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Information theory

“the fundamental problem of communication is that of
reproducing at one point either exactly or approximately
a message selected at another point”

“the significant aspect is that the actual message is one
selected from a set of possible messages. The system
must be designed to operate for each possible

selection”
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Information theory

sender selects (input) message x in S with probability P(x)
channel yields (output) y in R with probability P(y|x)

Receiver reconstructs input message P(x|y)=P(y|x)P(x)/P(y)
(signal processing)
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Information theory
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Information theory

Reliable information transmission limited by mutual information: /(X:Y)
I(X:Y) = Mutual information = H(X)+H(Y)-H(X:Y)

H(X)= Shannon entropy =-% p(x)log[p(x)]

H(X) information needed to specify X
1(X:Y) information Y provides about X
PO L RyIx) P(x]y)
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Information theory

Reliable information transmission limited by mutual information: /(X:Y)
I(X:Y) = H(X)-H(X]Y)

H(X) information needed to specify X

H(X|Y) information needed to specify X is Y is known

H(X) = I(X:Y) + H(X]Y)

PO L Ryl P(xly)

_sender encoding

decodin g
. noisy channel -

receiver

Michele Allegra Information theory and Inference October 2022



Information theory

Reliable information transmission limited by mutual information: /(X:Y)
I(X:Y) = D(P(X,Y)|IP(X)P(Y))
D(P||Q) = relative entropy/K-L divergence = -3 p(x)log[p(x)/q(x)]

D(P||Q) = “distance between P and Q”
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Information theory

* Quantify the information that can be reliably transmitted

* Design channel to maximize information transmission rate

P
(x) - Py P(x]y)
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Information theory

Achieving reliable information transmission with minimal code length
design smart encoding/decoding

e.g. send bit (0,1) though noisy channel with bit flip probability of €
repetition code: 0 - 0000 1 - 1111

error probability &
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Inference

“the uncertainty of knowledge rests on events or their
causes.”

“If we are sure an urn contains black and white papers in
a given ratio, and we ask the chance that extracting
random paper it will be white, the event is uncertain but
the cause determining its probability (the white/black
ratio), is known.”

“Hence the following problem: if an urn contains black
and white papers in an unknown ratio, and we extract a
white paper, determine the chance that the ratio is p/q”

“the probability of each cause is equal to the probability
of the event given the cause, divided by the sum of all
the probabilities of the event given any cause”
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Inference

Again, suppose that p,, p,, ... p,, are anumber of mutually
exclusive hypotheses such that one of them must be true.

Therefore
P(p,;q,;,)=TP_(_!l|Pf-h).f_(Pr”‘) . W
£ Pt -B)P(p, 1)

This theorem* is to the theory of probability what Pythagoras’s
theorem is to geometry.

) Then our result is
that the posterior probability of p is the prior probability of p
divided by the prior probability of the consequence.

Michele Allegra Information theory and Inference

Harold Jeffreys 1939

October 2022



Inference

unknown variable x in S with probability P(x)
data y in R with probability P(y|x)

reconstruct variable P(x|y)=P(y|x)P(x)/P(y)
(data processing)

unknown N observed
variable probabilistic data
relation
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Inference

Parameter inference Hypothesis testing
unknown unsure
observed . ilisti observed
P probabilistic

parameter félt;li?obr:llstlc data hypothesis relatior: st data

Dynamical system analysis Communication

X(t) unknown b d
probabilistic X(t+1) message probabilistic ?nessesglgee
relation relation
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Inference and sampling

Inference requires to compute a posterior P(x]y)=P(y|x)P(x)/P(y)

This allows to obtain best estimates and assess uncertainty about estimates
x=t = E[x|y] Oxes = E[(x-x*)?ly]

This involves complicated high-dimensional sums/integrals

e.g. Elxly] =] dx x P(y|x)P(x)/P(y) = [dx x P(y|x)P(x)/ | dx P(y|x)P(x)
sampling is needed!!
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Inference and sampling

e Ising spins s = {s1,...,5,} € {—1,1}¥

e observe spins:

T
(,—h-s—s Js

o) = gy

e reconstruct h, J:

] P(Sobs | h. J) P(SObS | h, J)
P(h. obsy _ ! — :
( ’ J|S ) P(Sobs) f dhd.J P(S‘)b“"|h} J)

[ dhdJ h P(s°*|h, J)  [dhdJ J P(s°**[n,.J)

thy = [ dhdJ P(s°%*|h,J) ’ = [ dhdJ P(s°**|h,J)
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Inference and sampling

Computers were invented for
numerical integration!

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

NICHOLAS METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AUGUSTA H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico
AND
EDWARD TELLER, * Department of Physics, University of Chicago, Chicago, Hlinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such propertics as equations of state for
substances consisting of interacting individual molecules is described. The method consists of a modified Monte Carlo
integration over configuration space. Results for the two-dimensional rigid-sphere system have been obtained on the
Los Alamos MANIAC and are presented here. These results are compared to the free volume equation of state and to a
four-term virial coefficient expansion.

Maniac
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Inference and sampling

Large computing power
Smart algorithms (Markov chain Monte Carlo)

Design stochastic dynamical system that automatically sample to required distribution
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Information theory and inference

a general inference process can be thought of as “noisy channel”

Idea applicable to prediction, sensing, parameter estimation, hypothesis testing
“message” to be reconstructed can be signal, parameter, hypothesis
Information theory quantifies how much information is contained in the data
Information theory establishes fundamental limits of inference

Information theory suggests recipes for data processing
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Example: Fano’s inequality

e message X € {1,..., M}

3

e “noisy” output Y
e reconstructed message X = f(Y)
e probability of error: P, = Prob(X # X)

e Fano's inequality:

P621—I(X:Y)+1
log (M)
e With n indipendent repetitions
Po>1- nI(X:Y)+1
log(M)

e to achieve P. <4,
s (1—9)log(M)—1
- F(X 1 )
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Example: Fano’s inequality

e unknown variable X € {1,... M}

e known data Y

e estimator X = f(Y)

e probability of inference error: P. = Prob(X + X)
e minimum data size to achieve P. < 4,

(1 —d)log(M) -1
= JEX Y]

(4
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