Lesson 5-6/10/2022
(1) Lineerite $\ddot{x}=-\sin x-\dot{x}$ at equititia $(\bar{x}, 0)$ with First order $\rightarrow\left\{\begin{array}{l}\dot{x}=v \\ \dot{v}=-\sin x-v\end{array} \Rightarrow J(x, v)=\left(\begin{array}{cc}0 & 1 \\ -\cos x & -1\end{array}\right)\right.$
Equilitia ? $\Leftrightarrow x(\bar{x}, \bar{v})=(0,0) \Leftrightarrow\left\{\begin{array}{l}\bar{v}=0 \\ \sin \bar{x}=0\end{array}\right.$
$\Leftrightarrow \bar{x}=0$ and $\bar{x}=\pi$.

$$
\begin{aligned}
& \Leftrightarrow \bar{x}=0 \text { and } \bar{x}=\pi . \\
& \underset{\substack{\text { First } \\
\text { ep. }}}{J(0,0)}=\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right) \rightarrow\left\{\begin{array}{l}
\dot{x}=v \\
\dot{v}=-x-v
\end{array} \rightarrow \underset{\dot{x}=-x-\dot{x}}{ }\right.
\end{aligned}
$$

$$
J(\underbrace{(\pi, 0)}_{\substack{\text { second } \\
\text { ep. }}}=\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right) \rightarrow\left\{\begin{array}{l}
\dot{x}=v \\
\dot{v}=x-\pi-v
\end{array} \rightarrow \begin{array}{|}
\ddot{x}=x- \\
-\pi-\dot{x}
\end{array}\right.
$$

The previous ex. is en example of lineeritetion of a 2ud order diff. ep.

$$
\ddot{x}=Y(x, \dot{x})<\dot{v}=Y(x, v)
$$

At first order $\left\{\begin{array}{l}\dot{x}=v \\ \dot{v}=Y(x, v)\end{array}\right.$
In this case epurlitia ore always of type $(\bar{x}, 0)$ such that $Y(\bar{x}, 0)=0, \bar{x}$ is an ep, configuration

$$
\Rightarrow \quad J(\bar{x}, 0)=\left(\begin{array}{cc}
0 & 1 \\
\partial_{x} Y(\bar{x}, 0) & \partial_{y} Y(\bar{x}, 0)
\end{array}\right)
$$

$$
\Rightarrow\left\{\begin{array}{l}
\dot{x}=v \\
\dot{v}=\partial_{x} Y(\bar{x}, 0)(x-\bar{x})+\partial_{y} Y(\bar{x}, 0) v
\end{array}\right.
$$

livearilelion proved $(\bar{x}, 0)(\oplus$,
nd step: Study in details linear syotems.

$$
\begin{cases}\dot{z}=A z & z \in \mathbb{R}^{n} \\ z(0)=z_{0} & A n \times M \text { matrix }\end{cases}
$$

We recall that the solution is given by the matrix exponential

Recall that $\left.e^{a}=1+a+\frac{a^{2}}{2}+\frac{a^{3}}{3!}+\cdots \quad a \in \mathbb{R}\right]$.
Analogously in $\operatorname{dim} n$.
Def $A=n \times m$ matrix.

$$
\begin{align*}
& \text { Def } A=m \times m \text { matrix. } \tag{x}\\
& e^{A}:=\quad 1+A+\frac{A^{2}}{2}+\frac{A^{3}}{3!}+\cdots=\sum_{k=0}^{k!} \frac{A^{k}}{k!}
\end{align*}
$$

We need to check that this def. is well-posed! In ouder to prove this fact, we recall that the set of $n \times m$ matrices (in \mathbb{R}) is a Baveck space with the norm:

$$
\|A\|:=\sup _{\substack{x \in \mathbb{R}^{n} \\ x \neq 0}} \frac{|A x|}{|x|}|\underbrace{\left(\sup ^{n}, 0\right)}||A x|
$$

n-fines
Moreover, it is a Bench alpetre: $\|A B\| \leqslant\|A\|\|B\|$ Lemme e^{A} is well defined that is the series (x) is convergent.
Proof

$$
\left\|e^{A}\right\|=\left\|\sum_{k=0}^{+\infty} \frac{A^{k}}{k!}\right\| \leqslant \sum_{k=0}^{+\infty} \frac{\left\|A^{k}\right\|}{k!} \leqslant
$$

$$
\leqslant \sum_{k=0}^{+\infty} \frac{\|A\| \|^{k}}{k!}=e^{\|A\|}<+\infty
$$

Bench alfeba
Prop $\left\{\begin{array}{l}\dot{z}=A z \\ z(0)=z_{0}\end{array}\right.$ ais $\varphi^{t}\left(z_{0}\right)=e^{t A} z_{0}$
Proof Directly
Clearly, $\varphi^{0}\left(z_{0}\right)=z_{0}$

$$
\begin{aligned}
& \frac{d}{d t}\left(\varphi^{t}\left(z_{0}\right)\right)=\frac{d}{d t}\left(e^{t A} z_{0}\right)= \\
& =\frac{d}{d t}\left(\sum_{k=0}^{+\infty} \frac{1}{k!}(t A)^{k}\right) z_{0}= \\
& =\frac{d}{d t}(\underbrace{+1}+t A+\frac{(t A)^{2}}{2!}+\cdots) z_{0}= \\
& =\frac{d}{d t}\left(\sum_{k=1}^{+\infty} \frac{1}{k!}(t A)^{k}\right) z_{0}= \\
& =[\sum_{k=1}^{+\infty} \frac{1}{k!} k t^{k-1} \underbrace{k}] z_{0}^{+\infty}=\left[\sum_{k=0}^{1} \frac{1}{k!} t^{k} A^{k}\right] A z_{0}= \\
& (k-1)! \\
& \text { (A) } A^{k-1}=A \varphi^{t}\left(z_{0}\right)
\end{aligned}
$$

this means that $d / d t\left(\varphi^{t}\left(z_{0}\right)\right)=A \varphi^{t}\left(z_{0}\right) \Leftrightarrow$
$\varphi^{t}\left(z_{0}\right)$ is the unipe solution of the hinere v.f. (with starlieg cond. z_{0}).

Propeolies / exercises on the welix exp.
$1 A, P m \times m$ meatices. P inver litle. Then

$$
\exp \left(P^{-1} A P\right)=P^{-1} \exp (A) P
$$

$$
\left(P^{-1} A P^{\prime}\right)(\underbrace{\left.\left.P^{12} A P\right) \cdot \cdots \cdot\left(P^{人 1} A P\right)=P^{-1} A^{k} P\right) .}_{k \text { times }}
$$

2

$$
\begin{aligned}
& \text { 2) } A=\left(\begin{array}{cc}
0 & \beta \\
-\beta & D
\end{array}\right)=\beta\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=B \\
& \Rightarrow \quad e^{t A}=\left(\begin{array}{cc}
\cos (\beta t) & \sin (\beta t) \\
-\sin (\beta t) & \cos (\beta t)
\end{array}\right)
\end{aligned}
$$

\downarrow clockwise roletion of augle βt

$$
\left.\begin{array}{ll}
B=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) & B^{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \\
B^{3}=-B & B^{4}=-B^{2} \\
B^{5}=B \\
B & B^{2}-B
\end{array}\right] B^{2} B B^{2} \ldots . . ~ \$
$$

Conseprently

$$
\begin{aligned}
& \text { Consepently } \\
& e^{t A}=\sum_{k=0}^{+\infty} \frac{1}{k!}(t A)^{k}=\sum_{k=0}^{+\infty} \frac{1}{k!} t^{k} \beta^{k} B^{k}=\ldots= \\
& =\left(\begin{array}{cc}
\cos (\beta t) & \sin (\beta t) \\
-\sin (\beta t) & \cos (\beta t)
\end{array}\right)
\end{aligned}
$$

Mecleurin serics of
$\sin (\beta t)$ and $\cos (\beta t)$
$13 A=\left(\begin{array}{cc}0 & 1 \\ -\omega^{2} & 0\end{array}\right) \Rightarrow e^{t A}=\left(\begin{array}{cc}\cos (\omega t) & \sin (\omega t) / \omega \\ -\omega \sin (\omega t) & \cos (\omega t)\end{array}\right)$
A comes flom $\ddot{x}=-\omega^{2} x \rightarrow\left\{\begin{array}{l}\dot{x}=v \quad \Rightarrow \\ \dot{x}=-\omega x\end{array}\right.$

$$
\Rightarrow\binom{\dot{x}}{\dot{v}}=\underbrace{\left(\begin{array}{cc}
0 & 1 \\
-\omega^{2} & 0
\end{array}\right)}_{=A}\binom{x}{v}\left\{\dot{v}=-\omega^{2} x\right.
$$

we coujujate by $P=\left(\begin{array}{cc}1 & 0 \\ 0 & w\end{array}\right)$

$$
\left.\begin{array}{l}
P^{-1} A P=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / w
\end{array}\right)(\underbrace{\left(w^{2}\right.}_{A} 0
\end{array}\right)\left(\begin{array}{cc}
0 & w \\
0 & 1 \\
0 & w
\end{array}\right)=\left(\begin{array}{cc}
0 & w \\
-w & 0 \\
\downarrow
\end{array}\right)
$$

$$
\begin{aligned}
& \exp \left(t P^{-1} A P\right)=P^{-1} \exp (t A) P=D \\
& \exp (t A)=P \underbrace{\exp }_{y \text { exp }}\left(t P^{-1} A P\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Therfore } \\
& \exp (t A)=\left(\begin{array}{cc}
1 & 0 \\
0 & \omega
\end{array}\right)\left(\begin{array}{cc}
\cos (\omega t) & \sin (\omega t) \\
-\sin (\omega t) & \cos (\omega t)
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / \omega
\end{array}\right)=
\end{aligned}
$$

$$
=\left(\begin{array}{cc}
\cos (\omega t) & \sin (\omega t) / \omega \\
-\omega \operatorname{cin}(\omega t) & \cos (\omega t)
\end{array}\right)
$$

Example

- Solve the linear system $\dot{x}=A x$, where $A=\left(\begin{array}{ll}a & 0 \\ 0 & -1\end{array}\right)$
- Graph the plose-prithit as a $\in \mathbb{R}$, showing puelitalive differences.
Solution
\rightarrow Eps are unwon plod.

$$
\left\{\begin{array}{l}
x(t)=x_{0} e^{a t} \\
y(t)=y_{0} e^{-t}
\end{array} \quad\binom{x_{0}}{y_{0}} \in \mathbb{R}^{2}\right. \text { initial point }
$$

- $y(t)$ decays exponentially.
- when ac also $x(t)$ decays expsurencionly \Rightarrow All trajectories approch the onifim as $t \rightarrow+\infty$. However THE DIRECTION OF APPROACH DEPENDS ON THE SIZE OF $\omega<0$ COMPARED TO - 1 !

TRAN. APPROACH THE
ORIGIN TE TO THE SLOWER DIRECTION!

$$
Q<-1
$$

$\searrow x(t)$ decays more rapidly that $y(t)$

a<0 $(0,0)$ stable (attraclor)

$$
\begin{aligned}
& a=0 \\
& \left\{\begin{array}{l}
x(t)=x_{0} \\
y(t)=y_{0} e^{-t}
\end{array}\right.
\end{aligned}
$$

$$
a=-1
$$

\downarrow

$$
\begin{aligned}
& \left\{\begin{array}{l}
\downarrow \\
x(t)=x_{0} e^{-t} \\
y(t)=y_{0} e^{-t} \\
\binom{x(t)}{y(t)}=e^{-t}\binom{x_{0}}{y_{0}}
\end{array}\right.
\end{aligned}
$$

$a>0 \exists!$ ep. $(0,0)$ vurlable

By consid. only the op. confipuation $x \in \mathbb{R}$, the bof. dioprom is the plllowing:

Alasificalion of her sypleme, A 2×2 diapovalitable

$$
\left\{\begin{array}{l}
\dot{z}=A z \\
z(0)=z_{0}
\end{array}\right.
$$

$z \in \mathbb{R}^{2}$
A, 2×2 neatix diapond.
we know: $\varphi^{t}\left(z_{0}\right)=\underbrace{e^{t A}}_{u} z_{0}$
$\exp (t A)$
A diag. (on \mathbb{R} or $\mathbb{C}) \Leftrightarrow A$ has 2 eipenvectors (on \mathbb{R} or \mathbb{C}) linearly independent.

Recall the pervious example: x and y axes play a crucial role since they de INVARIANT lines for the dynamics.
For the pend case $\dot{z}=A z$, we would bice to find an analog to these axes. In perliculer, we seek for trojeclorics of this form:

$$
z(t)=e^{\lambda t} v \quad \begin{aligned}
& v \in \mathbb{C}^{2} \\
& \lambda \in \mathbb{C}
\end{aligned}
$$

To fined conditions on v aced λ, use impose that $z(t)$ is a solution of $\dot{z}=A z$.

$$
\lambda e^{\prime t} v=A e^{\lambda t} \quad \Longleftrightarrow \Rightarrow A v=\lambda v
$$

The desired invariant lanes exist of v is en eigenvector of A with eigenvalue λ

First case $\lambda_{1}, \lambda_{2} \in \mathbb{R}, \lambda_{1} \neq \lambda_{2}$ and $\lambda_{1}, \lambda_{2} \neq 0$. \forall eigenvalues of A
This means that A hes 2 real eigenvectors $v_{1}, v_{2} \in \mathbb{R}^{2}$ livery indeperduct.

