1) INTRODUCTION MATHLU
2) QUESTIONS ABOUT "REVIEW EXERCISES"
3) INJECTIVE I SURJECTIVE FUNCTIONS
4) SUP/INF - MAX/MIN
5) FUNCTION DOMAINS
(6) INDUCTION)

Heuristic: the maths of solving problems
4 steps $=$ - have an idea

- define a plan
- carryout the plan/do the calculations
- check the solution

QUADRATIC FORMULA

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& x_{12}=\frac{-\sqrt{b 2}-4 a c}{b^{2}+8} \\
& b \text { is even }: \quad x_{12}=\frac{-\frac{b}{2} \pm \sqrt{\frac{b^{2}-a c}{4}}}{a}
\end{aligned}
$$

INSECTIVITY I SURSECTIVITY

1) $f: Z \bigcirc \mathbb{N}, z \mid \mapsto f(z)=3 z^{2}+1$

$$
\begin{gather*}
\text { - counterexample: } z_{1}, z_{2} \quad z_{1} \neq z_{2} \text { st } f\left(z_{1}\right)=f\left(z_{2}\right) \\
z_{12}= \pm 1 \quad f\left(z_{1}\right)=3 \cdot 1+1=4 \cdot f\left(z_{2}\right)=3 \cdot(-1)^{2}+1=4 \\
\text { - ce: } O \in \mathbb{N} \quad \exists z \in \mathbb{R} \text { s.t. } f(z)=0 \tag{NO}
\end{gather*}
$$

$$
3 z^{2}+1=0 \quad z^{2}=-\frac{1}{3} \Rightarrow D \nRightarrow Z
$$

2) $f: \mathbb{N} \frown \mathbb{Z}, n \curvearrowleft f(n)=2 n-4$

- Dom. $f\left(n_{1}\right)=f\left(n_{2}\right) \Rightarrow n_{1}=n_{2} \quad 2 n_{1}-\mu h=2 n_{2}-\mu_{1}$
- Dem. $\nexists n \in \mathbb{N}$ s.t. $f(n)=1$
$2 h_{4}=2 h_{2}$ $n_{1}=n_{2}$ suppose $n^{\infty} \in \mathbb{N}$ s.t. $f\left(n^{0}\right)=1 \quad 2 n^{a}-4=1 \quad 2 n^{a}=3$

$$
\begin{equation*}
n^{*}=\frac{3}{2} \notin N \tag{10}
\end{equation*}
$$

3) $f: \mathbb{R} \frown z, \quad r \mapsto f(r)=[r.) \rightarrow L \times\rfloor$ floor
$\Gamma \times T$ cpil


- c.e. Tind 3.03 $f(\pi)=f(3.03)=3$
- Dem, $\forall z \in \mathbb{Z} \quad \exists r \in \mathbb{R}$ s.t. $f(r)=z \rightarrow r=z$ yts

4) $f: \notin \longrightarrow \mathbb{Z}, \quad z \mapsto f(z)=z-5$
-Dem. $f\left(z_{1}\right)=f\left(z_{2}\right) \Rightarrow z_{1}=z_{2} \quad z_{1}-p s=z_{2}-5 \quad z_{1}=z_{2}$ YES
—Dem. $\forall z \in \mathbb{R}$ 子 $z_{p} \in \mathbb{Z}$ s.t. $f\left(z_{p}\right)=z \quad z_{p}-5=z \quad z_{p}=\frac{z+5}{y E S}$ ces

CALCULATION OF SUPIINF MAXIMIN

1) $\left\{n: n \in \mathbb{N}^{+}\right\} \cup\left\{\frac{2}{n^{3}}: n \in \mathbb{N}^{+}\right\}$

$$
\mathbb{N} \backslash\{0\}
$$

$\mathbb{Z}^{+}$positive integers

1) $\left\{n: n \in \mathbb{N}^{+}\right\} \cup\left\{\frac{2}{n^{3}}: n \in \mathbb{N}^{+}\right\}$
no supremum / maximum

$$
-\inf (A)=0 \longrightarrow>0
$$

1) $\frac{2}{n^{3}} \geq 0 \rightarrow \gg 0 \quad \frac{2}{h^{3}}>0 \quad \rightarrow 0 \notin A$
2) $\forall \leqslant>0 \quad \exists \bar{a} \in A$ sit. $\quad \operatorname{iaf}(A) \leqslant \overline{2} \leqslant \inf (A)+\varepsilon$

$$
0 \leqslant \bar{a} \leqslant 0+\varepsilon \quad 0 \leqslant \frac{2}{h^{3}} \leqslant \varepsilon \quad \varepsilon n^{3} \geqslant 2 \quad n \geqslant \sqrt[3]{\frac{2}{\varepsilon}} \in A
$$

2) $\left\{\frac{n^{2}-1}{n^{2}} ; n \in \mathbb{T}^{+}\right\}$
$=\frac{n^{2}-1}{n^{2}}=1-\frac{1}{n^{2}}$
$\sup (A)=1$
3) $1 \geqslant a \quad \forall a \in A \quad 1 \geqslant 1 /-\frac{1}{n^{2}} \quad \frac{1}{n^{2}} \geqslant 0$
4) $\forall \varepsilon>0 \quad \exists \bar{a} \in A$ s.t. $1-\varepsilon \leqslant \bar{a} \leqslant 1$

$$
\notin \Theta \frac{1}{n^{2}} \geqslant A \Theta \varepsilon \quad \frac{1}{n^{2}} \leqslant \varepsilon \quad n^{2} \geqslant \frac{1}{\varepsilon} \quad n \geqslant \sqrt{\frac{1}{\varepsilon}}
$$

3) $\left\{x_{n}=2+(-1)^{n}\left(\frac{1}{n+1}\right): n \in \mathbb{N}, x_{n} \in \mathbb{R}\right\}$
$n$ even: $\quad x_{n}=2+\frac{1}{n+1}$ because $(-1)^{n}=1$

$$
\begin{array}{ll}
x_{0}=2+\frac{1}{n+1}=2+1=3 \\
\prod_{n \rightarrow \infty}^{0} & \rightarrow 2<\frac{1}{\infty} \\
& \rightarrow x_{n} \leq 3 \\
& \rightarrow 2 m+1
\end{array}
$$

$n$ odd: $x_{n}=2-\frac{1}{n+1}$ because $(-1)^{n}=-1$

$$
\rightarrow \operatorname{increasing} \rightarrow 2-\frac{1}{2}=\frac{4}{2}-\frac{1}{2}=\frac{4-1}{2}=\frac{3}{2}
$$

$$
\begin{aligned}
& x_{1}=2-\frac{1}{1+1}=\frac{3}{2} \rightarrow \frac{3}{2} \leqslant x_{n}<2 \\
& n \rightarrow \infty \quad x_{n}=2 \\
& \frac{3}{2} \leqslant x_{n}<2 \cup 2<x_{n} \leqslant 3 \min (A)=3 / 2 \\
& \max (A)=3
\end{aligned}
$$

5) $\left\{\frac{1+n}{1+n^{2}}: n \in \mathbb{Z}\right\}$
6) increasing $n, \frac{1+n}{1+n^{2}}$ increases or decreases?

$$
\begin{aligned}
& x_{n}>x_{n+1} \Longleftrightarrow \text { decreasing } \\
& \frac{1+n}{1+n^{2}}>\frac{1+(n+1)}{1+(n+1)^{2}} \longrightarrow 1+n^{2}+2 n+1=n^{2}+2 n+2 \\
& \frac{1+n}{1+n^{2}}-\frac{k+2}{n^{2}+2 n+2}>0 \\
& \frac{(1+n)\left(n^{2}+2 n+2\right)-(2+n)\left(1+n^{2}\right)}{\left(1+n^{2}\right)\left(n^{2}+2 n+2\right)}>0 \\
& \Uparrow \\
& N>0 \\
& n^{3}+2 n^{2}+2 n+n^{2}+2 n+2-n(-n)-2 n^{2}-\pi>0 \\
& n^{2}+3 n>0 \\
& D>0 \\
& 1+n^{2} \geqslant 0 \quad \forall n \in \mathbb{Z} \\
& n^{2}+2 n+2 \geqslant 0 \quad n_{12}=-1 \pm \sqrt{1-2} \quad \forall n \in \mathbb{R}
\end{aligned}
$$

sequence is decreasing for $n<-3, n>0$

$$
n \leqslant-4 \vee n \geqslant 1
$$

2) $\frac{1+n}{1+n^{2}} \lim _{h \rightarrow+\infty} \frac{1+n}{1+n^{2}} \approx \lim _{h \rightarrow+\infty} \frac{n}{h^{2}}=\lim _{h \rightarrow+\infty} \frac{1}{h}=0^{+}$?

$$
\lim _{n \rightarrow-\infty} \frac{1+n}{1+n^{2}} \sim \lim _{n \rightarrow+\infty} \frac{n}{n^{2}}=0
$$


$\min / m a x$ must be among
3) $\mathcal{P}\{-4,-3,-2,-1,0,1\}$

D $\quad 1-4 \ldots 3$

s)

$$
\begin{aligned}
& +\{-4,-2,-c,-1,0,1\} \\
& f-4=\frac{1-4}{1+16}=-\frac{3}{17} \\
& f-3=\frac{1-3}{1+9}=-\frac{1}{5} \\
& f-2=--\frac{2}{5} \\
& f-1=0 \\
& f_{1}=1=f_{0}
\end{aligned}
$$



HOMELKORKS
5) $f: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \mapsto f(x)=x^{2}-2 x-3$
4) $\left\{\frac{1}{x^{2}+4}: x \in \mathbb{R}\right\}$
6) $\{x|x|<2 ; x \in \mathbb{R}\}$
7) $\left\{(-1)^{n} \frac{2 n+1}{2 n-1}: n \in \mathbb{N}^{+}\right\}$
8) $\left\{\frac{2 n}{n^{2}+1}: n \in \mathbb{Z}\right\}$
9) $\left\{\frac{(-1)^{n}}{n}: n \in \mathbb{N}\right\}$

