > 0. Consider the map 8§ — S given by 2z ¢ (2).)

2. Show that a closed orbit of & planar C! dynamical system meets a local section

in at most one point.

3. Let W C R? be open and let f: W — R? be a " vector field with no equilibria.

Let J C W be an open line segment whose end points are in the boundary of

W. Suppose J is a global section in the sense that f is transverse to J, and for

any z € W there exists 8 < 0 and ¢ > 0 such that ¢,(z) ¢ J and ¢,(z) € J.

Prove the following statements.

(a} For any z € J let r{z) € R be the smallest positive number such that
F{z) = ¢rn € J; thismap F: J —J is C" and has a C* inverse.

(b) A point z ¢ J lies on a closed orbit if and only if F(z) = z.

(e} Ewery limit set is a closed orbit.
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4. Let r be a recurrent point of a €' planar dynamical system, that is, there is a
sequence £, — 4 such that

¢ fz) — =

{a) Prove that either z is an equilibrium or z lies on a closed orbit.
(x) BShow by exnmple that there can be a recurrent point for higher dimen-
sional systems that is not an cquilibrium and does not lie on a closed orbit.

§4. The Poincaré-Bendixson Theorem

By a closed orbit of a dynamical system we mean the image of & nontrivial periodic
sofution. Thus a trajectory v is a closed orbit if v is not an equilibrium and
¢, () = x for Bome x € v, p # 0. It follows that ¢.,(y) =y forally € v, n = 0,
+1, £2, . ...

In this section we complete the proof of a celebrated result:

Theorem (Poincaré-Bendixson) A nonempty compact limil sel of ¢ C' planar
dynamical system, which conlains no equilibrium point, is a closed orbit,

Proof. Assume L,(z) is compact and y € L,(z). (The ease of a-limit sets is
similar.) We show first that the trajectory of y is a closed orbit.

Since y belongs to the compact invariant set L.{zx) we know that L.(y) is a
nonempty subset of L,{(z). Let 2 € L,(y); let S be a local section at z, and N a
flow box neighborhood of z about some open interval J, 2z € J C 8. By Proposition
2 of the previous section, the trajectory of y meets S at exactly one point. On the
other hand, there is a sequence {, — =« such that ¢, {y) — z; hence infinitely many
¢..(y) belong to V. Therefore we can find r, 8 € R such that r > s and

&) €SNV, diy) € SnV,

It follows that ¢.(y) = #,(y); hence d_, {3y} = y, r — 8 > 0. Since L.(z) contains
no equilibrium, y belongs to closed orbit.

It remains to prove that if v is a closed orbit in L.(x) then v = L.(z). It is
enough to show that

hm’i(¢l(x)r ¥} =0,

where d(¢.(x), v} is the distance from z to the compact set v (that is, the distance
from ¢,(x) to the nearest point of ).
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Let 8 be a local section at 2 € v, 80 small that Sny = z By looking at & flow
box V¥, near z we see that there is & sequence 4 < 4 < - -- such that

¢.(z) € 8,
“u(x) —2z,
@z €8 for Ly <t <ty, n=1,2,.. ..

Put 1, = ¢:.(z). By Proposition 1, Section 3, z. — z monotonically in 8.
There exists an upper bound for the set of positive numbers t.,; — fs. For sup-
pose ¢n(z) = 2, A > 0. Then for z, sufficiently near z, ¢1(z.) € V, and hence
h{d(xu) 6 S
for some t € [—e¢, ¢]. Thus

L
Let 8 > 0. From Chapter 8, there exists § > 0 such that if } z. — u| < § and
|t] €A+ ethen | $(z.) — e(u)] < 8.
Let no be 8o large that | z, — z| < & for all n 2 n,. Then
| #e(2a) — @ufz) | < B
if{¢) <X+ eandn > ne Now let ¢ > £, Let n > ne be such that

L<t<
Then

d((z), 1) S| de(2) — s (2}
= | ¢nl2a) — ¢_e(2)]
<8
since | ¢ — | < A + e The proof of the Poincaré-Bendixson theorem is complete.

PROBLEMS

1. Consider a C' dynamical system in R? having only a finite number of equilibria.
{(a) Show that every limit set is either a closed orbit or the union of equilibria
and trajectories ¢.(z) such that lim,., ¢.{z) and lim,. L é,(z) are
equilibria.
{b) Show by example (draw a picture) that the number of distinct trajectories
in L.(z) may be infinite.
2. Let v be a closed orbit of a C! dynamical system on an open set in R2. Let A
be the period of . Let {v.} be & sequence of closed orbita; suppose the period
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of ¥, is ha. If there are points z, € <. such that z, — r € 4, prove that A, — X
( T'his result can be false for higher dimensional systems. It is true, however, that
if Aa — K, then u is an integer multiple of A.)

§5. Applications of the Poincaré-Bendixson Theorem

We continue to suppose given a planar dynamical system,

Definition A [imit cycle is a closed orbit v such that ¥ C L.(z) or v C La(2)
for some z § +v. In the first case v is called an «-limit cycle; in the second case, an
a-limit, cycle.

In the proof of the Poincaré-Bendixson theorem it was shown that Lmit cycles
enjoy & certain property not shared by other closed orbita: if v is an w-limit cycle,
there exists £ § v such that

lim d{¢.(x), v) = 0.

e
For an o-limit ¢cycle replace = by — ., Geometrically this means that some tra-
jectory spirals toward v as £ — w (for w-limit cycles) or as { = — » (for a-limit
eveles). See Fig. A,

FIG. A. v ig an w-limit cycle.

Y

Limit cycles possess a kind of one-sided stability. Suppose ¥ is an w-limit cycle
and let ¢,(xz) spiral toward v as{ — «. Let S be a local section at 2 € . Then there
will be an interval T C 8 disjoint from ¥ bounded by ¢,(z), ¢,(x), with 4 < §
and not meeting the trajectory of z for & < ¢t < f; (Fig. B}). The region 4 bounded
by v, T and the curve

{$e(z) o <t _<_ 4}
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FIG. B

Y

i8 positively invariant, as is the set B = A — +. [t is easy to see that ¢,(y) spirals
toward v for all y € B. A useful consequence of this is

Proposition 1 Let v be an w-limit cycle. If v = L.(z),z § v then z hat a neighbor-
hood V such that v = L.(y) for all y € V. In other words, the sel

A=Ayly =L} - v
18 open.

Proof. VYor sufficiently large t > 0, ¢,(z) is in the interior of the set A described
above. Henee ¢,(y) € A for y sufficiently close to z. This implies the proposition.

A similar result holds for a-limit eycles
Theorem 1 A nonemply compact set K that is posilively or negatively invariant
containg either a limit cycle or an equilibrium.

Proof. Suppose for example that K is positively invariant. If z € K, then L, ()
is & nonempty subset of K; apply Poincaré-Bendixson.

The next result exploits the spiraling property of limit cycles.

Proposition 2 Let v be a closed orbit and suppose that the domain W of the dynamical
system includes the whole open region U enclosed by v. Then U conlains either an
equilibrium or a limil cycle.
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Proof. Let D be the compact set U U+v. Then D is invariant since no trajectory
from U can cross v. If U contains no limit cycle and no equilibrium, then, for any
e U,

Lu(z) = La(z) = v

by Poincaré-Bendixson. If S is a local section at a point z £ «, there are sequences
t, — o=, 5, — — o such that

¢l-(x) ( S: ¢g,(.’€) -z,

and
$ {2z} €8, . (2) >z

But this leads to a contradiction of the proposition in Section 3 on monotone
sequences.

Actually this last result can be considerably sharpened:

Theorem 2 Let v be a closed orbit enclosing an open set U conlained in the domain
W of the dynamical system. Then U contains an equslibrium.

Proof. Suppose U contains no equilibrium. If z, — z in U/ and each z, lies
on a closed orbit, then z must lie on a closed orbit. For otherwise the trajectory of
z would spiral toward a limit cyele, and by Proposition 1 80 would the trajectory
of some z..

Let A > 0 be the greatest lower bound of the areas of regions enclosed by closed
orbits in U. Let {v.} be a sequence of closed orbits enclosing regions of areas A,
such that lima., As = 4. Let z, € v,. Since ¥y U U is compact we may assume
Zo-—+x ¢ U, Then if U contains no equilibrium, z lies on a closed orbit 8 of area
A (@, The usual section argument shows that as n — =, v, gets arbitrarily close
to 8 and hence the area A, — A (8), of the region between v, and 8, goes to 0. Thus
Ay = A. _

We have shown that if U contains no equilibrium, it containsg a closed orbit g
enclosing a region of minimal area. Then the region enclosed by 8 contains neither
an equilibrium nor a closed orbit, contradicting Proposition 2.

The following result uses the spiraling properties of limit cycles in a subtle way.

Theorem 3 Lel H be a first integral of a planar C* dynamical system (that is, H
15 a real-valued funclion that 13 constant on lrajeclories). If H is not constant on any
open set, then there are no limit eycles. ’

Proof. Suppose there is a limit cycle v; let ¢ € R be the constant value of H
on v. If (1} is a trajectory that spirals toward «, then H (z({})) = ¢ by continuity
of H. In Proposition 1 we found an open set whose trajectories spiral toward v ; thus
H is constant on an open set.

§5. APPLICATIONS OF THE POINCARE-BENDIXSON THEOREM 253

PROBLEMS

1. The eelebrated Brouwer fired point theorem states that any continuous map f
of the closed unit ball

Do = {z e R ||z = 1)

into itself has a fixed point (that is, f(z) = z for some z).

(a} Prove this for n = 2, assuming that fis €', by finding an equilibriurn for
the vector field g(z) = f(z) — z.

(b) Prove Brouwer's theorem for n = 2 using the fact that any continuous
map is the uniform limit of C* maps.

2. Let fbe a C! vector field on a neighborhood of the annulus
A=fzCR| 1 <|z] <2
Suppose that f has no zeros and that f is transverse to the boundary, pointing

inward.

{a) Prove there is a closad orbit. {Notice that the hypothesis iz weaker than
in Problem 1, Section 3.)

{b) If there are exactly seven closed orbits, show that one of them has orbits
spiraling toward it from both sides.

3. Let f: R* — R? be a " vector field with no zeros. Suppose the flow ¢, generated
by f preserves area (thatis, if S is any open set, the area of ¢,(S) is independent
of t). Show that every trajectory is a closed set.

4. Let f be a C! vector field on & neighborhood of the annulus A of Problem 2.

Suppose that for every boundary point z, f{x} is a nonzero vector tangent to

the boundary,

(a) Sketch the possible phase portraits in A under the further assumption
that there are no equilibria and no closed orbits besides the boundary
circles, Include the case where the boundary trajectories have opposite
orientations.

{b) Suppose the boundary trajectories are oppositely oriented and that the
flow preserves area. Show that A contains an equilibrium,

5. Let f and g be " vector fields on R? such that {f(z), g(z)) = Oforall z. If

has a closed orbit, prove that g has a zero.

6. Let f be a C! vector field on an open set W C R2and H: W — R a £ function

such that
DH(z)f(z) =0

for all x. Prove that:
{a) H is constant on solution curves of 2’ = f(z);
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thr  DH(x) = 0il x belongs to a limit cycle;

(cr If z belongs to a compact invariant set on which DH is never 0, then z
lics on a closed orbit,.

Notes

P. Hartman’s Ordinary Differential Equations {97, a good but advanced book,
covers extensively the material in this chapter.

It should be noted that cur discussion implicitly used the fact that a closed curve
in R? which does not intersect itself must separate R? into two connected regions, &
bounded one and an unbounded one. This theorem, the Jordan curve theorem, while
naively obvious, needs mathematical proof. One can be found in Newman’s Topelogy
of Plane Sets [177].

Chapter 1 2

Ecology

In this chapter we examine some nonlinear two dimensional systems that have
been used as mathematical models of the growth of two species sharing a common
environment. In the first section, which treats only a single species, varicus mathe-
matical assumptions on the growth rate are discussed. These are intended to capture
mathematically, in the simplest way, the dependence of the growth rate on food
supply and the negative effects of overcrowding.

In Section 2, the simplest types of equations that model a predator-prey ecology
are investigated: the object is to find out the long-run qualitative behavior of tra-
jectories. A more sophisticated approach is used in Section 3 to study two competing
species. Instead of explicit formulas for the equations, certain qualitative assump-
tions are made about the form of the equations. (A similar approach to predator
and prey is outlined in one of the problems.) Such assumptions are more plausible
than any set of particular equations can be; one has correspondingly more eonfidence
in the conelusions reached.

An interesting phenomenon observed in Section 3 is bifureation of behavior.
Mathematically this means that a slight quantitative change in initial conditions
leads to a large qualitative difference in long-term behavior (because of a change of
w-limit sets ). Such bifurcations, also called “‘catastrophes,” occur in many applica-
tions of nonlinear systems; several recent theories in mathematical biology have
been based on bifurcation theory.

§). One Species

The birth rate of a human population is usually given in terms of the number
of births per thousand in one year. The number one thousand is used merely to
avoid decimal places; instead of a birth rate of 17 per thousand one could just as



256 12. EcoLoGY

well speak of 0.017 per individual (although this is harder to visualize). Similarly,
the pertod of one year is also only a convention; the birth rate could just as well
be given in terms of & week, a second, or any other unit of time. Similar remarks
apply to the death rate and to the growth rate, or birth rate minus death rate. The
growth rate is thus the net change in population per unit of time divided by the
total population at the beginning of the time period.

Suppose the population y{!) at time { changes to ¥ + Ay in the time interval
[t, ¢ + Af). Then the {average) growth rate is

Ay
y() A’

In practice y(¢) is found only at such times &, 4, . . . when population iz counted,;
and its value is a nonnegative integer. We assume that y is extended (by interpola-
tion or some other method ) to a nonnegative real-valued function of a real variable.
We assume that y has a continuous derivative.

Giving in to an irresistible mathematical urge, we form the limit

Ay (!)
im —
st Y Al y(t)

This function of t is the growth rate of the population at time ¢.

The simplest assumption iz that of a constent growth rate «. This iz the case
if the number of births and deaths in a small time period At have a fixed ratio to
the total population. These ratios will be linear functions of At, but independent
of the size of the population. Thus the net change will be ay At where a is a constant;
henee

’

SV
o= v ——d!logy,

integrating we obtain the familiar formula for unltmited growth:

y{t) = ey {0).

The growth rate can depend on many things. Let us assume for the moment that
it depends only on the per capita food supply ¢, and that ¢ > 0 is constant. There
will be a minimum o, necessary to sustain the population. For ¢ > ay, the growth
rate is positive; for ¢ < gy, it 18 negative; while for ¢ = oy, the growth rate is Q. The
simplest way to ensure this is to make the growth rate a linear function of ¢ — o0

a = alec — ay), a>0.

Then
d
(1 di’ ale — an)y(l).
Here a and oy ure constants, dependent only on the species, and « is a parameter,
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dependent on the particular environment but constant for a given ecology. (In
the next section o will be another species satisfying a second differential equation.}
The preceding equation is readily solved:

¥(t) = expltale — a0)Jy(0).

Thus the population must increase without limit, remain constant, or approach
0 as a limit, depending on whether o > 04, ¢ = a¢, 0r ¢ < 0. If we recall that actu-
ally fractional values of y () are meaningless, we see that for all practical purposes
““4(£) — 0" really means that the population dies out in a finite time.

In reality, a population cannot inerease without limit; at least, this has never
been observed! It is more realistic to assume that when the population level exceeds
a certain value 5, the growth rate is negative. We call this value », the limiting
population. Note that y iz not necessarily an upper bound for the population. Rea-
sons for the negative growth rate might be insanity, decreased food supply, over-
crowding, smog, and so on. We refer to these various unspecified causes as soctal
phenomena. (There may be positive social phenomena; for example, a medium size
popuiation may be better organized to resist predators and obtain food than a
small one. But we ignore this for the moment.)

Again making the simplest mathematical assumptions, we suppose the growth
rate is proportional to g — y:

a=c{n—vy) ¢ > 0 a constant.
Thus we obtain the equation of limiled growth:

d
(2) J ch=y)y; €¢>0, 1>0

Note that this suggests

by _
Al ny ¥

This means that during the period At the population change is cy? At less than it
would be without social phenomena. We can interpret ey? as a number propor-
tional to the average number of encounters between y individuals. Hence ¢yt is a
kind of social friction.

The equilibria of {2) occur at y = 0 and y = 5. The equilibrium at » is asymptot-
ically stable (if ¢ > 0) since the derivative of e(np — y)y at » i8 —cn, which is
negative. The basin of yis |y | y > 0} since y(t) will increase to 5 as a limit if 0 <
y{0) < n, and decrease to n as a limit if 5 < y(0). (This can be seen by considering
the sign of dy/dt.)

A more realistic model of a single species is

= M(yly.

Here the variable growth rate M is assumed to depend only on the total population
¥
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It is plausible to assume as before that there is a limiting population 4 such that
M(y) =0 and M(y) <0 for y > y. If very small pepulations behave like the
uniimited growth model, we assume M {0) > 0.

PROBLEMS

1. A population y(t) is governed by an equation

=My
Prove that:
(a) equilibria oceur at y = 0 and whenever M (y) = 0;
(b) the cquilibrium at y = 0 is unstable;
et un equilibrivm £ > 0 is asymptotically stable if and only if there exists
¢ > 0 such that M > 0 on the interval [t — ¢, £) and M < 0 on
(¢ + €]

2. Suppose the population of the United States obeys limited growth. Compute
the limiting population and the population in the vear 2000, using the following
data:

Year Population

1950 150,697,361
1960 179,323,175
1970 203,184,772

§2. Predator and Prey

We consider a predator species y and its prey z. The prey population is the total
food supply for the predators at any given moment. The total food consumed by
the predators (in a unit of time) is proportional to the number of predator—prey
encounters, which we assume proportional to zy. Hence the per capita food supply
fur the predators at time ¢ is proportional to z((). Ignoring social phenomena for
the moment, we obtain from equation (1) of the preceding section:

!

¥ = a(z -~ o)y,
where o > 0 and e > 0 are constants. We rewrite this as
¥ = (Czx — D)y; C>0, D>0

Consider next the growth rate of the prey. In each small time period A, a certain
number of prey are eaten. This number is assumed to depend only on the two pepu-
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lations, and is proportional to Al; we write it as f(r, y) At. What should we postulate
about f{r, y)?

It is reasonable that f(z, y) be proportional to y: twice as many eats will eat
twice as many mice in a small time period. We also assume f(z, y) is proportional
to r: if the mouse popuiation is doubled, a cat will come across a mouse twice as
often. Thus we put f(x, y} = Bxy, § » positive constant. (This assumption is less
plausible if the ratio of prey to predators is very large. If a cat is placed among a
sufficiently large mouse population, after a while it will ignore the mice.)

The prey species is assumed to have a constant per capita food supply available,
sufficient to increase its population in the absence of predators. Therefore the prey
is subject to a differential equation of the form

' = Ar — Bry.
In this way we arrive at the predalor-prey equations of Volterra and Lotka:
(1) ' = (4 — By)z,
¥y = (Cz — D)y.

AR C, D>

[l

This system has equilibria at (0, 0) and z = (D/C, A/B). It is easy 1o see that
{0, 0) is a saddle, hence unstable. The eigenvalues at (D/C, A /B are pure imagi-
nary, however, which gives no information about stability.

We investigate the phase portrait of (1) by drawing the two lines

H‘

i
s
=

0

ST W

y =0: x

These divide the region z > 0,y > Ointo four quadrants (Fig. A). In each quadrant
the signs of ' and y’ are constant as indicated.

The positive z-axis and the positive y-axis are each trajectories as indicated in
Fig. A. The reader can make the appropriate conclusion about the behavior of the
population.

Otherwise each solution curve (r(t), y(t)) moves counterclockwise around z
from one quadrant to the next. Consider for example a trajectory (z(1), y{1))
starting at a point

D
2(0)—u>6>0,

A
— —_ 0
y(O)—v>B>

in quadrant I. There is a maximal interval [0, ) = J such that (z(t), y(O) €
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= %
A A
[=Ne}

E e ————--i-
\ m, x=0

]
A I,
Y

(0,0

FIG. A

quadrant I for 0 < { < 7 (perhaps r = « ). Put
A—Bv=—r<0 -’
Cu—D=8s>10

As long as £ € J, z(1} is decreasing and y (1) is increasing. Hence

]

d T

— - — = _B <_'_,

dtlogz(t) Z A y < r
)

Ligy) =L =Cz—D>s

dl ¥

Therefore

(2)

{3}y

for 0 <t < r. From the aecond inequality of (2) we see that r is finite. From (2)
and (3) we see that for ¢t € J, (z(t), y{t)) is confined to the compact region

%S z(ty < u,

4
}g < y(t) < ve'r.,
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Therefore (Chapter 8) (z(r), y{r)) is defined and in the boundary of that region;
since () is decreasing, z(r) = D/C. Thus the trajectory enters quadrant II.
Similarly for other quadrants.

We cannot yet tell whether trajectories epiral in toward z, spiral toward a limit

cycle, or spiral out toward “infinity’” and the coordinate axes. Let us try to find a
Liapunov funetion H.

Borrowing the trick of separation of variables from partial differential equations,
we look for a function of the form

H{z, y) = F(2) + G(y).
We want H < 0, where

. d
H(‘tl y) = aH(-r(t)r y(t))

i,
T dz dyy'

Hence
. dF dG
H = r— - — — D).
(r,y) == 4z (A —By)+y 0 (Cx— D)

We obtain H = 0 provided

zdF/dz_ y dG/dy
Czx—D By—4A

Since £ and y are independent variables, this is possible if and only if

zdF/de  ydG/dy
Cz—D By-A4

= constant.

Putting the constant equal to 1 we get

aF D
4 ==,
@) dx ¢ z
daG A
_=,B__,
dy ]

integrating we find
F(z) =Cz— Dlogz,

G(y) =By — Alogy.
Thus the function

Hz,y) =Cz— Dlogz+ By — Alogy,

defined for £ > @, y > 0, is constant on solution curves of (1).
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By considering the signs of 0H /3x and dH /dy it is easy to sce that the equilibrium
z = {D/C, A/B) is an absolute minimum for H. It follows that H (more precisely,
H — H{(z)} is a Liapunov function (Chapter 9). Therefore z is a stable equilibrium.

We note next that there are no limil cycles; this follows from Chapter 11 because
H is not constant on any open set.

We now prove

Theovrem 1 Ervery trajectory of the Volterra—Lotka equations (1) is a closed orbit
(ereept the eqralibrium z and the coordinate axes).

Proaf. Consider a point w = (u, v}, ¥ >0, v > 0; w # 2. Then there is a
doubly infinite sequence - - < 1y < & < < --- such that é,,(w) i3 on the line
r=00C, and

{n— as n— w«,

l,— —oo A8 N — - 0,

If w is nost in a closed orbit, the points ¢, (w) are monotone along the line ¢ = D/C
1Chapter 11). Since there are no limit eyeles, either

¢ (w}—>z 88 n—ow,
or

G (w) o2 a8 n— —w.

Since H is constant on the trajectory of w, this implies tbat H(w) = H(z). But this
contradicts minimality of H (z).

¥y

0,0 x
F1(;. B. Phase portrait of (1).
Wi now have the following (schematic) phase portrait (Fig. B). Therefore, for

any given initial populations (2 (0), y(0}) with x(0) # 0, and y(0) = 0, other
than . the populations of predator and prey will oscillate cyelically.
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No matter what the numbers of prey and predator are, neither species will die
out, nor will it grow indefinitely. On the other hand, except for the state z, which
is improbable, the populations will not remain constant.

Let us introduce social phenomena of Section 1 into the equations (1). We obtain
the following predafor—prey equations of species with limited growth:

(5) ' = (A — By — »z)z,
¥ = (Cz— D — uyy.

The constants A, B, C, D, \, u are all positive.

We divide the upper-right quadrant @ (£ > 0, y > 0) into sectors by the two
fines

L: A—By— =0
M: Ce—D— uy =0
Along these lines 2’ = 0 and y’ = 0, respectively. There are two possibilities, ac-

cording to whether these lines intersect in @ or not. If not (Fig. C), the predators

die out and the prey population approaches its limiting value A/A (where . meets
the zr-axis).

A7 A
FIG. C. Predators — @; prey «» A/A.

This is because it is impossible for both prey and predators to increase at the
same time. If the prey is above its limiting population it must decrease and after
4 while the predator population also starts to decrease (when the trajectory crosses
M ). After that point the prey can never increase past A/x, and so the predators
continue to decrease. If the trajectory crosses L, the prey increases again (but not
past A4/)), while the predators continue to die off. In the limit the predators dis-
appear and the prey population stabilizes at A /\.
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FIG. D

Suppose now that L and M cross at a point z = (Z, #) in the quadrant @ (Fig.
D); of course z is an equilibrium. The linear part of the vector field (3)atzis

[- A —E.‘E]
g —wgd
The characteristic polynomial has positive coefficients. Both roots of such a poly-
nomial have negative real parts. Therefore 2 is asymplotically stable.

Note that in addition te the equilibria at z and (0, 0), there is also an equilibrium,
a saddle, at the intersection of the line L with the z-axis.

It is not easy to determine the basin of z: nor do we know whether there are any

limit cycles. Nevertheless we can obtain some information.

Let L meet the z-axis at (p, 0) and the y-axis at (0, ¢). Let T be & rectangle
whose corners are

0,0, @0, OO G

with > p, § > ¢, and (B, §) € M (Fig. E). Every trajectory at a boundary point
of T either enters T or is part of the boundary. Therefore T i3 positively invariant.
Every point in @ is econtained in such a rectangle. '

By the Poincaré-Bendixson theorem the w-limit set of any point (z, y) in T, with
r > 0, 4 > 0, must be a limit cycle or one of the three equilibria (0, 0), z or (p, 0).
We rule out (0, 0) and (p, 0) by noting that z’ iz increasing near (0, 0); and ' is
increasing near (p, 0). Therefore L, {(x) is either z or a limit cycle in I'. By a con-
sequence of the Poincaré-Bendixson theorem any limit cycie must surround z.

We observe further that any such rectangle I' contains el limit cycles. For a
limit eyele (like any trajectory) must enter I', and T is positively invariant.

Fixing (p, §) as above, it follows that for any initial values (2(0), y(0)), there
exisis to > 0 such that

(<P yW)<§ i t24
One can also find eventual lower bounds for z{t) and y({¢).
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{0, ¢) , / r /

(o, 0) {p,0)
FIG. E

)]V A

, 0)

We also see that in the long run, a trajectory either approaches z or else spirals
down to a limit cycle.

From a practical standpoint a trajectory that tends toward z is indistinguishable
from z after a certain time. Likewise a trajectory that approaches s limit eycle ¥
can be identified with v after it is sufficiently close.

The conclusion is that any ecology of predators and prey which obeys equations (2)
eventually seitles down lo either a consian! or periodic population. There are absolute
upper bounds that no population can exceed in the long run, no matler what the initial
populalions are.

PROBLEM

Show by examples that the equilibrium in Fig. D) can be either a spiral sink or a
node. Draw diagrams.

§3. Competing Species

We consider now two species r, ¥ which compete for a common food supply.
Instead of analyzing specific equations we follow a different procedure : we consider
a large class of equations about which we assume only a few qualitative features. In
this way considerable generality is gained, and little is lost because specific
equations can be very difficult to analyze.
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The equations of growth of the two species are written in the form
(1) ' = M(z,y)z,
v = Ny,
where the growth rates M and N are C! functions of nonnegative variables «, y.
The following assumptions are made:
(n) If either species increases, the growth rate of the other goes down. Hence

M aN
— <0 d — )
o an ™ <0
(b) If either population is very large, neither species can multiply. Hence
there exists X > 0 such that

Mz, y)<0 and N(z,y) <0 if z2K or y2> K.

{c) In the absence of either species, the other has a positive growth rate up to
a certain population and a negative growth rate beyond it. Therefore there are
constants @ > 0, b > 0 such that -

M{r,0) >0 for z<a and Mz, 0) <0 for 2> a,
N, y)y >0 for y<b and NOy) <0 for y> b

By (a) and (¢ each vertical line » x R meets the set g = M ' (0) exactly once
if 0 < r <aandnot at all if £ > a. By (a) and the implicit function theorem u
is the graph of a nonnegative C" map f: [0, a] — R such that /(D) = g. Below
the curve u, M > 0 and above it M < 0 (Fig. A).

¥ p”ff—'(o)
M < Q
M>0
A
FIG. A~

In the same way the set v = ¥N'(0) isa smooth eurve of the form

f(x, ¥)iz =gyl
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where g: {0, ] 2R is a nonnegative (' map with g={0) = b. The function .V is
positive to the left of » and negative to the right.

Suppose i and v do not intersect and that i is below ». Then a phase pertrait can
be found in a straightforward way following methods of the previous seetion. The
ecquilibria are (0, 0), (a, 0) and (0, b). All orbits tend to one of the three equilibria
hut mast to the asymptotically stable equilibrium (0, b). See Fig. B.

¥

by

FIG. B

Suppose now that s and » intersect. We make the assumption that u01» is a
finite set, and at each intersection point, x and » cross transversely, that is, they have
distinet tangent lines. This assamption could be dispensed with but it simplifies
the topology of the curves. Moreover M and N can be approximated arbitrarily
closely by functions whose zero sets have this property. In a sense which can be
made precise, this is a “‘generic” property.

The curves x and » and the coordinate axes bound a finite number of connected
open sets in the upper right quadrant: these are sets where 2’ # 0 and y’ # 0. We
call these open sets basic regions (Fig. C}. They are of four types:

I. >0, y>0
I ¥<0, y>0
III: <0, y<ty
Iv: >0 y <0
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FIG. C

{e, 0}

The boundary 4B of a basic region B is made up of points of the following types:

points of u 0 v, called vertices; peints on u or » but not
axes, called ordinary boundary points; and points on

on both nor on the eoordinate
the axes.

A vertex is an equilibrium; the other equilibria are at (0, 0), (g, 0), and (0, b).

At an ordinary boundary point w € 3B, the vector

(z', y') is either vertical (if

wE '#) or horizontal (if w € v). It points either into or out of B since u has no
vertical tangents and » has no horizontal tangents. We call w an inward or outward

point of 3B, accordingly.

The following technical result is the key to analyzing equation {1):

Lemma Let B be a basic region. Then the ordinary boundary points of B are either

all inward or all outward.

Proof. 1f the lemma holds for B, we call B good.
Let p be a vertex of B where u and v cross. Then

basic regions, one of each type. Types I and IV, and t
opposite pairs,

p is on the boundary of four
ypes I and I1I, are diagonally
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Let o C g and » C » be the open arcs of ordinary boundary points having p
as a common end point. If py U » consists entirely of inward or entirely of outward
points of 3B, we call p good for B; otherwise p is bud for B. It is easy to see that if
p is good for B, it is good for the other three basic regions adjacent to p, and similarly
for bad (Fig. D). This is because (2, y') reverses direction as one proceeds along
u or v past, a crossing point. Hence it makes sense to call a vertex simply good or bad.

Bad Good

FIG. D

Consider first of all the region B, whose boundary contains (0, 0). This is of type
I(z' >0,y > 0).If gis an ordinary point of x n 3B, we can connect ¢ to a point
inside By by a path which avoids ». Along such a path ' > 0. Hence (2, ') points
upward out of By at ¢ since u is the graph of a function. Similarly at an ordinary
point # of v N 88, (z', ') points to the right, out of B, at r. Hence B, is good, and
80 every vertex of By is good.

Next we show that if B is a basic region and 4B contains one good vertex p of
u N v, then B is good. We assume that near p, the vector field along a8 points into
B; we also assume that in B, ' < 0and " > 0. (The other cases are similar.) Let
s C a1, v C v be arcs of ordinary boundary points of B adjacent to p (Fig. E). For
example let r be any ordinary point of 88 N u and ¢ any ordinary point of u. Then
%" > 0atg¢. As we move along g from g to r the sign of y’ changes each time we cross
». The number of such crossings is even because r and g are on the same side of ».
Hence y’ > 0 at ». This means that (z, ¥') points up at r. Similarly, " < 0 at
every ordinary point of » 0 3B. Therefore along u the vector (&', ¥') points up;
along » iv points left. Then B lies above u and lefi of ». Thus B is good.

This proves the lemma, for we can pass from any vertex to any other along u,
starting from a good vertex. Since successive vertices belong to the boundary of a
common basic region, each vertex in turn is proved good. Hence all are good.

As a consequence of the lemma, each bastc region, and its closure, 18 either posi-
tively or negatively invariant.
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FIG. E

What are the possible w-limit points of the flow (1)? There are no closed orbits.
For a closed orbit must be contained in a basic region, but this is impossible since
z{t) and y(t} are monotone along any solution curve in a basic region. Therefore
all w-limit points are equilibria.

We note also that each trajectory is defined for ail { > 0, beeause any point
lies in a large rectangle T spanned by (0, 0), (2, 0), (0; o), (2o, yo) With 2o > a,
¥o > b; such a rectangle iz compact and positively invariant (Fig. F). Thus we
have shown:

Theorem  The flow &, of (1) has the following property: for all p = (z, y), z > 0,
y = 0, the limit

lim ¢.(p)

[ nd ]

exists and 13 one of a finile number of equilibria.

We conclude that the populations of two competing species always tend lo one of a
Jinite number of limiting populations.
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;S L L7

FIG. F

Examining the equilibria for stability, one finds the following results. A vertex
where x and » each have negative slope, but u is steeper, is asymptotically stable
{Fig. G). One sees this by drawing a small rectangle with sides parallel to the axes
around the equilibrium, putting one corner in each of the four adjacent regions.
Buch a rectangle is positively invariant; since it can be arbitrarily small, the equilib-
rium is agymptotically stable. Analytically this is expressed by

s N,
slope of u = — %- < slopeof v = — N <0,
¥ y

where M, = oM /oz, M, = dM /3y, and so on, at the equilibrium, from which a
computation yields eigenvalues with negative real parts. Hence we have a sink.

FIG. G

A case by case study of the different ways u and » can cross shows that the only
other asymptotically stable equilibrium is (b, 0) when (b, 0) is above g, or (a, 0)
when (e, 0) is to the right of ». All other equilibria are unstable. For example, ¢
in Fig. H is unatable because arbitrarily nesr it, to the left, is a trajectory with z
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decreasing; such a trajectory tends toward (0, b). Thus in Fig. H, (0, b) and p
are asymptotically stable, while ¢, r, s and (a, 0) are unstable. Note that r is a
source.

There musl be al least one asymplotically stable equilibrium. 1f (0, b) is not one,
then it lies under x; and if {a, 0) is not one, it lies over u. In that case u and » cross,
and the first crossing to the left of (a,0) is asymptotically stable.

Kvery trajectory tends to an equilibrium; it is instructive to see how these
w-limits change as the initial state changes. Let us suppose that g is a saddle. Then
it can be shown that exactly two trajectories a, o' approach g, the so-cailed stable
mantfolds of ¢, or sometimes separairices of ¢. We concentrate on the one in the
unbounded basic region B, labeled a in Fig. H.

0,0

FIG. H. Bifurcation of behavior.

All points of B, to the left of « end up at ((}, b), while points to the right go to
p. As we move across « this limiting behavior changes radically. Let us eonsider
this bifurcation of behavior in biclogical terms.

Let vg, vy be states in By, very near each other but separated by a; suppose the
trajectory of vg goes to p while that of v goes to (0, b). The point vy = (x4, to)
represents an ecology of competing species which will eventually stabilize at p.
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Note that both populations are positive at p. Suppose that some unusual event
oecurs, not accounted for by our model, and the state of the ecology changes sud-
denly from v to ». Such an event might be introduction of a new pesticide, importa-
tion of additional members of one of the species, a forest fire, or the like. Mathe-
matically the event is a jump from the basin of p to that of (0, b).

Such a change, even though quite small, is an ecological catastrophe. For the
trajectory of v; has quite a different fate: it gnes to (0, b) and the r species is wiped
out!

Of course in practical ecology one rarely has Fig. H to work with. Without it, the
change from v, to v; does not seem very different from the insignificant change from
o to a near state vy, which also goes to p. The moral is clear: in the absence of com-
prehensive knowledge, a deliberate change in the ecology, even an apparently minor
one, is a very risky proposition.

PROBLEMS

1. The equations

zl

22—z -y

¥ =3 —2r—y)

satisfy conditions (a) through (d) for competing species. Explain why these
equations make it mathematically possible, but extremely unlikely, for both
species to survive.

3

Two species z, y are in symbiosis if an increase of either population leads to an
increase in the growth rate of the other. Thus we assume

= M(z, y)x
20,y20)
¥ =Nz y
with
M aN
el >0 and > 0.
ay o

We also suppose that the total food supply is limited; hence for some 4 > 0,
B > 0 we have

Mz, y)<0 if r> 4,
Nz, y) <0 if y>B.
if both populations are very small, they both increase; hence

A©0)>0 and N(0,0) >0
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Assuming that the intersections of the curves M—1(0), N—1(0) are finite, and

all are transverse, show that:

{a) every trajectory tends to an equilibrium in the region 0 <z < 4,0 <
vy < B;

{b) there are no sources;

(¢) there is at least one sink;

(d) if aM/az < 0 and N /3y < 0, there is a unique sink z, and z = L.(2,¥)
forallz > 0,y > 0.

3. Prove that under plausible hypotheses, two mutually destructive species can-
not coexist in the jong run.
1. lat y nnd & denote predator and prey populations. Let
=Mz, y)2,
v =N v
where M and N satisfy the following conditions.
(i) If there are not enough prey, the predators decrease. Hence for some
b>0 '
N{z,y) <0 i z<b.
(ii) An increase in the prey improves the predator growth rate; hence
aN/jar > O,
(iii) In the absence of predators a small prey population will increase; hence
M(©0,0) > 0.
{iv} Beyond a certain size, the prey population must decrease; hence there
exists A > 0 with M (2, y) < 0ifz > A.
iv) Any inerease in predators decreases the rate of growth of prey; hence
aM jay < 0.
(vi) The two curves M—1(0), N-1(0) intersect transversely, and at only a
finite number of points.

Show that if there is some (u, v) with M(u, v) > 0 and N{u, v) >0
then there is cither an asymptotically stable equilibrium or an w-limit eycle.
Moreovet, if the number of limit cycles is finite and positive, one of them must
have orbits spiraling toward it from both sides.

5. Show that the analysis of equation (1) is essentially the same if (¢} is replaced
by the more natural assumptions: M (0, 0) > 0, N(0,0) > 0,and M (,0) < 0
forxr> A, N, y) < Ofory > B.

Notes

There is a good deal of experimental and observational evidence in support of
the general conclusions of this chapter--that predator-prey ecologies oscillate
while competitor ecologies reach an equilibrium. In fact Volterra's original study
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was inspired by observation of fish populations in the Upper Adriatic. A discussion
of some of this material is found in a paper by E. W. Montroll et al., “On the Volterra
and other nonlinear models” [16]. See also the book The Struggle for Existence by
U. D’Ancona [4].

A very readable summary of some recent work is in ‘“The struggle for life, 1"
by A. Kescigno and I. Richardson [21]. Much of the material of this chapter was
adapted from their paper.

A recent book by René Thom [24 ] on morphogenesis uses very advanced theories
of stability and bifurcation in comstructing mathematical models of biological
processes.



Chapter 1 3

Periodic Attractors

Here we define asymptotic stability for closed orbits of a dynamical system, and
an especially important kind called a periodic attractor. Just as sinks are of major

importanee among equilibria in models of “‘physical” systems, so periodic attractors
are the most important kind of oscillations in such models, As we shall show in
Chapter 16, such oscillations persist even if the vector field is perturbed.

The main result is that a certain eigenvalue condition on the derivative of the

flow implies asymptotic stability. This is proved by the same method of loeal see-
tions used earlier in the Poincaré-Bendixson theorem. This leads to the study of
“discrete dynamical systems” in Section 2, a topic which is interesting by itself.

§1. Asymptotic Stability of Closed Orbits

Let f: W — Rn be a (! vector field on an open set W C R*; the flow of the dif-
ferential equation

(D 7 = f(z)

is denoted by ¢,

Lot v C W be a closed orbit of the flow, that is, a nontrivial periodic solution
curve. We call ¥ asymplotically stable if for every open set U, C W, with v C U,
there is an open set {7y, v C Uy C U, such that ¢,(Us) C U, for all ¢t > 0 and

lim d(¢:(z), ¥) = 0.

Here d(z, ¥) means the minimum, distance from z to a point of v.

The closed orbit in the Van der Pol oscillator was shown to be asymptotically
stable. On the other hand, the closed orbits of the harmonic oscillator are not since
an asymptotically stable closed orbit is evidently isolated from other closed orbits.
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We say a point z € W has asymplotic period A € R if
Lim | gase(z) — ¢e(z)] = 0.

(2 ]

Theorem 1 Let v be an asymplotically stable closed orbit of period M. Then v has a
neighborhood U C W such that every point of U has asymplotic period .

Proaf. Let U be the open set U, in the definition of asymptotically stable with
W= U, Lletx€ U and fix e > 0. There exists §, 0 < § < ¢, such that if z € 4
and | y — z| < 3, then | ¢x(y) — @a(2)| < ¢ (by continuity of the flow}. Of course
#(2z) = z. Since d(¢.(z}, v) =0 a8 { —> w, there exists & > 0 such that if ¢ 2l
there is & point z, € ¥ such that | ¢.(z) — z,| < 8. Keeping in mind ¢r{z,) = z.
we have for ¢ > f,:

l &r01(2) — ¢e(2)] < | dade(z) — dalzd| + | dalz) — dul2)]
Le+t 8§ < 2
This proves the theorem.

The significance of Theorem 1 is that after a certain time, trajectories near an
asymptotically stable closed orbit behave as if they themselves had the same period
as the closed orbit.

The only example we have seen of an asymptotic closed orbit occurs in a two
dimensional system. This is no accident; planar systems are comparatively easy to
ansalyze, essentially because solution curves locally separate the plane,

The theorem below is analogous to the fact that an equilibrium  is asymptotically
stable if the eigenvalues of Df(£) have negative real part. It is not as convenient
to use since it requires information about the solutions of the equation, not merely
about the vector field. Nevertheless it is of great importance.

Theorem 2 Lel v be a closed orbit of period ) of the dynamical system (1). Lel p € 4.
Suppose that n — 1 of the eigenvalues of the linear map D¢y (p): E — E are less than
1 in absolule value. Then v is asymplolically stable.

Bome remarks on this theorem are in order. First, it assumes that ¢, is differenti-
able. In fact, ¢.(z) is a C* function of (¢, z); this is proved in Chapter 16. Second,
the condition on D¢y (p} is independent of p € ~. For if g € v is a different point,
let r € R be such that ¢.(p) = ¢. Then

Dén(p) = Di(¢_rd) (p)
= De¢e(p)~Der(q) Dév(p),

which shows that D, (p) is similar to D, (g)}. Third, note that 1 is always an eigen-
value of D¢, (p) since

Der(p)f(p) = f(p).
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The eigenvalue eondition in Theorem 2 is stronger than asymptotic stabi.lit).r.
If it holds, we call ¢ a pertodic atfractor. Not only do trajectories near a periodic
attractor v have the same asymptotic period as v, but they are asymptotically
“in phase” with v. This is stated precisely in the following thenrem.

Theorem 3 Lef v be a periodic altractor. If lim,., d(¢.{z), ¥) = 0, then there
18 a unique point z € vy such that im,.. | ¢:(z) — ¢,(2}| = 0.

This means that any point sufficiently near to v has the same fate as a definite
point of . . '

It can be proved (not easily) that the closed orbit in the Van der Pol oscillator
is a periodic attractor (see the Problems).

The proofs of Theorems 2 and 3 occupy the rest of this chapter. The‘proof of
Theorem 2 depends on a local section S to the flow at p, analogous to those in Chap-
ter 10 for planar flows: S is an open subset of an (n — 1)-dimensional subspace
transverse to the vector field at p, Following trajectories from one point of § to
another, defines a C! map h: S, — S, where S; is open in S and contains p. We call
h the Poincaré map. The following section studies the "discrete dynamical aystem’
h: 8g— S. In perticular p € 8, is shown to be an asymptotically stable fixed point
of h, and this easily implies Theorem 2.

PROBLEM

Let v be a closed orbit of period A > 0 in a planar dynamical system z’' = f{z).
Letp € v.
(a) If

| Det Dga(p)| <1,

then v is a periodic attractor, and conversely.
(b) Using the methods of Chapter 10, Section 3, and Liouville's formula (a proof
of Liouville's formula may be found in Hartman’s book [97])

Det D¢a(p) = exp {fo Tr Df(¢.p) dt‘.

show that the closed orbit in the Van der Pol oscillator is a periodic attractor.

§2. Discrete Dynamical Systems

An important example of & discrete dynamiecal system (precise deﬁnit.ioq later)
is & C' map g: W — W on an open set W of vector space which has a C' inverse
g': W — W._ Buch a map ig called a diffeomorphism of W. If W representa a ‘‘state
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space” of some sort, then g(z) is the state of the system 1 unit of time after it is in
state z. After 2 units of time it will be in state g*(x) = g(g(z)); after n units, in
state ¢"(z)}. Thus instead of a continuous family of states [¢.(x) | ¢ € R} we have
the discrete family {g"(z) | n ¢ Z}, where Z is the set of integers.

The diffeomorphism might be a linear operator T: £ — E. Such systems are
studied in Jinear algebra. We get rather complete information about their strueture
from the canonical form theorems of Chapter 6.

Suppase T = e*, 4 € L(E). Then T is the “time one map” of the linear flow
e'4. If this continuous flow e'* represents some natural dynamical process, the
discrete flow T" = ¢4 is like a series of photographs of the process taken at regular
time intervals. If these intervals are very smali, the discrete flow is a good approxi-
mation to the continuous cne. A motion picture, for example, is a discrete flow
that is hard to distinguish from a continuous cne.

The analogue of an equilibrium for a discrete system g: E — E is a fized poind
z = g(z). For a linear operator T, the origin is a fixed point. If there are other
fixed points, they are eigenvectors belonging to the eigenvalue 1.

We shall be interested in stability properties of fixed points. The key example is a
linear contraction: an operator T € L{E)} such that

(1) m Trr = 0

LET

for all ¢ E. The time one map of a contracting flow is a linear contraction.

Proposition The following stalements are equivalent:

(a) T 1s a linear confraction:
(b) the etgenvalues of T have absolute values less than 1 ;
(e) thereis a norm on K, and u < 1, such that

[Tz| < ulzx]
forallrc E.

Proof. If some real eigenvalue A has absolute value [ Al =1, (1) is not true
if x is an eigenvector for . If [ A| > 1 and & is complex, a similar argument about
the complexification of T shows that T is not a contraction. Hence (a) implies
(b). That (¢} implies (a) is obvious; it remains to prove (b) implies (c).

We embed E in its complexification E¢, extending T to a complex linear operator
Tc on E¢ {Chapter 4). It suffices to find a norm on Eg¢ as in (c) (regarding Kc as a
real vector space), for then (¢) follows by restricting this norm to E.

Recall that Ec is the direct sum of the generalized eigenspaces V) of T¢, which
are invariant under T¢. It suffices to norm each of these subspaces; if z = ¥ x,,
zy € Vy, then we define [ z] = max{[ z|). Thus we may replace Ec by V,, or
what is the same thing, assume that T has only one eigenvalue A

A similar argument reduces us to the case where the Jordan form of T¢ has only
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one elementary Jordan block

A
1

L R

I'or any ¢ > O there is another basis le,, ..., €.} giving T¢ the “«Jordan form"
o -
€
B =
L ¢ A

This was proved in Chapter 7. Give E¢ the max norm for this basis:
| Z ape; | = max(f| a1},

where ay, ..., @a are arbitrary complex numbers. Then if | A | < 1 and e is suffi-
ciently small, {c) is satisfied. This completes the proof of Proposition 1.

We now define a discrete dynanmtical system to be a ' map g: W — E where W
is an open set in a vector space E. If W = K, it is possible that g* is not defined at
all points of W, or even at any points of W. {This tast case is of course uninteresting
as a dypamical system.)

A fired point & = g() of such a system is asymptotically stable if every neighbor-
hood " W of E contains a neighborhood U/) of £ such that ¢~({’y) C U for
n > 0and

limg{z) = #
for all x € U/,. It follows the Proposition that 0 is asymptotically stable for a
linear contraction.
In analogy with continuous flows we define a sink of a discrete dynamical system

g to mean an equilibrium (that is, fixed point) at which the eigenvalues of Dg have
absolute value less than 1.

The main result, of this section is:

Theorem Let £ be a fizxed point of a discrete dynamical system g: W — E. [f the
eigenvalues of Dg(£) are less than 1 in absolute value, £ is asymptotically siable.

Proof. We may assume # = 0 € E. Give E a norm such that for some u < 1,

| Dg(0)z| < u|=|

§3. STABILITY AND CLOSED ORBITS 281
for all x ¢ E. Let 0 < ¢ <1 — u. By Taylor’s theorem there is a neighborhood
V C W of 0sosmall thatif z € 17, then

|g(z) — Dg(hz| <e| x|
Hence

1A

| Dg(0yx | + €] 2]
pizl+ |zl

Putting » = u + ¢ < 1 we have | g{x)| < v} x| for r £ V. Given a neighborhood
U of 0, choose r > 0 so small that the ball L'y of radius r about 0 lies in I’. Then
lgnz| < v lz)forxz € U'); hence g"x ¢ U, and g"x — 0 as £ — . This completes
the proof.

| ¢t

IA

The preceding argument can be slightly modified to show that in the specified
norm,

lg(x) —glw)i Sulz—yl. w<]y,
for all z, ¥ in some neighborhood of 0 in W',

§3. Suability and Closed Orbits

We consider again the flow ¢, of a " vector field f: W > E. Let yC W bea
closed orbit and suppose 0 ¢ .

SBuppose S is a section at 0. If A > 0 is the period of v, then as ¢ increases past
A, the solution curve ¢.(0) crosses S at 0. If z is sufficiently near 0, there will be a
time 7{x) near A when ¢.,(z) crosses S. In this wav a map

g:U— 8,
Q(x) = Ppnix)

is obtained, {" being a neighborhood of 0. In fact, by Section 2 of Chapter 11, there
is such a [’ and a unique C' map r: U — R such that ¢, (x) € Siorall zin U
and r(0) = X

Now let U7, = be ag above and put S, = Sn . Define a C? map

g: 8 — 8,
g(l') = ¢‘|’(!J(1)'

Then g is a diserete dynamical system with a fixed point at 0. See Fig. A. We call
g a Poincaré map. Note that the Poincaré map may not be definable at all pointa
of § (Fig. B).

There is an intimate connection between the dynamical properties of the flow
near v and those of the Poincaré map near 0. For example:
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FIG. A. A Poincaré map g: Sy —+ 8

Proposition 1 Let g: 8, — 8 be a Poincaré map for v as above Let x € S, be such
that lim,., g7 (x2) = 0. Then

lim d(¢(z), ¥) = 0.

lew
Proof. Let g"(2) = z. € 8. Since ¢g"*i(z) is defined, z. € So. Put r{za) = A
Since r, — 0, k.~ A (the period of v). Thus there is an upper bound r for
1l x| | # = 0}. By continuity of the flow, as n — =,
l ¢l(xll) - ¢l(0)' —0

uniformly in s € {0, r]. For any ¢ > 0, there exist s{t) ¢ [0, r], and an integer
8

FIG. B. The Poincaré map is not defined at y.
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n() > 0 such that
&(z) = dun{Zan)
and n(l) — = as { — =, Therefore for t > 0

d(.(x), 7} | &z} — dun(0)]

= I SanZarn — Pt (0)|s
which goes to 0 as t — 0.

Keeping the same notation, we also have:

Proposition 2 If O is a sink for g, then v is asymplotically stable.

Proof. Let U be any neighborhood of ¥ in W; we must find U, & neighborhood
of v in U, such that ¢,(U,) C U forall¢t > 0 and

lim d($:(z), v) = 0

forallz ¢ U,

Let N C U be a neighborhood of v s0 small that if z € N and | ¢| < 2, then
¢.(x) € U (where \ is the period of ¥).

Let H C E be the hyperplane containing the local section S. Since 0 is a sink,
the main result of Section 2 says that H has a norm such that for some g < 1, and
some neighborhood V of 0 in 8y, it is true that

lg(zx)| S ulzl

for all r € V., Let p > 0 be so small that the ball B, in H around 0 of radius p is
contained in V n N; and such that r(x) < 2Xifz € B,.

Define

Uiy = |¢(z) |z € B, t 2 0}.

See Fig. C. Then U, is a neighborhood of ¥ which is positively invariant. Moreover
Ui CU. Forlet y € Uy. Then y = ¢,(z) for some 1 € B, t > 0. We assert that
(t, ) e¢an be chosen so that 0 < ¢ € r(x). For put g~(z) = z.. Then z. € V for
all n > 0. There existe n such that y is between z, and z.,, on the trajectory of
x;gincez, €V, r(z,) <20 ;andy = ¢,(z) = ¢, (z.) for0 < ¢ < 2x. Theny € U
because z,, € N.

Finally, d{¢:{y), v) =0 a8t — = for all 4y € U. For we can write, for given p,

y=alz), zeV.

Since g~ (x) - 0, the result follows from Proposition 1.

The following result links the derivative of the Poincaré map to that of the flow,
We keep the same notation.

Proposition 3 Let the hyperplane H C E be tnvariant under Déy(0). Then
Dg(0) = Dr(O)| H.
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FIG. C. U, ia positively invariant.

Proaf. Let 78, — R be the C' map such that r{0) = xand g(z) = @{r(2), z}
By the remark at the end of Section 2, Chapter 11, we have

-1
Dr(0) = — [‘;—? (0, A)] “h-Daa(0)| H,
Since D¢y (0} (H} = H = Ker k, Dr(0) = 0. Hence by the chain rule
2]
Dy(0) = DHO)| H + 22 (, 0)Dr(0)

= D¢ (0)| H.

It is ensy to see that the derivatives of any two Poincaré maps, for different
sections at 0, are similar.

We now have all the ingredients for the proof of Theorem 2 of the first section.
Suppose v is a closed orbit of period A as in that theorem. We may assume 0 ¢ 7.

We choose an (n — 1)-dimensional subspace H of E as follows. H is like an
eigenspace corresponding to the eigenvalues of D¢a(0) with absolute value less
than 1. Precisely, let B (C E¢ be the direct sum of the generalized eigenspaces
belonging to these eigenvalues for the complexification (D¢x(0))c: Ec — Ee, and
let # = BnE. Then H is an (n — 1)-dimensional subspace of £ invariant under
D¢, (0) and the restriction D¢a(0)| H is a linear contraction. .

Let § C H be a section at 0 and g: 8§ — S & Poincaré map. The previous proposi-
tion implies that the fixed point 0 € S, is a sink for g. By Proposition 2, y isasymptot-
ically stable.

To prove Theorem 3, it suffices to consider a point z € §, where ¢g: S, — S is
the Poincaré map of a local section at 0 € v (since every trajectory starting near
¥ interseets S,).
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If ¢.r(2) is defined and sufficiently near 0 for n = 1,...,k, then

dar(z) = . (g"1),
where

b = boy + r(gn'2) — AL
For some » < 1 and some norm on E we have
lozl Svigzl;
and using Dr(0) = 0, we know that for any € > 0,
[t~ taa] S elgmiz] < o] 2]
if | z [ is sufficiently small, Thus

€

It.lslt..l+eiv*=

i

Hence if ¢ is sufficiently small, the sequence ¢ (r) stays near 0 and can be con-
tinued for all positive integers n, and the above inequalities are valid for all n. It
follows that the sequence {t.} is Cauchy and converges to some s € R. Thus ¢.,(x)
converges to $,(0) = z € y. This implies Theorem 3 of Section 1.

PROBLEMS

1. Show that the planar system

zl

(1—z2t— iz — y,
V=x+(1—-21-y0y

has a unique closed orbit ¥ and compute its Poincaré map. Show that v is a
periodic attractor. (Hint: Use polar coordinates.)

2. et X denote either a closed orbit or an equilibrium. If X is asymptotically

stable, show that for every A > 0 there is a neighborhood U of X such that if
P € U — X then ¢,(p) = pforallt ¢ [0, Al

3. Show that a linear flow cannot have an asymptotically stable closed orbit.
4. Define the concepts of stable closed orbit of a flow, and stable fized point of a

discrete dynamical system. Prove the following:

(a) A closed orbit is stable if and only if its Poincaré map has a stable fixed
point at 0.

(b) If a closed orbit v of period A is stable then no cigenvalue of D¢, (p),
P € 7, has absolute value more than one, but the converse can be false,
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(a) Let p be an asymptotically stable fixed point of & discrete dyr}amica.l
system g: W~ E. Show that p has arbitrarily small compact neighbor-
hoods ¥V C W such that g(V) C int ¥ and [ae ¢*(V) = p.

(b) State and prove the analogue of (a) for closed orbits.

Let g: R — R be the map
g(z) = ax + bz* + oo, a#0.

Investigate the fixed point 0 for stability and asymptotic stability (see Problem
4). Consider separately the cases | ¢} < 1,[a| =1,]a] > 1,

{The Contracting Map Theorem) Let X C R* be a nonempty closed set and
f: X —+ X a continuous map. Suppose [ has a Lipschitz constant o < 1. Prqve
that S has unique fixed point p, and lima., ff(z} = p for all z ¢ X. (Hini
Consider the sequence f*(z).)

Chapter 14:'

Classical Mechanics

The goal of this very short chapter is to do two things: (1} to give a statement
of the famous n-body problem of celestial mechanics and (2) to give a brief intro-
duction to Hamiltonian mechanics. We give a more abstract treatment of Hamil-
tonian theory than is given in physics texts: but our method exhibits invariant
notions more clearly and has the virtue of passing easily to the case where the
configuration space is a manifold.

§1. The n-Body Problem

We give a description of the n-body “problem'” of celestial mechanics; this
extends the Kepler problem of Chapter 2. The basic example of this mechanical
system is the solar system with the sun and planets representing the n bodies.
Another example is the system consisting of the earth, moon, and sun. We sre
concerned here with Newtonian gravitational forces; on the other hand, the New-
tonian n-body problem is the prototype of other n-body problems, with forces
other than gravitational.

The data, or parameters of this system, are n positive numbers representing the
masses of the n bodies. We denote these numbers by m,, . . . , m,.

The first goal in understanding a mechanical syatem is to define the configuration
space, or space of generalized positions. In this case a configuration will consist
precisely of the positions of each of the » bodies. We will write z; for the position
of the ith body s0 that 2. is a point in Euclidean three space {the space in which we
live) denoted by E. Now E is isomorphic to Cartesian space R? but by no natural
isomorphism. However £ does have a natural notion of inner product and associ-
ated norm; the notions of length and perpendicular make sense in the space in
which we live, while sny system of coordinate axes is arbitrary.
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Thus Euclidean three space, the configuration space of one body, is a three-
dimensional vector space together with an inner product.

The configuration space M for the n-body problem is the Cartesian product of
E with itself 7 times; thus M = (E)*and r = (&, ..., Z.), where r; € E is the
pusition of the ¢th body. Note that #; denotes a point in E, not a number.

One may deduce the space of states from the configuration space as the space
Ty of all tangent vectors to all possible curves in M. One may think of Ty as the
product M x M and represent a state as (r, ») € M X M, where x is a configura-
tion as before and ¢ = (2, ..., #a), v; € E being the velocity of the ith body. A
state of the system gives complete information about the system at a given moment
and {(at least in classical mechanics) determines the complete life history of the
state.

The determination of this life history goes via the ordinary differential equations
of motion, Newton’s equations in this instance. Good insights into these equations
can be obtained by introducing kinetic and potential energy.

The kinetic energy is a function K: M X M — R on the space of states which
is given by

K(r,v) = i:m. | wi |2

[ SN

Here the norm of ¢, is the Euclidean norm on E. One may also consider K to be
given directly by an inner product B on M by

B{v, w)

[

b | -

é m;(py, wi),

K(x,v) = B(v, v).

It is clear that B defines an inner product on M where {v;, w;) means the original
inner product on E.

The potential energy V is a function on M defined by
mom;
Vigy =X ———— -
gl X — T |
We suppose that the gravitational constant is 1 for simplicity. Note that this
funetion is not defined at any “eollision’ (where r; = z;). Let A,; be the subspace of
collisions of the ith and jth bodies so that

A = fre M| =41 <j

Thus A,; is & linear subspace of the vector space M. Denote the space of all collisions
by A C M sa that A = |_J Aij. Then properly speaking, the domain of the potential
energy is 1 — A:

V:M — A>R.
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We deal then with the space of noneollision states which is (M — A) X M.
Newton's equations are second order equations on M — A which may be written

mE; = —grad; V(z) for 1 =1,...,n

Here the partial derivative D,V of V with respect to r, i3 a map from M — A to
L(E,R); thenthe inner product on E converts DV (1) to a vector which we call grad,
V{x). The process is similar to the definition of gradient in Chapter 9. Thus the
equations make sense as written.

One may rewrite Newton’s equations in such a way that they become a first
order system on the space of states (M — A) X M:

ii = Uy,
m,—t;,- = —grad, V(rt, for i =..... n.

The flow obtained from this differential equation then determines how a state
moves in time, or the hife history of the n bodies onee their positions and velocitices
are given. Although there is a vast literature of several centuries on these equa-
tions, no clear picture has emerged. In fact it is still not even clear what the basic
questions are for this “problem.”

Some of the questions that have been studied include: Is it true that almost all
states do not lead to collisions? To what extent are periodic solutions stable? How
to show the existence of periodic solutions? How to relate the theory of the n-body
problem to the orbits in the solar system?

Our present goal is simply to put Newton's equations into the framework of
this book and to see how they fit into the more abstract framework of Hamiltonian
mechanics.

We put the n-body problem into a little more general setting. The key ingredients
are:

(1) Configuration space @, an open set in a vector space £ (in the above case
@G=M—Aand E = M).

(2) A C*function K: @ X E — R, kinctic energy, such that K{r, v) has the
form K(r, v) = K,(v, v), where K, is an inner product on E (in the above
case K, was independent of r, but in problems with constraints, K. de-
pends on ).

(3) A C*function V: @ — R, potential energy.

The triple (Q, K, V) is called a simple mechanical system, and ¢ X F the stale
space of the system. Given a simple mechanical system (Q, K, V) the energy or
total cnergy is the function e: @ X E — R defined by e(r, v) = K(r, v) + V(r).

For a simple mechanical system, one can cancnically define a vector field on
@ X K which gives the equations of motion for the states (points of @ X E). We
will sce how this can be done in the next section.
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Examples of simple mechanical systems beside the n-body problem include a
particle moving in a conservative central force field, a harmonic oscillator, and a
frictionless pendulum. If one extends the definition of simple mechanical systems
to permit @ to be a manifold, then a large part of classical mechanics may be
anslvzed in this framework.

§2. Hamiltonian Mechanics

We shall introduce Hamiltonian mechanics from a rather abstract point of
view, and then relate it to the Newtonian point of view. This abstract development
proceeds quite analogously to the modern treatment of gradients using inner
products; now however the inner product is replaced by a “symplectic form.”
So we begin our discussion by defining this kind of form.

If ¥ is a vector space, a symplectic form © on F is a real-valued bilinear form
that is antisymmetrie and nondegenerate. Thus

m:FxXF—-oR

iz a bilinear map that is antisymmetric: Q(u, v) = —0(v, u), and nondegenerate,
which means that the map

$g = . F - F*
is an isomorphism. Here & is the linear map from F to F* defined by
$(u)(v) = Q(u, ), uve F,

It turns out that the existence of a symplectic form on F implies that the di-
mension of F ia even (see the Problems).

We give an example of such a form f on every even dimensional vector space.
If Fis an even dimensional vector space, we may write F in the form F = E X E*,
the Cartesian product of a vector space E and its dual E*. Then an element f of
F is of the form (v, w} where v, w are vectors of E, E*, respectively. Now if f = (v, w),
J° = (¢, u?) are two vectors of F, we define

W, L) = () — w().

Then it is easy to check that &, is a symplectic form on F. The nondegeneracy is
obtained by showing that if @ 0, then one may find 8 such that Q(a, 8) # 0.
Note that , does not depend on a choice of coordinate structure on E, so that it
is natural on E X E*,

If one chooses a basis for E, and uses the induced basis on E*, 1, is expressed
in coordinates by

nﬂ( (U, w)! ('Pr wﬁ)) = E whv — Z we®.
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It can be shown that every symplectic form is of this type for some representa-
tion of F as E X E*.

Now let U be an open subset of a vector space F provided with a symplectic
form . There is a prescription for assigning to any C* function H: U — R, a C,
vector field Xy on U called the Hamiltonian vector field of H. In thia context H is
called a Hemiltonian or a Hamiltonian function. To obtain Xy let DH: U — P*
be the derivative of H and simply write

(n Xu{z) = ¢'DH (1), z€ U,

where $! is the inverse of the isomorphism &: F — F* defined by 1 above. (1) is
equivalent to saying @(Xu (1), ¥y} = DH(z) (y),ally € F. Thus Xg: U = Fisa
C* vector field on U; the differential equations defined by this vector field are
called Hamilton’s equations. By using coordinates we can compare these with what
are called Hamilton’s equations in physics books.

Let {, be the symplectic form on F = E X E* defined above and let

z = (r),..., ) represent points of E and y = (3, ..., ya) points of E* for the
dual coordinate structures on E and E*. Let &,: F — F* be the associated iso-
morphism.

For anv C?* function H: U/ - R,

= aH o oH
DH(2,y) = }:E;dl.-+ }:a—y_dy..
' 1 §

Frow this, one has that &'DH (x, y) 15 the vector with components

Xotay) - (.. 0 _oH )
L ¥ = ayll---iay.J azll---o aZ. -

This is seen as follows. Observe that {suppressing (z, y))
®(Xn) = DH
or
2%(Xy, w) = DH(w) forall «¢€ F.
By letting w range over the standard basis elements of R?*, one confirms the ex-
preasion for X. The differential equation defined by the vector field Xy is then:
. oH
= —
My

oH .
y‘=_5.—r—¢’ t=1,...,n

These are the usual expressions for Hamilton’s equations.

Continuing on the abstract level we obtain the “conservation of energy” theorem.
The reason for calling it by this name is that in the mechanical models described
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in this setting, H plays the role of energy, and the solution curves represent the
motions of states of the system.

Theorem (Conservation of Energy) Let U be an open sel of a veclor space F,
H: U — R any C* function and Q a symplectic form on F. Then H is constant on the
solution curves defined by the veclor field X,

Proof. 1f ¢,(r) is a sclution curve of the vector ficld X, then it has to be shown
that

d
- Hg(r) =0, al zt
dt
This expression by the chain rule is
d
DH{(¢:(x)) (Et 05:(1)) = DH(Xu).

But DH(Xy) is simply, by the definition of Xy, @({Xy, Xy) which is 0 since 0 is
antisymmetrie. This ends the proof.

It is instructive to compare this development with that of a gradient dynamical
svstem. These are the same except for the character of the basic bilinear form
involved; for one system it is an inner product and for the other it is a symplectic
form, The defining function is constant on solution curves for the Hamiltonian
casc, but except at equilibria, it is increasing for the gradient case.

From the point of view of mechanics, the Hamiltonian formulation has the
advantage that the equations of motion are expressed simply and without need
of coordinates, starting just from the energy H. Furthermore, conservation laws
follow easily and naturally, the one we proved being the simplest example. Rather
than pursue this direction however, we turn to the question of relating abstract
Hamiltonian mechanics to the more classical approach to mechanies. We shall see
how the energy of a simple mechanical system can be viewed as a Hamiltonian H;
the differential equations of motion of the system are then given by the vector
ﬁ(‘]d X”.

Thus to & given simple mechanical system (Q, K, V), we will associate a Hamil-
tonian system H: U = R, U C F, @ a symplectic form on F in a natural way.

Reeall that configuration space @ is an open set in & vector space E and that
the state space of the simple mechanical system is @ X E. The space of generalized
momenta or phase space of the system is @ X E* where E* is the dual vector
space of §).

The relation between the state space and the phase space of the system is given
by the Legendre transformation A: Q@ X E — Q X E*. To define ), first define a
linvar isomorphism A,: E -+ E*, for each q € Q, by

M()w = 2K (v, w); veEE, we K
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Then set
Ay, v) = (g, Ag{v)).

Consider the example of a simple mechanical svstem of a partiele with mass m
moving in Euclidean three space E under a conservative force field given by poten-
tial encrgy V. In this case statc space is E X Eand K: E X E =R is given by
Kig,o) =3m v Thenn:EX E—>E X E*is given by A () = p € E*, where
p(w) = 2K, (v, w); or

plw) = m, w) .
and {, ) is the inner product on E. In a Cartesian coordinate system on E, p =
my, 50 that the image p of v under A is indeed the classical momentum, “conjugate”
to v

Returning to our simple mechanical system in general, note that the Legendre
transformation has an inverse, so that \ is a diffeomorphism from the state space
to the phase space. This permits one to transfer the energy function e on state

space to a function H on phase space called the Hamiltonian of a simple mechanical
system. Thus we have

QX EF—2 ) x g

N

H =e=rt

The final step in converting a simple mechanical syvstem to a Hamiltonian system
is to put a symplectic form on F = E X E* D Q X E* = . But we have already
constructed such a form Q in the early part of this section. Using (g, p) for variables
on @ X E* then Hamilton’s equations take the fornt in coordinates

, oi

q.—=a—p—, t=1,...,n,
’ aH "
p,—=—£, i=1...,n

Sinee for a given mechanical system H (interpreted as total energy) is a known
function of p;, g, these are ordinary differentjal equations. The basie assertion of
Hamiltonian mechani®s is that thev describe the motion of the system.

The justification for this assertion is twofold. On one hand, there are many
cases where Hamilton's equations are equivalent to Newton’s; we discuss one
below, On the other hand, there are common physical systems to which Newton's
laws do not directly apply (such as a spinning top), but which fit into the framework
of “simple mechanical systems,” especially if the conliguration space is allowed
to be a surface or higher dimensional manifold. For many such systems, Hamilton's
eauations have been verified experimentally.
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It is meaningless, however, to try to deduce Hamilton's equations from Newton’s
on the abstract level of simple mechanical system (Q, K, V). For there is no
identification of the elements of the “configuration space” @ with any particular
physical or geometrical parameters.

Consider as an example the special case above where K(g, ) =3 T mu? in
Cartesian coordinates. Then m, = pand H(p, ¢} = X (n!/2m,) + V(q}; Hamil-

ton's equations become

P4
P o
Differentiating the first and combining these equations yield
v
1 o e —
m’q’. g )

These are the familiar Newton'’s equations, again, Conversely, Newton's equations
imply Hamilton’s in this case.

PROBLEMS

1. Show that if the vector space F has a symplectic form @ on it, then F has even
dimension. Hint: Give F an inner product {, ) and let A: F — F be the operator
defined by (Az, y) = Q(z, y}. Consider the eigenvectors of A.

2. (Lagrange) Let (@, K, ¥) be a simple mechnnical system and X the associ-
ated Hamiltonian vector field on phase space. Show that (g, 0) is an equi-
librium for Xg if and only if DV{q) = 0; and (g, 0) is a stable equilibrium if
¢ is an isolated minimum of V. {Hint: Use conservation of energy.)

3. Consider the second order differential equation in one variable
£+ f(z) =0,

where f: R = R is Ct and if f(z) = O, then f' (¢} # 0. Describe the orbit struc-
ture of the associated system in the plane

=0
b = —f(z)
when f{z) = 2 — 2. Discuss this phase-portrait in general. (Hint: Consider

Hio) =t + [ f0) &
L]
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and show that H is constant on orbits. The critical points of H are at v = 0,
f(x) =0;use H,, = f(x}, H,, = 1)
4. Consider the equation
¥+ g(z)z + f(x) =0,

when? g{«} > 0, and f is a8 in Problem 3. Describe the phase portrait (the
funetion ¢ may be interpreted as coming from friction in a mechanical problem).

Notes

One {nOdem approach to mechanics is Abraham’s book, Foundations of Mechanics
[l].‘Wmtner’s Analytical Foundations of Celestial Mechanics [25] has a very ex-
tensive treatment of the n-body problem.



Chapter 1 5

Nonautonomous Equations
and Differentiability of Flows

This is a short technical chapter which takes care of some unfinished business
left over from Chapter 8 on fundamental theory. We develop existence, uniqueness,
and continuity of solutions of nonautonomous equations ' = f({, ). Even though
our main emphasis is an autonomous equations, the theory of nonautonomous
lincar cquations £ = A (£)z is needed as a technical device in establishing differenti-
ability of lows. The variational equation along a solution of an autonomous equation
is an equation of this tvpe.

§1. Existence, Uniqueness, and Continuity for Nonautonomous Differen-
tial Equations

Let E be a normed vector space, W C R X E an open set, and f: W — E a con-
tinuous map. Lot (&, ue) € W. A solution to the initial value problem

Jt, 1),
r(l) = ta

I

() £{t)

iz a differentiable curve z(t) in E defined for ¢ in some interval J having the following
properties:

toCJ and r(ty) = uy,
{t, r(¢)) € W, Ity = f(t, (1))
forall ¢ J.
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We call the function f(¢, ) Lipschitz in r if there is a constant K > 0 such that
[f(t) Il) _f(t: I‘l)l S Kl'rl - .l'.'z'

for all (f, r) and (¢, £2) in W,
The fundamental local theorem for nonautonomous equations is:

Theorem 1 Let W CR X E -be open and f: W — E a continuous map that is
Lipschitz tn r, If (£, ) € W, there iz an open interval J containing { and a unique
solution to (1) defined on J.

The proof is the same as that of the fundamental theorem for autonomous equa-
tions (Chapter 8), the extra variable ¢ being inserted where appropriate.

The theorem applies in particular to functions f(¢, £} that are €', or even con-
tinuously differentiable only in r; for such an f is locally Lipschitz in £ (in the
ohvious sense). In particular we can prove:

Theorem 2 Let A:J — L{E) be a continuous map from an open interval J lo the
space of linear operators on E. Let (&, ug) € J X E. Then the tnital value problem

T =As, ozl = u
has & unique solution on all of J.

Proof. It suffices to find a solution on every compact interval; by uniqueness
such solutions can be continued over J. If Jo C J is compact, there is an upper
bound K to the norms of the operators A (), ¢ ¢ Jo. Such an upper bound is a
Lipschitz constant in r for f | Jo X E, and Theorem 1 can be used to prove Theorem
2.

As in the autonomous case, solutions of {1) are continuous with respeet to initial
conditions if f{t, r) is locally Lipschitz in ». We leave the precise formulation and
proof of this fact to the reader.

A different kind of continuity is continuity of solutinns as functions of the date
J(t, ). Thatis, if f: W — E and ¢: W — E are both Lipschitz in r, and | f — g |
is uniformly small, we expect solutions to ' = f(t, r) and ¥’ = g({, ), having the
same initial values, to be close. This is true; in fact we have the following more
precise result,

Theorem 3 Let W C R X E be open and f, g: W — E conlinuous. Suppose that
Jorall ({, 1) € W,
[ f{t, 1) — glt, 7} < e
Let K be a Lipschitz constant in x for (1, £). If r(t, y{l) are solutions to
ro=f(L r),
y' =gt y),
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respectively, on some interval J, and z(to) = y(b), then
€
l2(0) — (O] < g exp(K |t =) ~ 1)

foralit € J.
Proof. Fort€ J we have

20—y = [ [#6) ~y(9)]ds

= f‘ {fis, z(s)) — gle, y(s)} ] ds.
Hence

|2() — y®1 < [ 1706, 2(8)) = 1o, ()| ds
+ [ 116, v(9) = gta, ye)) 1 ds

S[:le(s) —y(s)|d3+j‘:eda.

Let u(8) = | z(t) — »(¢)|- Then

w) S K [ [utw + 5] as

¢ . ! €
L< = {ds.
w(® + 5 5K+Kf“[n(a) +K]
It follows from Gronwall’s inequality {Chapter 8) that
€ €
—- < = Klf— ,
u(t)+K__KexP( { tol)
which yields the theorem.

§2. Differentiability of the Flow of Autonomous Equations

Consider an autonomous differential equation

(1 = f(), W E W open in E,
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Ly
where f is assumed C'. Our aim is to show that the flow
(t, 2} — @{t, 7) = ¢:(x)

defined by (1) is a C" function of two variables, and to identify 3¢/dz.
To this end let %{t) be a particular solution of {1) for ¢ in some open interval
J. Fix t, € J and put y () = yo. For each t € J put

A(t) = Di(y(0));
thus A:J — L(E) is continuous. We define a nonautonomous linear equation
(2) u' = A(u.

This is the variational equation of (1) along the solution y(t).

From Section 1 we know that (2) has a solution on all of J for every initial condi-
tion u{ly) = u.

The significance of (2) is that if u, is small, then the map

t=y(f) + u()

18 a good approximation to the solution x(t) of (1) with initial value x(l) = ys + us.
To make this precise we introduce the following notation. If ¢ € E, let the map

t—ult, £)

be the solution to (2) which sends f to £. If £ and yo + £ € W, let the map
t—y{t, &)

be the solution to (1) which sends & to yo + & (Thus y(¢, £} = ¢wlte + £).)

Proposition Let Jo C J be a compact tnierval containing &,. Then

i [yt &) —y(t) —u(t, O]
11411 =

0
uniformly int € J,.

This means that for every ¢ > 0, there exists § > 0 such that if | £| < 8, then

(3) [yt &) — (@ +uls, )] < |t}

for all t ¢ Jy. Thus as  — 0, the curve t — y(f) 4+ u(t, £) is a better and better
approximation to y(t, ). In many applications y(¢) + u{t, £) is used in place of
¥ (¢, £}; this is convenient because u(4, £) is linear in £.

We will prove the proposition presently, First we use (3) to prove:

Theorem 1 The flow ¢(2, 1) of (1) is C'; that s, 3¢/at and d¢/dx exisi and are
continuous in (I, x).
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Proof. Of course a¢(t, x) /8¢ is just f(¢.(x)), which is continuous. To compute
3¢/dr we have, for small ¢,

The proposition now implies that 8¢(¢, yo) /3r € L{E) is the linear map £ — ufl, £).
The continuity of d¢/d. is a consequence of the continuity in initial conditions and
data of solutions to the variational equation (2).

Denoting the flow again by ¢,(x), we note that for cach ¢ the derivative D¢, (x)
of the map ¢ at & € W is the same as 3¢ (¢, 2) /3. We call this the space derivalive
of the flow, as opposed to the time derivative ag({, z} /0t

The proof of the preceding theorem actually computes De¢.(x) as the solution
to an initial value problem in the vector space L(E): for each z, € W the space
derivative of the flow salisfies

d
7 (Pec(20)) = Df(de(20)) Déu(0), -

Dgo(ro) = 1.
Here we regard ro as a parameter. An important special case is that of an equilibrium
I so that ¢.(£) = £. Putting Df(£) = 4 € L(E), we get

d
ar (D$(£)) = AD¢u(£),

Dgg(E) = I.
The solution to this is
D () = e,

This means that in a neighborhood of an equilibrium the flow is approximately linear.
We now prove the proposition. For simplicity we take £, = 0. The integral equa-
tions satisfied by y(¢, £), ¥(f), and u(¢, £) are

v = v+ [ Jy(a)) da,
0
(68 = vt i+ [ fuls ) ds,
9

ul(t, £)

il

£+ [ DIy s, b ds.

From these we get

(4) gy, &) —ylt) —ult, Bl < f [f(y(s, &) — f(y(s)) — Df(y(s))u(s, £}| ds.
[}
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The Taylor estimate for f says
f(y) _f(Z) = Df(x)(y - Z) +" R(zl ¥ - Z),
limRB(z,y —2)/|y — 2| =0

-y
uniformly in y for ¥ in a given compact set. We apply thisto y = y(s, £), 2z = y(s);
from linearity of Df(y(s)) and (4) we get

5) |yt 8 —u() —ult B} < f | DF(y(s))[wi(s &) — y(s) — u(s, £)] | ds
]

+ [ 1RG®), v b — ys)] ds.
0

Denote the left side of (5) by ¢(t) and put

N = max{||Df(y, 8)||| s € Jo.

Then from (5} we get

(6) g(t) < N fﬁ'(s) ds + f | B(y(s), y(s, &) — y(s))|ds.

0 o
Fix ¢ > 0 and pick & > 0 so small that
(M | B(y(s}, yls, £) — y(8)}| < e y(s, &) ~ yis)]

if fy(s, &) — y(8)| < dpand s € J,.
From Chapter 8, Section 4 there are constants K > 0 and 8, > 0 such that

(8) Ju(s, 8) —y(&)] St <4
if]e] <8 and s € J,
Assume now that | £| < &. From (8), (7), and (8} we find, for ¢ ¢ J,,
) <N 8) ds + £t ek ds,
o) <N [ ot) fa el

whence

g{t)SNfg(s)ds+Ce|E|

for some constant C depending only on K and the length of .J,. Applying Gronwall's
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inequality we obtain
g(t) < Coe™* | |

if t ¢ Joand | £| < 8. (Recall that 8 depends on «) Since ¢ is any positive number,
this shows that g(t)/] § | — 0 uniformly in ¢ € Jo, which proves the proposition.
We show next that the flow enjoys the same degree of differentiability as does
the data.
A function f: W= E is called C*, 1 € r < ® if it has r continuous derivatives.
For r > 2 this is equivalent to: f is C* and Df: W — L(E)} s C. If f is C" for all
r > 1, we say f is C*. We let C* mean ‘‘continucus.”

Theorem 2 Let W C E be open and let f: W —E be €7, 1 £ r < . Then the
flow ¢: @ — E of the differential equalion
7 = f(z)
18 also C*.
Proof. We induct on r, the case r = 1 having been proved in Theorem 1.
We may suppose r < = for the proof.
Suppose, as the inductive hypothesis, that r > 2 and that the flow of every
differential equation
¢ = F(2),
with C~! data F, is Cr.
Consider the differential equation on E X E defined by the vector field

F:WXE-—-EXE, F(z,u)={(z), Df(z)w),

% 5w = P,

or equivalently,
(9) ¢ =f(z), W =Df(n)u

Since F is €1, the flow @ of (9) is C~. But this flow is just
&(t, (z, u)) = (&(¢ z), Dé¢i(z)u},

since the second equation in (9) is the variational equation of the first equation.
Therefore d¢/az is a O~ function of (I, z), since 3¢/dz = D¢,(z). Moreover

/ot is C-' (in fact, C" in t) since
.0
52 = J(4(t 2)).

It follows that ¢ is €+ since ite first partial derivatives are C'.
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PROBLEMS

1, '].A?t..A: R — L(E} be continuous and let #: R — L(E) be the solution to the
initial value problem

P'= AP, P(0) = Pyc L(E).
Show that

Det P(t) = (Det Py) exp [ f e As) da].
a

2. Bhow that if fis C", some r with 0 < r < =, and z(¢) is a solution to 2’ = f(z},
then z is a C™" function.
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Perturbation Theory
and Structural Stability

This chapter is an introduction to the problem: W}.m.t effect does changing th.e
differential equation itself have on the solution? In pz-;rtlcular, we find general (.:()l'.ldl-
tions for equilibria to persist under small perturbations o_f the vector field. Similar
results are found for periedic orbits. Finally, we discuss br‘leﬂy more global problems
of the same type. That is to say, we consider the question: When does the phase
portrait itself persist under perturbations of the vector field? This is the problem of
structural stability.

§1. Persistence of Equilibria

Let W be an open set in a veetor space E and f: W — Ea O .vector ﬁe_ld. By a
perturbation of f we simply mean another €' vector field on W which we think of as
being “C! elose to f,” that is,

|f(x) —g(z)| and  [[ Df(z) — Dg(z)|
are smali for all 2 ¢ W,
To make this more precise, let V(W) be the set of all C' veetor fields on W. If

E has 2 norm, we define the (-norm || k ||1 of a vector field k € T(W) to be the
least upper hound of all the numbers

PhiD)], [ DR(DI;  re W,

Wo allow the possibility || A1), = = if these numbers are unbounded.
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A neighborkood of f € V(W) is any subset 3 C V(W) that contains a set, of the

form
lg€CW) g ~rlh < e

for some ¢« > 0 and some norm on E.

The set V(W) has the formal properties of a vector space under the usual opera-
tions of addition and scalar multiplication of vector-valued functions. The €* norm
hag many of the same formal propertics as the norms for vector spaces defined
earlier, namely,

[l >0,
Halh=0 ifandonlyif & =0,
He+glls <l aih+ilglh

where if || & ]}, or [| ¢ ||; is infinite, the obvious interpretation is made.
We can now state our first perturbation theorem.

Theorem 1 Lel f: W — E be a C? vector fielZ and £ ¢ W an equtlibrium of »' =
J(z) such that Df(£) € L(E)} is tnvertible. Then there erists neighborhood U C W
of & and a neighborhood T C V(W) of § such that Jor any g € < there is a unique
equiltbrium § € U of 3 = g(y). Moreover, if E 1z normed, for any ¢ > 0 we can
choose M so that | § — £ | < e

Theorem 1 applies to the special case where # is a hyperbolic equilibrium, that
is, the cigenvalues of Df{#) have nonzero real parts. In this case, the inder ind ()
of £is the number of cigenvalues (counting multiplicities) of Df(£) having ncgative
real parts. If dim £ = n, then ind(£) = n means £ is a sink, while ind(£) = 0
means it is & source. We can sharpen Theorem 1 as follows:

Theorem 2 Suppose thal £ is a hyperbolic equilibrium. In Theorem 1, then, ;M
U can be chosen so that if g € 9, the unique equilibrium § € U of y = g(y) s hyper-
bolic and has the same inder as 7.

Proof. This follows from a theorem in Chapter 7 and Theorem 1.

The proof of Theorem 1 has nothing to do with differential equations; rather, it
depends on the following result about €t mMaps:

Proposition lLetf: W — Ebe Ct and suppose £o ¢ W is such that the linear operator
Df(ro): E— E 15 invertible. Then there is a netghborhood M C V(W) of f and an
open set U C W containing re such that if g ¢ W, then

(a) g | is one-to-one, and

{(b)  fire) € g(U).
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Theorem 1 follows by taking z, = # and f(2) = 0, for then g(#) = 0 for a unique
g€ U. To make | j — £ | < ¢ (assuming E is normed now) we simply replace W
by Wo = {r€ W||z— | <e]. The proposition guarantees that R can be
chosen so that U, and hence §, is in W, for any ¢ € M.

It remains to prove the proposition. In the following lemmas we keep the same
notation.

Lemma 1 Assume E is normed. Let

» > || Df (zo)~* |I.
Let V. C W be an open ball around zo such that
(1) 1D~ i< »,
and
(2 | Df(y) — Df(2}]| < 1/»

forally,z € V. Then | V is one-to-one.
Proof. 1 y € V and u € E is nonzero, then
u = Df(y) M (Df(y)w);

hence
[u] < || DF( || | Dfwu |,
80, from (1),
|ul
(3} | Df(y) (w)| > —.

Now let y, z be distinct points of V with z = ¥ + . Note that since V is a ball,
¥+ tu € Vfor all £ € [0, 1]. Define a C* map ¢: {0, 1]— E by

e(t) = fly + tu).
Then
e(0) = f(y), (1) =f(2).
By the chain rule,
¢ () = Df(y + tu)u.

Hence

1
1) ~ ft9) = [ Dty + wyu e

- fll).l"(l,f)udt+f1 [(Df(y + tu) — Df(y) Ju dt.
L] L]
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Therefore

i
|5) = i 2 | Dftwu | = [ I Dfty + tw) = DI | w | dt.

From (3) and (2) we then get

1) — s > e Tel g

»

Thus f(y) # f(2). This proves Lemma 1.

Lemma 2 Suppose E is @ normed vector space with norm defined by an inner product.
Let B C W be a closed ball around z, with boundary 3B, and : W — E a " map.
Suppose Df(y) is invertible for all y € B. Let

min{| f{y) — f(ze)i|y € 4B} > 28 > 0.
Then w € f(B) if | w — f(ze)] < 6.
Proof. Since B is compact, there exists ¥, € B at which the function
H.B—R,
Hy) =3if(y) —wp
takes & minimal value. Note that y, cannot be in 8B, for if ¥ € aB, then

1f) —w| 2 1 f(¥) — f(&)| = | f(z0) — w]

, > 2 — 8.
Hence

1f) —wl| >8> |flee) —wl,
showing that | f(y} — w| is not minimal if y ¢ 3B.
Since the norm on E comes from an inner product, } | z |* is differentiable; its

derivative at z is the linear map z — {z, z). By the chain rule, H is differentiable
and its derivative at y, is the linear map

2= DH(yo}z = {f(ye) ~ w, Df(yo)z).

Bince y, is a critical point of H and y in an interior point of B, DH {ye) = 0.
Since Df(y.} is invertible, there exists v € E with

Df(yelv = Flyy) — w.

Then
0 = DH (yo)v
= (f(yﬂ) - w, f(yﬂ) - w>
= [f{p) —w .

Therefore f(y) = w, proving Lemma 2.
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Note that the proof actually shows that
w€ f{B — aB).

To prove the proposition we give E & norm coming from an inner product. The
subset of invertible operators in the vector space L(E} is open. Therefore there
exists @ > 0 such that A € L(E) ia invertible if

| A — Df(xo)|l < e

Since the map r — Df(r) is continuous, there is a neighborhood N, C W of xo
such that if z € Ny, then

I} Df(z) — Df(zc)|| < e
1t follows that if g € U(W) is such that
li Dg(z) — Df(2)|| < de

forall r € N, then Dg(z) isinvertible for all z € Ny, The set of such ¢ is a neighbor-
hood 9, of f. .

Let » > |1 Df(re)~! ||. The map 4 — A~! from invertible operators to L(E), is
continuous (use the formula in Appendix I for the inverse of a matrix). It follows
thal { hus a neighborhood 93 C 9, and 1, has a neighborhood N, C N, such that
if g ¢ 9y and y £ ¥y, then

[| Dg(y)~" || < ».

We can find still smaller neighborhoods, s C M, of £ and Nz C Ny of re, such that
if g € 9 and y, z € Ny, then

1
Il Dgly) — Dg(z}]| < ~

It s follows from Lemma | that for any ball V.C N and any g € My, ¢ | V 18 one-to-
O

Fix & ball ¥V ¢ N, around 2, Let B C V be a closed ball around z and choose
& > 0 asin Lemma 2. There is a neighborhood 3 C St of f such that if ¢ € 9, then

min{| g(y) — ¢(x)| |y € 8B} > 26 > 0.
It follows that if | w — g(x}| < & and g € 9, then w € g{B). The proposition is
now proved using this @ and taking U = V.

We have not discussed the important topic of nonautonomous per.turbatic?ns.
Problem 2 shows that in a certain sense the basin of attraction of a sink persists
under small nonautonomous perturbations.

§2. PERSISTENCE OF CLOSED ORBITS 309

PROBLEMS

1. SBhow that the stable and unstable manifolds of 8 hyperbolic equilibrium of a
linear differential equation ' = Ar vary continuously with linear perturbations
of A € L(E). That is, suppose E* @ E* is the invariant splitting of E such
that £t4: Ev — E* is an expanding linear flow and e*4: E* — E* is contracting.
Given ¢ > 0, there exists § > 0 such that if || B — A || < §, then B leaves
invariant a splitting F* @ F* of £ such that &2 | F is expanding, '8 | F* is
contracting, and there is a linear 1somorphism T': E — E such that T(E+) =
Fo, T(E) = Foand ||T —1'|] <e

2. Let W C R~ be an open set and 0 € W an asvmptotically stable equilibrium
of a C" vector field f: W — R~ Assume that 0 has a strict Liapunov function. -
Then 0 has a neighborhood W, C W with the following property. For any
€ > 0 there exists § > 0 such that if g: R X W—R is (" and |g{{, z) —
f(r)] < &for all (¢, z}, then every solution x (1) to ' = g{i, 2) with x(4) ¢ W
satisfies x(t) € W for all ¢t = & and | £(#)| < e for all ¢ greater than some ¢,.
(Hint: If V is a strict Liapunov function for 0, then (d/d) {(V{x(1)) is close
to (d/dt) (V{y(t)), where y' = f(y). Hence (d/dt)(V{x(8)) <O if |x(t)} is
not too small. Imitate the proof of Liapunov's theorem.)

§2. Persistence of Closed Orbits

In this section we consider a dynamical system ¢, defined by a €' vector field
f: W — E where W C E is an open set. We suppose that there is a closed orbit

¥ C W of period X > 0. For convenience we assume the origin 0 € E is in y. The
main result is:

Theorem 1 Let u: Sy — 8 be g Potncaré map for a local section Sat 0. Let U C W
be a neighborhood of v. Suppose that 1 is not an eigenvalue of Du(0). Then there exists
a neighborhood U C V(W) of f such that every vector field g € T has a closed orbit
BCU.

The condition on the Poincaré map in Theorem I is equivalent to the condition
that the eigenvalue 1 of D¢, (0) has multiplicity 1. Unfortunately, no equivalent
condition on the vector field f 15 known.

Proof of the theorem. Let r: S, — R be the C* map such that »(0) = X and

u(z) = ¢!(s)(3)-



310 16. PERTURBATION THEORY AND STRUCTURAL STABILITY

We may assume that the closure of S; is a compact subset of S. Let @ > 0. There
exists 6; > 0 such that if ¢ ¢ (W) and | g(2) — f(2}| < & for all z € §,, then,
first, S will be a local section at O for g, and second, there is a C* map o: 5, =R
such that

oz} ~ 7(2)| < &,

#’v(x)(‘r) € S’
and
| wc(x) (1) - u(.t)l < o,

where . is the flow of g.
Put )
"’r(:){x) = v(&).
Then

v: §— 8§

15 a {7 map which is a kind of Poincaré map for the flow ¥..
Given any f, > 0 and any compact set X C W, and any » > 0 we can ensure
that
[| Dei(ry — D(2)]| < »

forallt € [—f &), r € K, provided we make {| g — f ||: amall enough. This fqllpws
from continuity of solutions of differential equations as functions of the original
data and initial conditions and the expression of 3¢.(z)/dz as solutions of the
nonautonomous equation in L{E),

W o Deu®)A®,
dt
where ' = g{y}. {See Chapter 15.)
From this one can show that provided || ¢ — f|[: is small enough, one can make
fulsy = vir)]| and |} Du(z) — Dv(x)|| s small as desired for all r € S,
A fixed point r = v{z) of ¢ lies on a closed orbit of the flow ¢,. We view such a
fixed point as a zero of the C! map

n: Sp -+ H, n(r) =v(r) —r,

where H is the hyperplane containing S.
Let t: So — H be the C" map

t{z}) = ul(z) — x
so that £(0) = 0. Now
DE{(0) = Du(0) — I,

where I: i —» H is the identity. Since 1 is not an eigenvalue of Du((}) we know
that 0 is not an eigenvalue of D{(0), that is, DE(0) ta tnvertible. From the proposi-
tion in the preceding section we can find a neighborhood 9 C U(S,) of £ such that
any map MW has a unique zeroy 8, I | | g = f| |, is sufficiently small, y € 9.
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Henee 5 has a unique zero y € 8,; and y lies on a closed orbit B of g. Moreover, we
ean make y so close to 0 that 8 C U/, This proves Theorem 1.

The question of the uniqueness of the closed orbit of the perturbation is interest-
ing. It is not necessarily unique; in fact, it is possible that all points of U lie on
closed orbits of f! But it is true that closed orbits other than ¥ will have periods
much bigger than y. In fact, given € > 0, there exists § > 0 so small that if 0 <
d{z, v) < & and ¢,(r) = r, 1> 0, then t > 2\ — e. The same will hold true for
sufficiently small perturbations of v: the fixed point y of v that we found above
lies on a elosed orbit 8 of g whose period is within « of A; while any other closed orbit
of ¢ that mects S, will have to circle around 8 several times before it closes up. This
follows from the relation of closed orbits to the sections; see Fi ig. A,

FIG. A. A closed orbit 8' near a hyperbulic clased nrbit 8.

There is one special case where the uniqueness of the closed orbit of the perturba-
tion can be guaranteed: if v is & periodic attractor and g is sufficiently close to f,
then g8 will also be a periodic attractor; hence every trajectory that comes near 8
winds eloser and closer to # as t — «© and s0 cannot be a closed orbit.

Similarly, if v is a periodic repeller, 50 is 8, and again unigueness holds.

Consider next the ease where v is a Ayperbolic closed orbil. This means that the
derivative at 0 € y of the Poincaré map has no eigenvalues of absolute value 1, In
this case a weaker kind of uniqueness obtains: there is a neighborhood V (C U/ of
¥ such that if M is small enough, every ¢ € 2 will have a unique closed orbit that
ts entirely contained in V. It is possible, however, for every neighborhood of a hyper-
bolic closed orbit to interscct other closed orbits, although this is hard to picture.

We now state without proof an important approximation result. Let B C R~
be a closed ball and 3B its boundary sphere.

Theorem 2 Lot W C R" be an open set confaining B and f: W o R* a C vector
JSield which is (ransverse to OB at every point of 8. Let ;T C U (W) be any neighborhood
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of f. Then there exists g € N such that:

(a) if ¥ € B 1is an equilibrium of g, then & iz hyperbolic;
(b) #f v C B is a closed orbil of g, then ¥ is hyperbolic.

The condition that f be transverse to 4B is not actually necessary, and in fact, B
can be replaced by any compact subset of W.

PROBLEMS

1. Show that the eigenvalue condition in the main theorem of this section
is necessary.

2. Let v be a periodic attractor of 2’ = f(z). Show there i3 a (" real-valued
function V(#) on a neighborhood of v such that V > 0, V-1(0) = v, and
(d/dty (V(x(t)) < 0 if £{t) is a solution curve not in y. (Hini: Let 2(¢) be
the solution eurve in v such that x(f) — 2(f} = 0 as £t — o ; see Chapter 13,
Section 1, Theorem 3. Consider f{ } 2(8) — z(1)}* dt for some large constant T.)

3. Let I (C R be open and let ¥ be a periodie attractor for 8 € vector field f; W -
R Show that ¥ has a neighborhood {7 with the following property. For any
¢ > 0 there exists 8 > 0 such that if g: R X W R~ is (" and |g({, z) —~
frry| < 8, then every solution r{t) to ' = g(t, ) with r(f) € U satisfies
sifr 2 Uforallt > tgand d(x(1), ) < e for all { greater than some ¢,. (Hint:
Problem 2, and Problem 2 of Section 1.)

§3. Structural Stability

In the previous sections we saw that certain features of a flow may be preserved
under small perturbations. Thus if & flow has a sink or attractor, any nearby flow
will have a nearby sink; similarly, for periodic attractors.

It sometimes happens that any nearby flow is topologically the same as a given
flow, that is, for any sufficiently small perturbation of the flow, a homeomorphism
exists that carries each trajectory of the original flow onto a trajectory of the per-
turbation. (A homeomorphism is simply a continuous map, having a continuous
inverse.) Such a homeomorphism sets up a one-to-one correspondence between
equilibria of the two flows, closed orbits, and so on. In this case the original flow
(or 1ts vector field) is called structurally stable.

Here is the precise definition of structural stability, at least in the restricted
setting of vector fields which point in on the unit disk (or ball) in R*~. Let

Dr=fze Rz <1)
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and
gD~ = fr € R} | z| = 1].

Consider C' vector fields f: W — R~ defined on some open set W containing D=
such that {(f(z), z) < 0 for each z in 4D~ Such an [ is called structurally stable on
Dr if there exists a neighborhood 9 (C V(W) such that if g: W — R~ is in ,, then
flows of f and ¢ are topologically equivalent on D", This means there exists a homeo-
morphism A: D* — D= such that for each = € D=,

A(fodD) | £ 2 0}) = Wlh(z)}t 2> 0},

where ¥, is the flow of ¢; and if z is not an equilibrium, & preserves the orientation
of the trajectory. (The orientation of the trajectory is simply the direction that
peints move along the curve as ¢ increases.)

This is & very strong condition on a vector field. It means that the flow ¢, can-
not have any “‘exceptional” dynatnical features in D=, For exampte, it can be shown
that if £ € int D" is an equilibrium, then it must be hyperbolic; the basic reason
is that linear flows with such equilibria are generic.

The harmonic oscillator illustrates the necessity of this condition as follows.
Suppose that f: W — R?, with W D D?, is a vector ficld which in some neighborhood

of 0 is given by
0 1
2’ = Az, A= [ ]
-1 0

By arbitrary slight perturbation, the matrix 4 can be changed to make the origin
either a sink, saddle, or source. Since these have different dynamic bebavior, the
flows are not topologically the same. Hence £ is not strueturally stable. In contrast.
it is known that the Van der Pol oscillator is structurally stuble.

The following is the main result of this section. It gives an example of a class of
structurally stable systems. (See Fig. A.)

FIG. A. A structurslly siable vector field.
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Theorem 1 Let f: W — R~ be a (" veclor field on an open set W O D with the
Jollowing properties:

{a) [ kes eractly one equilibrium 0 € D*, and G 13 a sink;
th)  f peints inward along the boundary 8D of D», thal is,

ey, ry <@ if re¢ abm

(¢} limig ¢y = 0 forall £ € D", where ¢, i3 the flow of f.
Then f is structurally stable on D,

Before proving this we mention three other results on structural stability. These
concern a (' veetor field f: W — R? where W C R? is a neighborhood of D? The
first is from the original paper on structural stability by Pontryagin and Andronov.

Theorem 2 Suppose [ points tnward on DA Then the following conditions taken
together are equiralent to structural stability on DY:

{(a)  the rquilibria 7n D® are hyperbolic;

thy  cach closed orbit in D? is either a periodic attraclor or a periodic repeller (that
ts, a pertodie altractor for the veclor field —f(x));

ie) o trajectory in D? goes from saddle to saddle.

The necessity of the third condition is shown by breaking a saddle connection
as in Fig. B{a) by an approximation as in Fig. B{(b).

A good deal of force is given to Theorem 2 by the following result of Peixoto;
it implies that structural stability on [? is a generie condition. Let Vy(W) be the
set of €' vector fields on W that point inward on aD?.

Theorem 3 The set
§ = |f € UV (W)| fis structurally stable on D?}

1s dense and open. That 1s, every element of § has a neighborhood in Vo(W) contained
in §, and every open set in Vo(W) contains a veclor field which is structurally stable
on D#

Unfortunately, it has been shown that there ean be no analogue of Theorem 3
for dimensions greater than 2. Nevertheless, there are many interesting vector
fields that are structurally stable, and the subject continues to inspire a lot of
research.

In the important case of gradient dvnamical systems, there is an analogue of
Theorem 3 for higher dimensions as follows. Consider in V(D) the set grad{D")
of gradient vector fields that point inward on D~
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FIGi. B. (a) Flow near a saddle conunection; (b} breaking a saddle connection.

Theorem 4 The sel of structurally stable sysiems contained in grad (D*) is open
and dense in grad (Dn).

We turn to the proof of Theorem 1. In outline it proceeds as follows. A vector
field ¢ sufficiently close to f is shown to have a unique equilibrium a € D* near
0; moreover, all trajectories of g in D" tend toward a. Once this is known, the homeo-
morphism h: D~ — D~ is defined to be the identity on 3D®; for each 7 € aD it
maps the f-trajectory of z onto the g-trajectory of z preserving the parametrization;
and #(0) = a.

The proof is based on the following result which is integesting in itself. In Section
1 we showed the persistence of a hyperbolic equilibrium under small perturbations.
In the special case of a sink we have a sharper result showing that the basin of
attraction retains a certain size under perturbation.
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Proposition  Lel 0 € E be a sink for o (7 veclor field f: W — E where W is an open
set condaining 0. There exists an inner product on E, a number r > 0, and a neighbor-
hood 30 C C{W) of f such that the following holds: for each g € 9 there is g stnk a =
alg) for g such thal the sel

B.=[zcE[|r| <)
contains a, is in the basin of a, end is posilively invariant under the flow of g.

Proof. From Chapter 9 we give £ an inner product with the following property.
For some » < 0 and 2r > 0 it is true that ’

U, ) <vlz

if 0 <1 r| <2 It fullows that B, is in the basin of 0, and that f{z) points inward
along ¢8It is elear that f has a neighborhood 3, C V(W) such that if ¢ € 92,
then alo gir) points inward along 98,.

Fovo e ramd puts = ¢+ e I fy | < e, then the closed balt B,(y) about y
with rhins s satistios:

Br C B.(y) C Birn

Let v <y < 1. We assert that if || g — f |, is sufficiently small, then the sink a
of ¢ will be in B,, and moreover,

(1) ),z —a)<plz—al

if r € B,(a). To see this, write

Jlz—al,x—a)+ {g{z) - f(x — a), z — a)
<viz—al+ (g(z) —flz—a), z - a).

The map alr) = g(r) — f(r — a) vanishes at a. The norm of its derivative at z is
estimated thus:

it Dal(z)]| < || Dglz) — Df(D)|| + || Df(z) — Df(z — a)j);

as || g — [ —0, || Dg(x) — Df(z)|] — 0 uniformly for | z| < 2r; and also z —
a— 0, so || Df(x) — Df(z — a)|| — 0 uniformly for |z | < 2r. Thus if || g — f||,
is small enough, || Da{z)|| < 4 — », and u — » is a Lipschitz constant for a; hence

la{z}| = [a(z) ~a(@)] < (b —»)]2-~al.
Consequently, if {[ ¢ — f||, is sufficiently small, say, less than 4 > 0,
), r—a)<vlz—aP+ (a(z), z — a)

Srvlz—alP+{u—w)|z—al

(g{r), £ — a)

ulz—af
as required.

Put 90 = g € V(W)Y || g — f|l. < 3}, and set | = Ny N I, Suppose g € X,
with sink a ¢ B, By (1) the set B,(a) is in the basin of a. Since B, C B.(a), and
¢(x) points inward along 8B,, the proof is complete.

§3. STAUCTURAL BTABILITY 317

We now prove Theorem 1. Since D~ is compact and f(z) points inward along the
boundary, no solution curve can leave D*. Hence D is positively invariant. Choose
r > 0 and ;L C V(W) as in the proposition. Let %y C M be a neighborhood of f
80 small that if g € M, then g(z) points inward along 30", Let ¢, be the flow of
g € M. Note that D is also positively invariant for ¢..

For every r € D" — int B,, th=re is a neighborhood U/, C W of zand 4, > 0
such that if y € U, and t > ¢, then

| @) <r.
By compactness of 3D~ & finite number U,,, . .., U., of the sets U, cover aD". Put
to = maxfl:,, ..., L,}.

Then ¢,(D* — int B,) C B,, if t > . It follows from continuity of the flow in f
(Chapter 15) that f has a neighborhood M, C 3 such that if ¢ € 9, then
W, (D" — int B,) C B, if 12t
This implies that
lim ¢,(z) = a forsall r¢ D~

i+o

Forletz D";theny = g,o(x) B.,andB, C basin of a under ,.

It also implies that evervy D" — a is of the form , (x) for some »  dD" and
t = 0. For otherwise L,(y) is not empty : but if 2 L,{y). then ¢,(2) — g as{ — =,
hencey = a.

Fix g € 9,. We have proved so far that the map

¥: [0, ©) X D= D~,
‘I’(tr I) = "‘1(1‘)
has D* — a for its image. And the map
$:[0, ®) X 9D~ — D,
*(z, ) = ¢.(2)
has D* — 0 as its image. We define
h: D~ — D~
e (y) if y#=0,
aw) = | .
if y=0

Another way of saying this is that & maps ¢.(2) to y.(z) for z € D", { > 0, and
h{0} = ga; therefore h maps trajectories of ¢ to trajectories of ¢, preserving orienta-
tion. Clearly, A(D*) = D~ The continuity of 4 is verified from continuity of the
flows, and by reversing the role of the flow and its perturbation one obtains a con-



318 16. PERTURBATION THEORY AND STRUCTURAL STABILITY

tinuous iaverse to k. Thus A is & homeomorphism; the proof of Theorem 1
is complete.

PROBLEMS

1. Show that if f: R* — R? is structurally stable on D? and f(0) = 0, then 0 is &
hivperbolie equilibrium.

2. Let v C R, 2> 2 be the circle
y={reR |+ 22=4, 20 =0 for k> 2]

Lt
N ={zecR|dlz,4) <1}

Let W C R" be a neighborhood of ¥ and f: W — R~ & C! vector field. Suppose
f(r} points into N for all zin aV = [z € R*|d(r, v) = 1}. If v is a periodic
attractor and y = L,(r) for all z € N, prove that f is structurally stable on
N. (8Bee Fig, Cforn = 3.)

FIG.C

3. H [ € V(W) is structurally stable on D* C R", show that f has a neighborhood
M such that every g € 9 is structurally stable.

4. Show that Theorem 1 ¢an be sharpened as follows. For every ¢ > 0 there is a
neighborhood 9t of f such that if g € 9 the homeomorphism £ (in the definition
of structural stability) can be chosen so that { h(z) — z| < ¢ for all z € D~

5. Find necessary and sufficient conditions that a vector field f: R — R be strue-
turally stable on a compact interval.

6. Let A be an operator on R" such that the linear flow e'4 is hyperbolic. Find
¢ > 0 such that if B is an operator on R" satisfying || B — A || < ¢, then there
1= a homeomorphism of R ontc itself that takes each trajectory of the dif-
ferentinl equation r° = Ar onto a trajectory of ¥ = By.

Afterword

This book is only an introduction to the subject of dvnamical svstems. To pro-
ceed further requires the treatment of differential equations on manifolds; and
the formidable complications arising from infinitely many closed orbits must be
faced.

This is not the place to develop the theory of manifolds, but we ean try to indi-
cate their use in dvnamical systems. The surface S of the unit ball in R? is an exam-
ple of the two-dimensional manifold. A vector field on R* might be tangent to S
at all points of S;if it is, then 8 is invariant under the flow. In this way we get an
cxample of a dynamical system on the manifold S (sece Fig. A).

The compactness of 8 implies that solution curves of such a system are defined
for all ¢ ¢ R. This is in fact true for all flows on compact manifolds, and is one
reason for the introduction of manifolds.

Manifolds arise quite naturally in mechanies. Consider for example a simple
mechanical system as in Chapter 14. There is the Hamiltenian function #: I/ - R,
where ¥/ is an open subset of & vector space. The “‘conservation of energy” theorem
states that H is constant on trajectories. Another way of saying the same thing
is that if H(x) = ¢, then the whole trajectory of z lies in the subset H'(¢). For
“‘most’’ values of ¢ this subset is a submanifold of U/, just as the sphere S in R? can
be viewed as H-1(1) where H(z, y, z) = 2* + y* + 2. The dimension of H'(¢}
13 one less than that of U, Other first integrals cut down the dimension even further.
In the planar Kepler problem, for example, the state space is originally an open
subset U/ of R*. The flow conserves both total energy H and angular momentum
h. For all values of ¢, d the subset {z € "] H{z) = ¢, h(z) = d} is a manifold
that is invariant under the flow,

Manifolds also arise in mechanical problems with constraints. A pendulum in
three dimensions has a configuration space consisting of the 2-sphere S, and its
state space is the manifold of tangent vectors to 8. The configuration space of a
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FIG. A. A vector field tangent to S.

0

rigid body with one point fixed is o compact three-dimensional manifold, the set
of rotations of Euclidean three space.

The topology (global structure) of a manifold plays an important role in the
analysis of dynamical systems on the manifold. For example, a dynamical system
on the two sphere S must have an equilibrium; this can be proved using the
Poincaré-Bendixson theorem.

The mathematical treatment of electrical circuit theory can be extended if mani-
folds are used. The very restrictive special hypothesis in Chapter 10 was made in
order to avoid manifolds. That hypothesiz is that the physical states of a circuit
fohexing Wirchhof’s and generalized Ohm’s laws) can be parametrized by the
inductor currents and capacitor voltages. This converts the flow on the space of
physical states into a flow on a vector space. Unfortunately this assumption ex-
cludes many circuits. The more general theory simply deals with the flow directly
on the space of physical states, which is 2 manifold under “generic” hypotheses
on the eircuit,

Manifolds enter into differential equations in another way. The set of points
whose trajectories tend to a given hyperbolic equilibrium form a submanifold called
the stable wanifold of the equilibrium. These submanifolds arc o key to any deep
global understanding of dynamical systems.

Our analysis of the long-term behavior of trajectories has been limited to the
simplest kinds of imit, sets, equilibria and closed orbits. 'or some types of systems
these are essentially all that can oceur, for example gradient flows and planar sys-
tems. But to achieve any kind of general picture in dimensions higher than two, one
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must confront limit sets which can be extremely complicated, even for structurally
stable systems. It can happen that a compact region contains infinitely many
pericdie solutions with periods approaching infinity. Poincaré was dismayed by
his discovery that this could happen even in the Newtonian three-body problem,
and expressed despair of comprehending such a phenomenon.

In spite of the prevalence of such systems it is not easv to prove their existence,
and we cannot go into details here. But to give some idea of how they arise in ap-
parently simple situations, we indicate in Iig. B a discrete dynamical system in
the plane. Here the rectangle ABCD is sent tu its image A'B'C’D’ in the most
obvious way by a diffeomorphism f of R?; thus fi4) = 4’, and so on. It can be
shown that f will have infinitely many periodic points, and that this property is
preserved by perturbations. (A point p is periodic if f*(p) = p for some n > 0.)
Considering R? as embedded in R?, one can construct a flow in R? transverse to R?
whose time one map leaves R? invariant and is just the diffeomorphism fin R? Such
a flow has closed orbits through the periodic points of f.

¢ . ’ ’

A -4 c o

—

N

FIG. B

In spite of Poincaré’s discouragement there has been much progress in recent
years in understanding the global behavior of fairly general types of dynamieal
systems, including those exhibiting arbitrarily long elosed orbits, On the other
hand, we are far from a clear picture of the subjeet and many interesting problems
are unsolved.

The following books are recommended to the reader who wishes to see how the
subject of dynamical systems has developed in recent years. They represent a good
cross section of current research: Proceedings of Symposia in Pure Mathematics

Volume X1V, Global Analysis [3] and Dynamical Systems [19]. See also Nitecki's —

Differentiable Dynamics [187].
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Elementary Facts

Thix appendix collects various elementary facts that most readers will have
seen before.

1. Set Theoretic Conventions

We use extensively maps, or functions, from one set X to another ¥, which we
write
1
[ XY or X—-Y.

Thus the map f assigns to each element z € X (that is, z belongs to X') an element
f(r) = y of ¥. In this case we often write r — y or £ — f(x). The identity map
1t X — X is defined by 1(z) = z and if @ is a subset of X, @ C X, the inclusion
map a: Q@ — X isdefined by a{g) = ¢. If f: X —» Y, and ¢: ¥ — Z are two maps,
the composition g © f (or sometimes written gf) is defined by g » f(z) = g(f(2)).
The map f: X — V is said to be one-to-one if whenever r, ' € X, & # £, then
Siry = fur'y. The image of fis the set described as

Imf=1{ye Y|y =/f(z),somez¢ X}

Then fis onte if Im f = Y. An inverse g {or f') of fis a map g: ¥ — X such that
g * f1s the identity map on X and f » g is the identity on Y. If the image of fis
Y and f is one to one, then § has an inverse and conversely.

Iff: X — Yisamapand Q C X, then f | Q: @ — Y denotes the restriction of
froQsof] Q) = jlg).
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We frequently use the summation sign:

n
Ta=n+n+ -+ 1,
sl
where the r, are elements of a vector space. If there is not much ambiguity, the
limits are omitted:
Yr=xn+ -+ I

2. Complex Numbers

We recall the elements of complex numbers C. We are not interested in complex
analysis in itself; but sometimes the use of complex numbers simplifies the study
of real differential equations.

The set of complex numbers € is the Cartesian plane R? considered as a vector
space, together with a product operation,

Let i be the complex number ¢ = (0, 1) in coordinates on R Then every complex
number z can be written uniquely in the form z = x 4 iy where x, y are real num-
bers. Complex numbers are added as elements of R%, s0if 2 = x + 1y, 2" = ' + 1y,
thenz + 2 = (r 4+ £') + iy + ¥'}: the rules of addition carry over from R? to C.

Multiplication of complex numbers is defined as follows: if z = r + 1y and
2= + iy, then 22" = (zr' — yy') + i(zy’ + r'y). Note that # = —1 (or
“4i = +/—1") withthisdefinition of product and this fact is an aid to remembering
the product definition. The reader may check the following properties of multi-
plication:

(ay z2' = 2’2

(b) (22')2" = z{z'z").

{(¢) lz=2z(herel =14 ¢-0).
(d) Ifz = xr + 2y is not 0, then

4y

2 =227 = 1, where z7!

(e) I zisreal (thatis, z = z + i-0), then multiplication by z coincides with
scalar multiplication in R If z and 2’ are both real, complex multiplication
specializes to ordinary multiplication.

) +z2w=2z2w+swezz weC

The compler conjugate of a complex number z = r + iy is the complex number
z = r — 7y. Thus conjugation is a map o: C — C, o(z) = 2 which has as its set
of fixed points the real numbers; that is to say z = z if and only if 2 is real. Simple
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prupertics of eonjugation are:

z

=g,
+) =242,
22’ = B
The absolute value of a complex number z = ¢ + iy is

2] = (a0 = (2 4 yiyn,
Then
lz] =0 if and only if z =0
lz+2 <2+ 2],
(22" [ =]z]{z"],
and | z | is the ordinary absolute value if z is real.
Suppose a complex number z has absolute value 1. Then on R? it is on the unit

circle {deseribed by 2? + y? = 1) and thereis a @ € R such that z = cos 8 + 1 sin 4.
We define the symbol e* by

]

e? = cos P 4 {siné,
e¢+ib = ggih
This use of the exponential symbol can be justified by showing that it is con-
sistent with a convergent power serirs representation of er. Here one takes the
power serics of ¢*** as one does for ordinary real exponentials; thus

en+ib = f: M .
— n!
One ean operate with complex exponentials by the same rules as for real ex-

ponentials.

3. Determinants

One may find a good account of determinants in Lang’s Second Course in Caleulus.
[12]. Here we just write down a couple of faets that are useful.

First we give a general expression for a determinant. Let A = [a,;] be the
t% X n}d watrix whose entry in the ith row and jth column is a,;, Denote by 4,
the on — 1) X (2 — 1) matrix obtained by deleting the ith row and jth column.

Then if s a fixed integer, 1 < ¢ < n, the determinant satisfies

Det 4 = (=1)™ay; Det Ay + --- + (—1)"*na,, Det A,,.
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Thus the expression on the right does not depend on { and furthermore gives a
way of finding (or defining) Det A inductively. The determinant of a8 2 X 2 matrix
[¢#)isad — be. For a 3 X 3 matrix

an Gz o
A={a;]=|0n 6n on{,
4y Gz dua
one obtains

an Oon G On an On
Det (4} = au Det [ :I —ay Det [ ' ] + a1 Det [ ]
dyp dn d3; aa dn dxn

Recall that if Det A = 0, then A has an inverse. One way of finding this inverse
is to solve explicitly the system of equations Ar = y for r obtaining x = By ; then
Bisaninverse A 'for4.

If Det A » 0, one has the formula

(—1)“" Det A.‘,’]

A1 = f
; transpose o [ Det 4

It follows easily from the recursive definition that the determinant of a tri-
angular matrix is the product of the diagonal entries.

4. Two Propositions on Linear Algebra

The purpose of this section is to prove Propositions 1 and 3 of Section 1B, Chap-
ter 3.

Proposition 1  Every vector space F has a basis, and every basis of F has the same
number of elements. If {e1, . . ., &} C F iz an independent subset tha! is not a basts,
by adjoining to it suilable veclors €cyy, . . ., €m, 01te can form a basis e, ..., €a.

The proof goes by some easy lemmas.

Lemma 1 A system of n lincar homogeneous equations in n + 1 unknouns always
has a nontrivial solution.

The proof of Lemma 1 is done by the process of elimination of one unknown to
obtain a system of n — 1 equations in n unknowns. Then one is finished by induc-
tion (the first case, n = 2, being obvious). The elimination iz done by using the
first equation to solve for one varisble as a linear combination of the rest. The
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expression obtained is substituted in the remaining equations to make the re-
duction.

Lemma 2 [Lel e, ..., e.} be a basis for a vector space F. If vy, . . ., v., are linearly
independent elements of F, then m < n.

Proof. 1t is sufficient to show that m » n + 1. Suppose otherwise, Then each
v, is a linear combination of the e;,

vi = I Gats, i=1...,n+ 1
A1

By Lemma 1, the system of equations

ntl
> raa = 0, k=1...,n
-1

has a nontrivial solution z = (a4, . .., Zas1). Then

T = 2T ) aaes = 3, 3 ridat = 0,
i k ki
so that the v; are linearly dependent. This contradiction proves Lemma 2,

From Lemma 2 we obtain the part of Proposition 1 which says that two bases
have the same number of elements. If {e;, ..., e,} and {vy, . . ., v.} are the two
bases, then the lemma says m < n. An interchange yielde n < m.

Ray that aset S = {0, ..., vm} of linearly independent elements of F is marimal
if forevervein F,v 4 S, theset {¢, 1, ..., va} is dependent.

Lemma3 A mazimal set of linearly independent élementa B = (v, . .., va) ina
vecior space F is a basts.

Proaf. We have to show that any v € F, v 4 B, is a linear combination of the
;. But by hypothesis », &, . . . , v, are dependent so that one can find numbers z,
z, not all zero such that 3] zi: + zv = 0. Then z # 0 since the v; are independent.
Thus v = 3 {—z;/z)e; This proves Lemma 3.

Proposition: 1 now goes easily. Recall F is g linear subspace of R* {our definition
of vector space!). If F # 0, let vy be any nonzero element. If {1} is not & basis,
one can find v € F, v; not in the space spanned by {v,]. Then v, » are independent
and if [u, m) is maximal, we are finished by Lemma 3. Otherwise we continue
the process. The process must stop with a maximal set of linearly independent
elements {v, .. ., va}, m < n by Lemma 2. This gives us & basis for F. The rest of
the proof of the proposition proceeds in exactly the same manner.
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Proposition 3 Let T: E ~—+ F be a linear map. Then
dim{Im T) + dim{Ker T') = dim E.
In particular, suppose dim E = dim F. Then the jollowing are equivalen! slalements:

(a) KerT = 0;
(b) ImT = F,
(¢) T 1is an isomorphism.

Proof. The second part follows from the first part (and things said in Section 1
of Chapter 3).

To prove the first part of the proposition let fy, . . . , fx be a basis for Im T. Choose
er, ..., e such that Te, = fi. Let ¢, . . ., g1 be & basis for Ker T It is sufficient
to show that

leh..,,chgl;---:gll'

is a basis for E since k = dim Im 7 and ! = dim Ker T.

First, these elements are independent: for if 3~ Ae: + 2 Mg, = 0, application
of T yields 3= \:Te; = 3. Afi = 0. Then the A; = 0 since the f; are independent.
Thus ¥~ M.g; = 0 and the M; = O since the g, are independent.

Second, E is spanned by the ¢, and g;, that is, every element of E can be written
as a linear combination of the e; and the g;. Let e be any element of E. Define
v =Y he;, where Te = ¥ Af; defines the A, Then e = (e —v) +v. Now
T(e —v) =080e — v ¢ Ker T and thus {¢ — v) can be written as a linear combin-
ation of the g;.
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Polynomials

1. The Fundamental Theorem of Algebra

Let
pl2) = anz™ + @pogz"™ 4o+ mz + ag, @ # 0,

hew polynomial of degree n > 1 with complex coefficients ay, . - ., @a. Thenp{(z) = 0
for at least one 2z € C,

The proof is based on the following basic property of polynomials,

Proposition 1 limp,.. | plz) | = ».

Proof. For z # 0 we can write

plz) o\ Oni
= an + T .
z" ,?::1 z*
Hence
z n
(1) M2|0”|_E|an—*|.
|z | -z

Therefore there exists L > 0 such that if | z | > L, then the right-hand side of
(1Yis > 3 ta.| > 0, and hence

=3l

from whitch the proposition follows.
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Proposition 2 |p(z)| eltaing ¢ minimum value.
Proof. For each k > 0 define the compact set
Di=lz€eCljz| €k}
The continuous function | p{z) | attains a minimum value
no=|p) | 2 € Dy,
on D,. (z, may not be unique.} By Proposition 1 there exists k > 0 such that
) lp) | 2n if |22k

We may take & > 1. Then 2, is the minimum value of | p(2) |, for if z € D, then
| p(2) | < va, whileif z § Du, | pl2) | 2 01 by (2); and v; > v since Dy C De

Proof of theorem. Let| p(z) | be minimal. The function
g(z) = plz + )

is a polynomial taking the same values as p, hence it suffices to prove that ¢ has a
root. Clearly, | ¢{0) | i5s minimal. Hence we may assume that

(3) the minimum value of | p(z) | 43 | p{0) | = | a0 |.
We write
plz) = @ + a2t + 2*r(z), a#0, k21,

where r is a polynomial of degreen — &k — 1if & < nand r = 0 otherwise.
We choose w so that

(4) @ + awt = 0.

In other words, w is a kth root of —as/a. Such a root exists, for if

—do ..
—=> = p(cos 8 + 1sin @),
ay

<o (5 ()

We now write, for 0 < £ < 1,
(1 — t5)ae + t¥{ap + asw®) + (tw )l (tw)
{1 — t*)ag + (tw)**'r(tw).

then we can take

]

p(tw)

Hence
| pltw) | < lao| — t* | as | + 541§ whtir(tw) |

=fao| = (o0 — tiwr(w) | )
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But if | as | > 0, for ¢ sufficiently small, we have

| @ | — & | wtr(tw) | > 0,
such a value of { makes

[ p(tw) | <[ae].
This contradicts minimality of | p(0) | = | & |. Hence | p(0) | = 0.

Corollary A polynomial p of degree n can be factored:
plz) = (2 — M)---(z — A}y

where p() =0,k =1,...,n,and p(z) # 0 for z # X,
Proof. For any A € C we have
p() = p((z = 2) + 1)

a({z — 2) + Ak
=
Expanding by the bingmial theorem, we have
a k k
p@) = ZE()arte = e
k=0 =0 \J
Every term on the right with j > 0 has a factor of z — A; hence

p(2)

(2 — Mgle) + T and
]

or

Il

p(2) = (z — Mg(2) + p(N)

for some polynomial g(z} of degree » — 1 (which depends on 1). In particular, if
p(M) = 0, which must be true for some A\, we have

p(z) = (z — M)qul2).

Since g, has a root A;, we write

p(z) = (2 — M) {(z — M)@(z)

and so on.
.Th{' complex numbers Ay, . . ., X, are the rools of p. If they are distinet, p has
simple roots. If X appears k times among (A, . . ., A, A is a root of multiplicity k,

or u k-fold roof. This is equivalent to (z ~ A)* being & factor of p(z).

appendic L1

On Canonical Forms

The goal of this appendix is to prove three results of Chapter 6: Theorem 1 and
the uniqueness of the § + N decomposition, of Section 1; and Theorem 1 of Sec-
tion 3.

1. A Decomposition Theorem

Theorem 1 (Section 1, Chapter 6) Let T be an operator on V where V is a
complex veclor space, or V is real and T has real eigenvalues. Then V is the direct
sum of the generalized eigenspaces of T. The dimension of each yeneralized eigenspace
equals the multiplicily of the corresponding etgenvalue.

For the proof we consider thus an operator T: V — ¥, where we suppose that
V is & complex vector apace.
Define subspaces for each nonnegative integer j as follows:

K;(T) = K; = Ker T?; N = UK,
¥
LiT) = Lj=ImTH M=[01L,

H

Tpen

0=-K, CK,C---CK; CK;n C---CN;
14 Lo_:)LnD---D LiC LinD---DM
Choose n and m 80 that

K,'=Kq i.szﬂ.,
Lj=Ln if]zmr
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which is possible since V is finite dimensional. Put
N(T)=N=K., M(T)=M=L..

Clearly, N and M are invariant.

Lemama V = N g M.

Proof. Since TM = L., = M, T| M is invertible; also, T*(M)} = M and
Tz 3¢ 0 for nonzero z in M. Since T"N) =0, wehave NNM = 0. If = € Vis
any vector, let Tz = y ¢ M. Since T= | M is invertible, Tmz = T= , 2 €M,
Putr = (r — 2} + 2 Since z ~ 2 € N, z € M, this proves the lemma.

Let oy, .. L, «, be the distinet eigenvalues of T. For each eigenvalue o define
Sll!)spn(‘(‘!i

Ni = N(T — o) = | Ker(T — ),
20
My = M(T — al) = ﬂIm(T — a0’

120

Clearly, these subspaces are invariant under 7'
By the lemma,

V=N e M.
Proposition V = Nie---eN,

Proof. We use induction on the dimension d of V, the cases d = 0 or 1 being
trivial. Suppose d > 1 and assume the theorem for any space of smaller dimen-
sion. In particular, the theorem {s assumed to hold for T | My: M, — M,

It therefore suffices to prove that the eigenvalues of T | M, are ay, . .., o, and
that

(n NT -l | M) =N(T—al), all k> 1
We first prove that

2y Ker ((T — ad) | My) = 0, all k> 1

Suppose (T — ey)z = 0 and z 0, Then Tz = oyz; hence

(T — ard)z = (ay — )z,
But then
(T~ )iz = (o — &)l % 0

forallj > (L, sox 4 N
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Since N, is invariant under T — ayJ we have
(T — al)Nx = N,
by (2). Therefore Ny C Im (T — al},allj 2> 0, k > 1. This shows that
N, C M, all kE>1.

This implies that ay, . . . , «, are eigenvalues of T | M. It is now clear that the
eigenvalues of T | M, are precisely a, . . ., a, since o is not, and any eigenvalue of
T | M, is also an eigenvalue of T. The proposition is proved.

We can now prove Theorem 1. Let n, be the multiplicity of ax as a root of the
characteristic polynomial of T. Then T | Ni: Ni — N, has the unique eigenvalue
ax (the proof is like that of (2) above), and in fact the lemma implies that a; has
multiplicity #. as an eigenvalue of 7 | ¥;. Thus the degree of the characteristic
polynomial of T | N, is n, = dim N,.

The generalized eigenspace of T: V — V belonging to a is defined by £, =
E(T, .} = Ker (T — a)ms. Then, clearly, £\ C N,.

In faet, it follows that £y = N, from the definition of Ni and Lemma 2 of the
next section (applied to T — a,). This finishes the proof of the theorem if V is
complex. But everything said above is valid for an operator on a real vector space
provided its eigenvalues are real. The theorem is proved.

2, Uniqueness of § and N

Theorm Let T be a linear operator on a vector space E which is complex if T has
any nonreal eigenvalues. Then there i3 only one way of erpressing Tas S + N , where
S is diagonalizable, N is nilpotent, and SN = NS,

FProof. Let E. = E(\, T), k = 1, ..., 7, be the generalized eigenspaces of T
Then £E = E, 9 - ¢ E, and T = The--- e T, where T\ = T|E, Note
that K, is invariant under every operator that commutes with T.

Since § and N both commute with § and N ; they both commute with T. Hence
E. is invariant under 8 and N.

Put S = MJ ¢ L(E), and Ny = Ty ~ 8,. Tt suffices to show that § | E, = S,,
for then N | E, = E,, proving the uniqueness of S and N.

Since 8 is diagonalizable, so is S | Ex (Problem 17 of Chapter 6, Section 2). There-
fore S| Ex — A is diagonalizable; in other words S | Ex — S. is diagonalizable.
This operator is the same as N, — N | Ev. Since N | E. commutes with AJ snd
with T}, it also commutes with N,. It follows that Ny — N | E. is nilpotent (use
the binomial theorem). Thus § | Ex — Se is represented by a nilpotent diagonal
matrix. The only such matrix is O; thus S| E; = S; and the theorem is proved.
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3. Canonical Forms for Nilpotent Operators

The goal is to prove the following theorem.

Theorem 1 (Section 3, Chapter 6) Let N be a nilpolent operalor on a real or
compler vector space V. Then V has a basis giving N a malriz of the form

A = diag{4d,, ..., A,},
where A; is an elementary nilpotent block, and the size of A: ts a nonincreasing func-
tion of k. The malrices A., . . ., A, are uniquely determined by the operator N.

In this section, V is a real or complex vector space.

A subspace W C V is a cyclic subspace of an operator Ton Vif T(W) C W
and there is a vector z € W such that W is spanned by the vector Tz, n = 0,1, . . ..
We call such an z a eyclic vector for W,

Any veetor x generates a cyclic subspace, for the iterates of x under T, that is,
z, Tz, T'z, . . . generate a subspace which is evidently cyclic. We denote this
subspace by Z(z) or Z(z, T).

Suppose N: V — V is a nilpotent operator. For each x € V there is a smallest
positive integer n, denoted by nil(z) or nil(z, N), such that N*z = 0. If z = 0,
then Ntz = Q0 for 0 < & < nil(z).

Lemma | Letnil{x, N} = n. Then the veclors N*z,0 < k < n — 1, form a basis
for Z{r, N

Proof. They clearly span Z(z). If they are dependent, there is a relation
3t aNE(r) = 0 with not all ax = 0. Let j be the smallest index, 0 <j <n — 1
such that a; # 0. Then

n—1
0= N"‘H(E a.N"z)

ke 5

a—1
3 apNnti--ig

k=;

n—1
aNriz + 3, a N~
k=t

= a,N‘_lx

sineen +k —j—12nifk 2 7+ 1. Thus g,N*z = 0, so N~z = 0 because
a; # 0. But this contradicts n = nil(z, N).
This result proves that in the basts [z, Nz, ..., N~z], n = nil(x), the nilpotent
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operator N | Z (z) has the matrix

0
1

1 0

with ones below the diagonal, zeros elsewhere. This is where the onea below the
diagonal in the canonical form come from.
An argument similar to the proof of Lemma 1 shows:

if 3{ aN*z = 0, then ay = 0 for k < nil(z, N).

It is convenient to introduce the notation p(T) to denote the operator 3.J__ a,T*
if p is the polynomial

plt) = ad* +---+ ad + 0,

where { is an indeterminate (that is, an “‘unknown”). Then the statement proved
above can be rephrased:

Lemma 2 Leln = nil (z, N). If p(t) is a polynomial such that p(N)x = 0, then
I~ divides p (1), that 13, there is a polynomial p,(t) such that p(l) = trp,(t).

We now prove the existence of a canonical form for a nilpotent operator N.
In view of the matrix discussed above for ¥ | Z{z}, this amounts to proving:

Proposition Let N: V — V be a nilpotent operator. Then V is a direct sum of
cyelic subspaces.

The proof goes by induction on dim V, the case dim V = 0 being trivial. If
dim V > 0, then dim N (V) < dim V, since N has a nontrivial kernel. Therefore
there are nonzero vectors y,, . . ., y, in N(V) such that

NV)=Z(n) e -0 Z(y).
Let z; € V be a nonzero vector with
Nz; = y,, Jj=1...,r

We prove the subspaces Z (21), . . . , Z(z,) are independent.
Observe that nil(z;) > 2 since

N2j=y,'#0.

If the subspaces Z (z;} are not independent, there are vectors u; € Z(z;), not
all zero, such that 3 i, u; = 0. Therefore 3°; Nu; = 0. Since Nu; € N(Z(z,)) =
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Z(y,) amed the Z(y;) are independent by assumption, it follows that u, € Ker N,
7 = 1.....r Now each u; has the form

a;—1

3 apaNkx, n; = nil(z;).

k=0
Hence «; = p,;(N)z; for the polynomial p,({}) = M3 aaét. Therefore Nu; =

p; {N)y; = 0. By Lemma 2, p; () is divisible by (= if m < nil(y;). Since 1 < nil(y,),
we ean write

pi{l) = &)
for some polvnomial s;(f).
But now, substituting N for £, we have

u; = Sj(IV)fV.t,'
= 8;(N)y; € Z{y;).

Therefore u; = 0 since the Z (y;) are independent.
We now show that

1) V=Z(x)e alir.)el
with L. C Ker V. Let Ker ¥V = K and let L be a subspace of K such that
K= {(KnN(V}) e L.

Then 7. ix independent from the Z (z;). To see this, let v € (®Z(z)) N L. Then
v 1Z{r)) N K, and by an argument similar to the one above, this implies
reoo NPL But M(VYN L = 0, hencew = 0.

1t is clear that every eyelie subspace in K, and hence in L, is one dimensional.
Therefore £, = Z(w} & - o Z (w.), where {wy, . . ., 1,] i3 a basis for L. Finally,

Va=Z{z)e  aZ(zx)eZlw)e  ow).

This proposition implies the theorem, except for the guestion of uniqueness of the
matrices Ay, ..., A.. This uniqueness is equivalent to the assertion that the oper-
ator N determines the sizes of the blocks A; {or the dimensions of the cyclic sub-
space=<1. This 1s done by induction on dim V.

Consider the restriction of ¥ to its image N (V) = F:

N{F:FoF

1t 1% casy 1 see that if 17 is the direct sum of eyclic subspaces Z, @---0 7, @ W},
where Wy O Ker N, and Zy is generated by zi, dim Z, > 1, then V(1) is the
direet sum
N(Z) e -0 N(Z,),
where N (Z5) is evelie, generated by NV (n), and dim V(Z,) = dim Z, — }. Since
dim N {F) < dim V', the numbers {dim Zx —. 1] are determined by ¥ | F, hence
by N, It fullows that {dim Z4} arc also determined by N.
This fimishes the proof of the theorem.

Appendix I V

The Inverse Function Theorem

In this appendix we prove the inverse function theorem and the implicit function
theorem.

Inverse function theorem Let W be an open set in a vector space E and let f:
W — E be a C' map. Suppose 2y ¢ W iz such that Df(z,) is an invertible linear
operaior on E. Then z, has an open neighborhood V (C W suck that f | V is a diffeo-
morphism onlo an open sel.

Proof. By continuity of If: W — L{E) there is an open ball V C W about z,
and a number » > 0 such that if y, z ¢ V, then Df(y) is invertible,
| Dy || <,

and
il Df{y) — Df(2) || < » .
It follows from Lemma 1 of Chapter 16, Section 1, that f | V is one-to-one. More-
over, Lemma 2 of that section implies that f(V) is an open set.
The map f: f{V} — V is continuous. This follows from local compactness of

J(V). Alternatively, in the proof of Lemma 1 it is shown that if ¥ and z are in
V, then

ly —2i <2{f») — f(2) [;
hence, putting f(y) = a and f(z) = b, we have
[ e) — B <vla—t]

which proves f~! continuous.
It remains to prove that f-! is C'. The derivative of f' at & = f(z) € f{V)is
Df(x}~. To see this, we write, for b = f(y) € f(V):

[Hb) — fa) — Df(e7(b — a) = y — z — D) fly) ~ f(z}).
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Now
fy) — J(z) = Df(z){y — 2) + R(y, 2),
where
lim —F® 2
yr (¥ —2{=0
Hence

ly -z = Df(X)Uw) —f(@) | = |y — z — Df(@)(Df{y — 2) + R(y, 7)) |
= | Df(x)"'(R(y, z) |.

Hence

ly =z = DA(x)~"(J(y) — f(x)) | _ | Df(2) (R, ) |

1 fy) = fz) | [ f(y) — f(z} |

<URG D | /1) — (=) |
T o ly -z ly ==z

This clearly goes to 0 as | f(y} — f(z) | goes to 0. Therefore D(f~)(a) =
[Df(f'a) J*. Thus the map D(f~"): f(V) — L(E) is the composition: f-!, followed
by 13, followed by the inversion of invertible operators. Since each of these maps
is continuous, so is D(f).

Remark. Induclion onr = 1,2, ... shows also thal if f is C", then f-1 is C".

Implicit function theorem Let W C E, X E, be an open sel in the Cartesian
product of two vector spaces. Let F: W — E, be a C* map. Suppose {zq, yo) € W is
such that the linear operalor

aF
5 (2o, tho): Ey — Ey

ts tnvertible. Pul F(xy, yo} = c. Then there are open sels U C E,, V  E, with

(T, ) e UXVCW
and a unique C' map

g U—V
such that

Fiz, g(x}) = ¢

Jorall x U, and moreover, Fix, y} # cif (x, ) €U x Vandy # g(x).
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Before beginning the proof we remark that the conclusion can be rephrased thus;
the graph of g 1s the sel
' F{e) 0 (U X V).

Thus F-1{c} is a “hypersurface” in a neighborhood of (x,, o).
To prove the implicit function theorem we apply the inverse function theorem
to the map

[ W o E, X E,
flz, 4) = (1, F(r, y}).
The derivative of f at {z, ) ¢ W is the linear map
Df(z, 4): E, X E; — E, X E,,

F
(£, 7)) — (E, oF

aF
. (z, & + P (z, y)n)-

It is easy to find an inverse to this if 8F(z, y}/dy is invertible. Thus Df(zs, ys) is
invertible. Hence there is an open set Uy X V C W containing (zs, ¥) such that
£ restricts to a diffeomorphism of Uy X V onto an open set Z C E, X E,.

Choose open sets U C Uy, ¥ C Ezsuch that 7, € U, ¢ € Y, and

UXYCZ

The inverse of f: Uy X V — Z preserves the first coordinate because f preserves
it. The restriction of (f | Us X V)-' to I’ X Y is thus a €' map of the form

U XY oaUsx V¥,

Az, w) = (z, ¢(z, w)),

where
e UXY -V
is CL.
Define a C' map
g U—-V,
g(z) = plz, c).

From the relation f » A = identity of U X ¥ we obtain, forz ¢ U:
(z,¢) = fh(z, c)
(#, Fi(z, c))

(z, Fix, ¢(z,¢)))
(z, F(z, g(x)).

Thus
F(z,g(x)) = ¢
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for all z £ U. Since f is one-tooneon U X V, if y » g(x), then
[z, ) # f(z,9(2));

hence
(z,Flz, y)) # (2, F(z, g(5))) = (x,¢),

so F(z, y) # c. This completes the proof of the implicit function theorem,
We note that if Fis C*, g is C".

From the identity
F(z, g(z)) = ¢,

we find from the chain rule that for all z in U
aF oF
— (z,¢(2)) + - (z,9(2)) Dg(2) = 0
dr ay

This yields the formula

toF
Dy(z) = - [g-s (:r,y(x))] 3z HgLh).
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Chapter 1

Section 2, page 12

2. (a) (ke ke, kyet)
(b) (kie', kee™, k3)
(e)  (kie', koe?, kye?)
6. 4 =diagla, ...,a.janda, <0,i=1, ..., n
8. (b} Any solutions u, v such that #(0)} and ¢(0) are independent vectors.

Chapter 2
Page 27
2
1. P = —Kr V() = w,x(—_ R®
dr?
o e —prad V = —
mdF grad Kr

“Most” initial eonditions means the set of (o, v) ¢ R? X R? such that ¢ is not
collinear with r.

. . £ 2 . ) ?
2. (a) with Vig ) = — 3~ ~‘;/: and (¢) with Vi{r, y) = %

Hint: Use (4) Section 6.

-]
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Chapter 3
Section 3. page 54

Loo(a) rif) =0, y(t) = 3¢

2. A:[% i]
20

. All eigenvalues are positive.
6. (by >0

Section 4, page 60

1

3e' cos 2t + Qet sin 2t
3ef sin 26 — 9e* cos 24,

1. idy or
Y

i

Chapter 4

Section 1, page 65

2. dim K = dim E¢ and dim F > dim Fy
3. FORex

Section 2, page 69

1. (a) Basis for K is given by (0, —V2,v2) and (1, -2, —1).

Matrix i [0 "ﬁ]
AMAatRx 18
vZ 0

Section 3, page 73

Introduce the new basis (1,0, 0), (0, —V2,¥2), (1, —2, —1}, and new coordinates

{1, #2. ) related to the old by

n=mn+wm
Iy = _ﬁ Y — 2!{:,
I = ﬁ Y — U

ANSBWERS T0O SELECTED PROBLEMS

In the new coordinates the differential equation becomes

vi=u,
yi = —V2 Lz
y§ = \@ 2.
The general solution is
h = CC',
= Aeos(V28) + Bsin(V2 D),
1= —Bcos(VZ1) + Asin(V2 ).
Therefore
ri=Ce¢ — Beos(V21) + Asin(V2 1),
7= (2B — AV2 ) cos(V21) — (BV2 + 24) sin{V2 f),

= (B + AV2) cos(V21) + (BV2 — A) sin{V2 ¢).
(The authors solved this problem in only two days.)

Chapter 5

Section 2, page 81

3 A=1,B=+n
.o (a) V2 (b) % {e) 1 (d) 1}
6. () and (d}

Section 3, page 87

1. Suppose C || S|l < N(S) < D|i S| Then

N(ST) S DIIST < DISIHTI < 2 NSNT).

3. Hint: Note

LT 0Tyl g, -t
[z} |y
4. (a) The normis 1.

7. Hint: Use geometric series.

=1

l1—r

d 1
Tri=— for 0<e<l, withz=|FT-T]|.
=)

345

13. Hint: SBhow that all the terms in the power series for et leave E invariant.
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Section ¢, page 97

L (a) «(t) = (K, — tK)e¥,
y(i) = K;e".
(b r(t) = e (K,cost ~ Kaysint),
y() = & (Kycost + Kysint).

2y i = (24 1)er
yify = —2e¥,
fthy rif) = 2e¥ sind,
yity = —2e* cos i,

1 Thint: Consider A restricted to eigenspaces of A and use result of Problem 3.

G a1 sink (b) source (e) source
td1  none of these (f} none of these

1. (Y Only if @ < -2 are there any values of such k& and in this case for
k> —2a.
tb)  No values of k.
14. Hint: There is a real eigenvalue. Study 7 on its cigenspace.

Section 3, page 102
L (a) rtt) = g[—4cost 4 sin!] — el + el'k.

thy rity

A1
— g4t 4+ 1]+ %, + etk
)

el rit) = Acost+ Bsint.
y{t) —~Asint+ Beost+ 2L

Section 6, puge 107

(ay  s(¢) = cos 2L (b) s(t) = —et1 4 gtt-2,
(a) ecosV3e, sinV3e (b} expV3t¢ exp ~V3 L
Hint: Check cases (a), (b), (¢} of the theorem.
a =0,b > 0; period is 4/b/2x.

w o

Chapter 6
Section 2, page 120

1. {a)  Generalized 1-cigenspace spanned by (1, 0), (0, 1);

L b
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th) Generalized 1-cigenspace spanned by (1, 0) ; generalized (—1)-eigenspace
spanned by (1, 2);

S|

1f the rth power of the matrixis [6, ], then b, = 0for i < JHrir=1.2 ...
The only eigenvalue is 0,
fe) e’ 0 ¢

et — eﬂ( PQ! 0

—et 4+ et

RN

O, Consider the 8§ 4+ N deenmiposition.

6. A preserves cach generalized eigenspace E,; hence it suffices to consider the
restrictionsof Aand Tto E,. If T = S + N, then § | £x = A which commutes
with 4. Thus § and T both commute with A; s therefore does N = T — §.

8. Use the Cayley-Hamilton theorem.
15. Consider bases of the kernel and the image.

Section 3, page 126

1. Canenieal forms:
(@) [0 1 0 (d)

0 01 00
0 00 ) 01
00

3. Assume that .V is in nilpotent canonical form. Let b denote the number of blocks
and 5 the maximal number of rows in a block. Then bs < n;alsob = n — rand
s < k.

4. Similar pairs are {(a), (d) and (b), (e).

Section 4, page 132

i 0 144 1
L (@) [0 —i] (©) [0 1+i]

4. Forn = 3: a 0 0 al O a =# 0
0 0], 0 a 0], 8 a
0 0 ¢ 0 0 b 0 0 ¢



348 ANBWEHHR TO BELECTED PROBLEMS ANSWERS TO BELECTED PROBLEMS

G IMAr = ur,r# 0, then 0 = g(A)e = g(a)r. Chapter 8

N. Rhow that 4 and At have the same Jordan form if 4 is a complex matrix, and
the same real eanonieal form if A is real.

Page 177
Section 1, page 136 ] L&) fi)=z+2
u(t) =2,
Loty Let every eigenvalue have real part < —bwithd > a > 0. Let A = S + N ¢ ¢
with § semisimple and N nilpotent. In suitable coordinates I} ¢S || < e, w(f) =2+ f Slue(s}) ds = 2 + f 4ds
|| < Ct. Then || et {] < ce~%", and so e' || e |—0ast— w, o ¢
Let s > Obeso large that e || e'4 || < 1fort > ¢ Put k = min(|| et ||-1) =2+ 4,
foro <t <s.
2. U ris an eigenvector belonging to an eigenvalue with nonzero real part, then w(t) =2+ f‘ (4 + 48) ds = 2 + 4 + 27,
the solution e*Az is not periodic. If ib, sc are pure imaginary eigenvalues, b ¢ ¢, o
and z, w € C* are corresponding eigenvectors, then the real part of e (z + w) , op
is a nomperiodic solution. wt) =2+ f (44 45+ 280 ds = 2+ 4t + 26 + 3
o

By induction
Section 6, page 141

r i
un {1) =4(l+t+5+'”+_)_2

Loosit) = et n!
2. (a} In (7), A =B =0 Hence s(0) =C, (0} = D, s2(0) = —¢, Hence
sM(0) = —D. z() = lim u,(t) = 4e¢! — 2.
Chapter 7 (b) w(l) =0,
t
i) = [ 0ds =0,
Section 1, page 150 o
3. (a) Usee'Betd = ptiB+dA), n(t) =0
for all n: Hence z(¢) = 0.
(e) z(l) =t
Section 2, page 153 4 (a; 1
2. Usc the theorem of this section and Theorems 1 and 2 of Section 1. (b) | f(x) — F(O) I_, « as  —0; no Lipschitz constant
3. Use Problem 2. |z — 0] '
{c) 1
Section 3, page 157 A (a) For0<c<plet
0, 0<Lt<e
L. rat dense, open (b) dense (e) ciense, open x(t) =

et open {f) open (g) dense, open st —¢), ec<t<B
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Chapter 9

Section 1, page 185

2 Forexample, fir) = — P (r v R).

3. Hint: Use a special inner product on R*. Compute the rate of change of
| (£} |* where £(t) is a solution such that z({0) is (the real part of) an eigen-
veetor for Df(0) having positive real part; take r(0) very small.

4. Use (1) of the theorem of Section 1.

Section 2. page 191

20 van (by (o)

3. Mint: Look at the Jordan form of A. It suffices to consider an clementary
Jordan block.

Section 3, page 199

1. »* 4+ 3 is a strict Liapunov function.

8. V1[0, ] is positively invariant. The w-limit set of any point of V-0, ¢] con-
sists entirely of equilibria in V=100, ¢]; hence it is just 7.

Section 1, page 204

2. Let s = —grad V(&). Then V decreases along trajectorices, so that V is con-
stant on a recurrent trajectory. Hence, a recurrent trajectory eonsists entirely
of equilibrium points, and so is a ennstant.

3. ta) Each set 171(— =, ¢] is positively invariant.
thy  Use Theorem 3.

Section 3., page 209

f—

Hmt: Vind cigenveetors,

Let dr = xri Ay = py A 2w, u % 0. Then {r, y) = ~Wx, Ay) =y (Ar, y) =
AV, oo and Apmt o1

Ao Adr = gead Yo, Ar.

s
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Chapter 10
Section 1, page 215
dr dy
k=g C— = - ¥hi
1 ldy y & £+ fly)
I = fL, Yy = ve.

Section 3, page 226

1. FEvery solution is perindic! Hini: If (x(1}, y{(€)) is a solution, so is { —r(—1),
y(—1)).

Section 4, page 228

1. p= -2 po= =247

Section 5, page 237

dr dy
= —y—R. 4+ E, (C-2=1r—
Id( y— R E i £ — fly)
r =i, ¥=1v

Chapter 11

Section 1, page 241

1. Hint: If the imit set L is not conneeted, find disjoint open sets {'y, I con-
* taining L. Then find a bounded sequence of points r, on the trajectory with
2, ¢ Up,r, 4 U,
4. [fiint: Every solution is periodic.
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Section 3, page 247

2. Hint: Apply Proposition 2.

4. Hints: (a) I z is not an equilibrium, take a local section at z. (b) See
Problem 2 of Section 1.

Section 1, page 249

2. Hint: Lety € vy Take a local section at ¥ and apply Proposition I of the pre-
vious section.

Section 5, page 253

2. Hints: {(a) Use Poincaré-Bendixson. (b) Do the problem for 2n + 1
closed orbits; use induction on n.

Hini: Let U be the region bounded by a closed orbit v of f. Then ¢ is trans-
verse to the boundary v of /. Apply Poincaré-Bendixson.

T

Chapter 13

Section I, page 278

(a} Hint: Show that the given condition is equivalent to the existence of an
eigenvalue a of Dén () with [« | < 1. Apply Theorem 2.

Section 3, page 285

3. Hint: If vis periodic of period A, then so is rv for all r > 0.

Hints: (a) Do the problem first in case p is zero and ¢ is linear. Then use
Taylor's formula for the gencral case. {b)  Apply the result in (a) after taking
a local section.

Chapter 15

Section 2, page 303

2. This is pretty trivial. Since 2’ is the C™ function f, then r is O+,

ANSWERS TO SELECTED PROBLEMS 353

Chapter 16

Section 1, page 309

1. Hint: If B is close to 4, each eigenvalue of B having negative real part will
be close to a similar eigenvalue A of 4. Arguing as in the proof that Si is open
in Theorem 1 of Chapter 7, Section 3, show that the sum of the multiplicities
of these eigenvalues u. of B near X equals the multiplicity of A. Then show that
bases for the generalized eigenspaces of the . can be chosen near corresponding
bases for A

Section 3, page 318

1. Suppose Df(0) has 0 as an eigenvalue, let g,(2) = f(z£) + ez, ¢ # 0. For-I e
sufficiently small, one of g_,, g. will be a saddie and the other a source or sink;
hence f cannot have the same phase portrait as both g and g¢.. If Df(0) has
+X, A > 0, a8 an eigenvalue, then g_, is a sink and g, is a source.

6. Hint: Tirst consider the case where e4 is a contraction or expansion. Then use
Problem 1 of Section 1.
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A Change
ul bases, 36
:::;-:il:ll:e;éls;vergente, s of coordinares, 6, 36

' Characteristic, 213, 232
Characteristic polynomial, 43, 103
Closed orbit, 218
Cloxed subset, 76
Companion matrix, 139
Comparison test, 80
Competing species, 265
Complex Cartesian space, 62

Adjeint of operator, 206
« Limit point, 198, 239
Andronov, 314
Angular momentum, 2!
Annulus, 247
Antisymmetric map, 290
Areal velocity, 22
Asymplotic period, 277 . )
Asymptotic stability, 145, 180, 186 Complex eigenvalues, 43, 55
s . i g . . Complex numbers, 323
Asymptotically stable periodic solution, 276 .

. ) . Complex vector space, 62, 63
Asymptotically stable sink, 280 L
\utonomous equation, 160 Complexification of operator, 63
) ' Complexification of vector spaces, 64
B Configuration space, 287

Conjugate of complex number, 323

Bad vertices, 264 .
! Conjugate momentum, 293

Based vector, 10 Coniugation, 64
Baxic limetions, 140 -unjugation,

. . i Conservation
Basie regivns, 267
Basin, 190 of angular momentum, 21
1

. of en -, bs, 2092
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