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“the fundamental problem of communication is that of 
reproducing at one point either exactly or approximately 
a message selected at another point”

“the significant aspect is that the actual message is one 
selected from a set of possible messages. The system 
must be designed to operate for each possible 
selection”
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● sender selects (input) message x in S  with probability P(x) 
● channel yields (output)  y in R  with probability P(y|x) 
● Receiver reconstructs input message        P(x|y)=P(y|x)P(x)/P(y)

(signal processing)
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P(x) P(x|y)
P(y|x)
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Information theory

encoding x → x’ 

Any type of information converted into digitized information 
(string of 0’s and 1’s)
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sender

noisy channel

P(x) P(x|y)P(y|x’)
decodingencoding
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Information theory

Reliable information transmission limited by mutual information:  I(X:Y)  

I(X:Y) = Mutual information = H(X)+H(Y)-H(X:Y)                    

H(X)= Shannon entropy =-∑p(x)log[p(x)]

H(X)           information needed to specify X 

I(X:Y)         information Y provides about X
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P(x) P(x|y)P(y|x’)
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Information theory

Reliable information transmission limited by mutual information:  I(X:Y)  

I(X:Y) =  H(X)-H(X|Y)

H(X)           information needed to specify X 

H(X|Y)       information needed to specify X is Y is known

H(X) = I(X:Y) +  H(X|Y)

receiver
sender

noisy channel

P(x) P(x|y)P(y|x’)
decodingencoding

x →  x’
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Information theory

Reliable information transmission limited by mutual information:  I(X:Y)  

I(X:Y) = D(P(X,Y)||P(X)P(Y))                 

D(P||Q) = relative entropy/K-L divergence = -∑p(x)log[p(x)/q(x)] 

D(P||Q) = “distance between P and Q”

receiver
sender

noisy channel

P(x) P(x|y)P(y|x’)
decodingencoding

x →  x’
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receiver
sender

noisy transmission

Information theory

P(x) P(x|y)P(y|x’)

● Quantify the information that can be reliably transmitted 

● Design channel to maximize information transmission rate

decodingencoding

x →  x’
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Information theory

Achieving reliable information transmission with minimal code length

design smart encoding/decoding 

e.g. send bit (0,1) though noisy channel with bit flip probability of ε

repetition code:          0  →  0000                    1 → 1111

error probability  εk

receiver
sender

noisy channel

P(x) P(x|y)P(y|x’)
decodingencoding

x →  x’
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Inference
“the uncertainty of knowledge rests on events or their 
causes.” 

“If we are sure an urn contains black and white papers in 
a given ratio, and we ask the chance that extracting  
random paper it will be white, the event is uncertain but 
the cause determining its probability (the white/black 
ratio), is known.”

“Hence the following problem: if an urn contains black 
and white papers in an unknown ratio, and we extract a 
white paper, determine the chance that the ratio is p/q”

“the probability of each cause is equal to the probability 
of the event given the cause, divided by the sum of all 
the probabilities of the event given any cause”
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Inference
Harold Jeffreys 1939



Michele Allegra                         Information theory and Inference                  October 2022

observed 
data

unknown 
variable probabilistic

relation

Inference

● unknown variable x in S  with probability P(x) 
● data  y in R  with probability P(y|x) 
● reconstruct variable         P(x|y)=P(y|x)P(x)/P(y)

(data processing)
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Inference

observed 
data

unknown 
parameter probabilistic

relation

unsure
hypothesis probabilistic

relation

observed 
message

unknown 
message probabilistic

relation
X(t+1)X(t)

probabilistic
relation

Parameter inference Hypothesis testing

observed 
data

Dynamical system analysis Communication
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Inference and sampling

● Inference requires to compute a posterior                        P(x|y)=P(y|x)P(x)/P(y)
 

● This allows to obtain best estimates and assess uncertainty about estimates

       xest = E[x|y]                      δxest = E[(x-xest)2|y]

● This involves complicated high-dimensional sums/integrals

● e.g.            E[x|y] = ∫  dx x P(y|x)P(x)/P(y) =  ∫ dx x P(y|x)P(x)/ ∫ dx P(y|x)P(x)  

 sampling is needed!!
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Inference and sampling
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Inference and sampling

Maniac

MetropolisComputers were invented for 
numerical integration!
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Inference and sampling

Large computing power 

Smart algorithms  (Markov chain Monte Carlo)  

Design stochastic dynamical system that automatically sample to required distribution 
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Information theory and inference

● a general inference process can be thought of as “noisy channel”

● Idea applicable to prediction, sensing, parameter estimation, hypothesis testing

● “message” to be reconstructed can be signal, parameter, hypothesis

● Information theory quantifies how much information is contained in the data 

● Information theory establishes fundamental limits of inference

● Information theory  suggests recipes for data processing
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Example: Fano’s inequality
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Example: Fano’s inequality
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