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Learning algorithm:

J Receive a training set S

J Evaluate the error of each possible h € H on S and
select the one with lowest empirical error h*

d Is h* € H minimizing the empirical error on S also
minimizing the true erroron D ?

It suffices to ensure that the empirical error of
all h € H is a good approximation of their true error
(i.e., L¢(h) similarto L,(h),Vh)

Notice: sufficient not necessary condition
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Idea: focus on when the empirical risks (errors) of all members of H are good
approximations of their true risk

Definition (e-representative)

A training set S is called e-representative (w.r.t. domain Z, hypothesis class H,
loss function €, and distribution D) if

Theorem:

Assume that training set S is g-representative (w.r.t. domain Z, hypothesis
class H, loss function £, distribution D). Then, any output of ERM4.(S) (i.e.,
any h € arghmegrfl Ls(h) ) satisfies:

Lp(hg) < ,r{éi}}LD(h) + €

Consequence: if with probability at least 1-6, a random training set S is
e-representative then the ERM rule is an agnostic PAC learner
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Proof of the theorem:
1. €/2-representative : Vh € H: |Lg(hs) — Lp(hg)| < % — Lp(hg) < Lg(hy) .|.§
2. hg ERM predictor: Yh € H: Lg(hy) < Lg(h) = Lp(hs) < Lg(h) +§

3. g/2-representative: Vh € H: |Lg(h) — Lp(h)| < §—> L¢(h) < Lp(h) +§

Combine together:

Lp(he) < Lg(hy) + g < Ls(h) +§ < (LD(h) + g) +§
U
LD(hs) < LD(h) + €
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Same m for all h and all D

Definition (uniform convergence): /

An hypothesis class H has the uniform convergence property
w.r.t. to a domain Z and a loss function ¢ if there exist a
function m¥¢:(0,1)? = N such that for every €,5 € (0,1)
and for every probability distribution D over Z, if S is a set of
m > m¥¢ (¢, &) i.i.d examples drawn from D, then with
probability = 1 — &, Sis e-representative
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Ga class H has the uniform convergence property with a function \
my° then:

1. The class is agnostically PAC learnable with sample complexity
myc(€,6) < mie(, 8)

Q The ER M4, paradigm is a successful agnostic PAC learner for }[J

 Demonstration follows from the previous theorem and the
definition of uniform convergence

* Recall that the theorem requires an g — representative set to
achieve an accuracy of €
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Proposition:

Let H be a finite hypothesis class, let Z be a domain and let
¢:HxZ — [0,1] be aloss function. Then:

 H enjoys the uniform convergence property with sample

complexity
2|H
55 og ()
myz(6,6) < 2e2
 H is agnostic PAC learnable using the ERM algorithm with sample

com pIEX|ty / Need to be
2|H| :

mited) <mif (5,0) <[FEIE=

Proof not part of the course, basic idea: first prove that uniform convergence holds for a finite
hypothesis class, then use previous result on uniform convergence and PAC learnability
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Note: In many real world applications we consider hypothesis classes
determined by a set of parameters in R

O Assume an hypothesis class determined by d real number parameters
2 In principle the hypothesis class is of infinite size, but...

O ...in practice we use a computer: e.g., real numbers represented with 64 bits
double precision variables

a For d parameters |H| = 2949 > || is large but finite

64d
2log(2"5-)

€2

0 Sample complexity bounded by mg,(€,5) < mg[C (g, §) <
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1. Uniform convergence (UC): with probability > 1 — §, Sis € — representative:

DM({S: Vh e H,|L;(R) — Lp(R)| < e =>1-6

2. Rewrite focusing on the probability of not having UC:
Pyaa = D™({S: 3h € H, |Ly(h) — Ly ()] >(e}) < 6

\error in the book!
3. Rewriteset {S: 3h € H, |L,(h) — Lp (h)| > €} as the union over h:

{S:3h e H, |Ls(h) — Lp(h)| > €} = U{5= ILs(h) — Lp (R)| > €}
heH

4. Apply union bound:

D™({S: 3h € H,|Ls(h) — Lp (h)| > €}) = D™ (U{Si |Ls(h) = Lp (W)| > 6}) = Z D™({S: |Ls(h) — Lp (R)| > €})

heH heH

Demonstration not part of the course
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Consider:

D™((S: 3h € 3, |Ls (W) ~ Lp ()| > €}) = D™ (U{s: L () = Lp (B)] > e}) < ) DTS L) ~ Lo ()] > €])

heH heH

0 Next step: demonstrate that for any fixed hypotheses h the difference
|L.(h) — Lp(h)|is likely to be small

0 Notice that L, (h) is the expectation and L.(h) the average value: the
random variable should not deviate too much from its expectation

Q INTUITIVE IDEA from law of large numbers: if m is large the average
converges to the expectation

Demonstration not part of the course
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Hoeffding's Inequality

Let #1.....0,, be a sequence of i.i.d. random variables and assume
that for all j, E[f;] = prand P[a < #; < b] = 1. Then, for any ¢ > 0

(TS . 2ms2
S o] < 2e (IBZR

Apply Hoeffding inequality to/our case fdssuming [0,1] interval):

m

1
m

i=1

2
< Ze—sz

D™({S: |Ls(h) = Lp (h)] > €}) =P[ > €

Apply to the sum over h:

Z Dm({S ILs(h) - LD (h)l > E}) < |}[|28_2m€2
heH

Finally: we already demonstrated that purple part is smaller or equal than red, need to find m for
which it is smaller or equal than 6 :

o  force red part to be smaller than § =>m > log(%)/Ze2

Demonstration not part of the course
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For m = log(2Z)) /2€? it holds that 3 ,eq D™ ({S: |Ls(h) — Lp(h)| > €} = &
(demonstrated in previous slide)

¥

Consequence: any finite hypothesis class has uniform convergence property J

&
-

with sample complexity m¥¢ < [log(M)/Zezl

S
From theorem™ (uniform convergence implies PAC learnable): 7 is PAC learnable with
sample complexity m4, (€, 8) < mgfc(g, 5) < [210g(¥)/62 ]

&

(*) recall: LEEESERY

If a class H has the uniform convergence property with a function

m%c then the class is agnostically PAC learnable with the sample

complexity my(=,0) < m%c(“2 0). Furthermore, in that case the

ERMy; paradigm is a successful agnostic PAC learner for H.

Demonstration not part of the course




