contact info : Davide Tomasella
davide.tomasella@studenti.unipd.it
EXERCISE
Given the equation $x^{3}-x^{2}-8 x+\lambda=0$, find λ such that there are only two distinct solutions.

HINT: Consider the function $y=f(x)=x^{3}-x^{2}-8 x+\lambda$, it is a cubic. What are the intersection of the plot with the x-axis? In which cases we have only two interceptions?

SOLUTION

We know two types of cubic functions:

The interceptions are the solutions of our problem $f(x)=0$ How can we obtain two solutions?
 A type-II function with an opportune offset has only two DISTINCT solutions

リ

In our problem, the offset is the unknown $\boldsymbol{\lambda}$.

What are the equations of type-I and type-II cubic functions?
TYPE-I: 1 interception $\Rightarrow 1$ real solution

$$
\left.\begin{array}{c|c}
f(x)=\left(a x^{2}+b x+c\right)(x-d) & f(x)=a(x-b)^{3} \\
\Delta=b^{2}-4 a c<0
\end{array} \right\rvert\,
$$

TYPE -II: 3 interceptions $\Rightarrow 3$ real solutions

$$
f(x)=a(x-b)(x-c)(x-d) \quad \text { with } a \neq 0
$$

\Rightarrow We Rave only 2 solutions if $b=c \neq d$

$$
\begin{aligned}
f(x) & =a(x-b)^{2}(x-d) \\
& =a\left(x^{2}-2 b x+b^{2}\right)(x-d) \\
& =a\left(x^{3}-2 b x^{2}+b^{2} x-d x^{2}+2 b d x-d b^{2}\right) \\
& =a\left[x^{3}+(-2 b-d) x^{2}+\left(b^{2}+2 b d\right) x-d b^{2}\right]
\end{aligned}
$$

$$
\left.\begin{array}{c}
f(x)=x^{3}-x^{2}-8 x+\lambda \\
\left\{\begin{array}{l}
2=1 \\
-2 b-d=-1 \\
b^{2}+2 b d=-8 \\
-d b^{2}=\lambda
\end{array} \quad \Delta=\Delta\left\{\begin{array}{l}
2=1 \\
d=1-2 b \\
b^{2}+2 b(1-2 b)+8=0 \\
\lambda=-d b^{2}
\end{array}\right.\right. \\
{\left[\begin{array}{l}
b^{2}-4 b^{2}+2 b+8=0 \\
-3 b^{2}+2 b+8=0 \\
b_{12}=\frac{-1 \pm \sqrt{1+24}}{-3}=\frac{175}{3}=-\frac{4}{3}, 2
\end{array}\right]}
\end{array}\right\} \begin{aligned}
& \left\{\begin{array} { l }
{ 2 = 1 } \\
{ b = 2 } \\
{ d = 1 - 4 = - 3 } \\
{ \lambda = 3 \cdot 4 = 1 2 }
\end{array} \vee \left\{\begin{array}{l}
2=1 \\
b=-4 / 3 \\
d=1 / 3 \\
\lambda=-\frac{176}{27}
\end{array}\right.\right. \\
& \text { SOLUTION: } \lambda \in\left\{\begin{array}{l}
\left.12,-\frac{176}{27}\right\}
\end{array}\right.
\end{aligned}
$$

EXTRA: 1) Why do we have two possible values for λ ? (Recode the plots)
2) Do you know another method
to solve the problem?
$\frac{\text { Take-home message: }}{\text { b pass this class lad }}$
program), it is NOT enough learn by heart
Program), it is NT enough leon by heart
understand He THEORY and ben abbe to apply it
in a problem never seen before.

REVIEW EXERCISES

1) $\sqrt{3\left(x^{2}-1\right)+10 x}<5-x$
2) $\sin x(\sqrt{3} \sin x+\cos x)=0$
3) $\left\{\begin{array}{l}\frac{x+2}{x}+3 x>\frac{5 x+6}{2} \\ \frac{2 x}{x^{2}-1} \leqslant \frac{x}{x-1}\end{array}\right.$
4) $\cos x+2 \sin x+2=0$
5) $\log (2 \cos x+\sin x)<0$
6) $\left\{\begin{array}{l}|x+3|+|y+1|=3 \\ x+|2 y-1|=0\end{array}\right.$
7) $\frac{\sin x+\sqrt{3} \cos x+1}{\operatorname{tg} x-1} \geqslant 0$
8) $\cos 2 x+\cos ^{2}\left(\frac{x}{2}\right) \leqslant-\frac{1}{2}$
9) $3^{1+x}+\left(\frac{1}{3}\right)^{-x} \leqslant \sqrt{3}$
10) $2 \log _{2}(1-x)-\log _{2}|x| \geqslant 1$

Ex: $\sqrt{3\left(x^{2}-1\right)+10 x}<5-x$
DOMAIN: $\quad 3\left(x^{2}-1\right)+10 x \geqslant 0 \quad \Delta=0 \quad 3 x^{2}+10 x-3 \geqslant 0$

$$
\begin{aligned}
& x_{1_{2}}=-5 \pm \sqrt{5+9}=-5 \pm \sqrt{14} \\
& 3=\sqrt{9}<\sqrt{14}<4=\sqrt{16} \\
& x_{1} \approx-8.8, \quad x_{2} \approx-1.8
\end{aligned}
$$

$$
x \leqslant-5-\sqrt{14} \quad \vee x \geqslant-5+\sqrt{14}
$$

SOLUTION: we consider 2 cases: $5-x>0$ and $5-x<0$
CASE I. $5-x \geqslant 0 \rightarrow$ we can have solutions because

$$
\sqrt{3\left(x^{2}-1\right)+10 x}<5-x \Delta\left\{\begin{array}{l}
5-x \geqslant 0 \\
3 x^{2}+10 x-3 \geqslant 0 \\
3\left(x^{2}-1\right)+10 x<(5-x)^{2}
\end{array}\right.
$$

$$
\begin{align*}
& \sqrt{x} \geqslant 0 \quad \forall x \in \mathbb{R} \\
& {\left[\begin{array}{l}
3 x^{2}-3+10 x<x^{2}-10 x+25 \\
2 x^{2}+20 x-28<0 \\
x^{2}+10 x-14<0 \\
x_{12}=-5 \pm \sqrt{25+14}=-5 \pm \sqrt{39} \\
-5-\sqrt{39}<x<-5+\sqrt{39} \\
6=\sqrt{36}<\sqrt{39}<7=\sqrt{49} \\
=D\left\{\begin{array}{l}
-5-\sqrt{39} \approx-11 \ldots . \\
-5+\sqrt{39} \approx 1 \ldots
\end{array}\right]
\end{array}\right.} \\
& \Delta \Rightarrow\left\{\begin{array}{l}
x \leq 5 \\
x \leqslant-5-\sqrt{14} \vee x \geqslant-5+\sqrt{14} \\
-a \sqrt{3 a}, \ldots,==1 \sqrt{2 a}
\end{array}\right. \tag{1}
\end{align*}
$$

(2)

$$
\text { S1: }-5-\sqrt{39}<x<-5-\sqrt{14} \vee-5+\sqrt{14}<x<-5+\sqrt{39}
$$

(ASE 2) $5-x<0 \rightarrow$ we cannot have solutions

EX:

$$
\left\{\begin{array}{l}
\frac{x+2}{x}+3 x>\frac{5 x+6}{2} \tag{1}\\
\frac{2 x}{x^{2}-1} \leqslant \frac{x}{x-1}
\end{array}\right.
$$

(2)

SOLUTION:

(1) $\frac{x+2}{x}+3 x>\frac{5 x+6}{2} \quad$ DOMAIN: $x \neq 0$

$$
\begin{aligned}
& \frac{3 x^{2}+x+2}{x}-\frac{5 x+6}{2}>0 \\
& \frac{6 x^{2}+2 x+4-5 x^{2}-6 x}{2 x}>0
\end{aligned}
$$

$$
\xrightarrow[2 x]{x^{2}-4 x+4}>0 \quad \Delta \Rightarrow \frac{(x-2)^{2}}{2 x} \xrightarrow{\longrightarrow} N
$$

$$
\begin{aligned}
& \begin{array}{ccc}
\sqrt{3\left(x^{2}-1\right)} & <5-x \\
\stackrel{V}{0} & \hat{0} & S 2: \varnothing \\
0 &
\end{array} \\
& \Rightarrow \quad S=S 1 \cup S 2 \\
& \text { SOLUTION: }-5-\sqrt{39}<x<-5-\sqrt{14} \quad \vee-5+\sqrt{14}<x<-5+\sqrt{39}
\end{aligned}
$$

$$
51: 0<x<2 \quad \vee x>2
$$

(2) $\frac{2 x}{x^{2}-1} \leqslant \frac{x}{x-1}$

$$
\begin{aligned}
& \frac{2 x}{(x-1)(x+1)}-\frac{x}{x-1} \leq 0 \quad \text { DOMAlN: } x \neq \pm 1 \\
& \frac{2 x-x^{2}-x}{(x-1)(x+1)} \leq 0 \Delta \frac{x^{2}-x}{(x-1)(x+1)} \geqslant 0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x(x-1)}{(x-1)(x+1)} \geqslant 0 \\
& \\
& \\
& \\
& \\
& \text { iff we do dompempern at } \\
& \text { the end }
\end{aligned}
$$

$\Longrightarrow \quad S=S 1 \cap S 2$
(1)
(2)

SOLUTION: $\quad x>0 \wedge x \neq 1,2$

EX3: $\left\{\begin{array}{l}|x+3|+|y+1|=3 \\ x+|2 y-1|=0\end{array}\right.$

SOLUTION:

(1) $|x+3|+|y+1|=3$ DOMAIN: $(x, y) \in \mathbb{R}^{2}$

CASE A: $x+3 \geqslant 0, y+1 \geqslant 0$
$|x+3|+|y+1|=3 \quad \Delta \Leftrightarrow x+3+y+1=3$
$x+y+1=0 \rightarrow y=-x-1$
CASE B: $x+3 \geqslant 0, y+1<0$
$x+3-y-1=3 \rightarrow y=x-1$
CASE C: $x+3<0, y+1 \geqslant 0$
$-x-3+y+1=3 \rightarrow y=x+5$
CASE D: $x+3<0 \quad y+1<0$
$-x-3-y-1=3 \rightarrow y=-x-7$
(C)
(2) $x+|2 y-1|=0 \quad$ DOMAIN: $(x, y) \in \mathbb{R}^{2}$

CASE A: $\quad 2 y-1 \geqslant 0$
$x+2 y-1=0 \longrightarrow y=-\frac{1}{2} x+\frac{1}{2}$
CASE B: $2 y-1<0$
$x-2 y+1=0 \longrightarrow y=\frac{1}{2} x+\frac{1}{2}$

$$
S=S 1 \cap S 2
$$

SOLUTION: $\quad(x, y) \in\{(-5,-2) ;(-1,0) ;(-3,2)\}$

$$
\text { Ex: } \quad 3^{1+x}+\left(\frac{1}{3}\right)^{-x} \leqslant \sqrt{3}
$$

SOLUTION:

$$
\begin{aligned}
x_{1}=\log _{3} \sqrt{3} / 4 & =\frac{1}{2}-\log _{3} 4 \\
& =-0.5 \ldots
\end{aligned} U_{\square 1 \ldots}
$$

$$
\text { SOLUTION: } \quad x \leqslant \frac{1}{2}-\log _{3} 4
$$

EXTRA: How can we solve

$$
3^{1+x}+\left(\frac{1}{3}\right)^{x} \leq \sqrt{3} ?
$$

EX: $2 \log _{2}(1-x)-\log _{2}|x| \geqslant 1$
DOMAIN: $\left\{\begin{array}{l}1-x>0 \\ |x|>0\end{array} \Delta \Rightarrow x<1 \wedge x \neq 0\right.$
SOLUTION:

$$
\begin{aligned}
& 2 \log _{2}(1-x)-\log _{2}|x| \geqslant 1 \\
& \log _{2} \frac{(1-x)^{2}}{|x|} \geqslant \log _{2} 2
\end{aligned}
$$

Since $\log x$ is
a monotonic function we can evaluate its argument directly

$$
\frac{(1-x)^{2}}{|x|} \geqslant 2
$$

CASE A: $x \geqslant 0$

$$
\begin{aligned}
& \frac{(1-x)^{2}}{x}-2 \geqslant 0 \quad \Delta \Rightarrow \quad \frac{x^{2}-2 x+1-2 x}{x} \geqslant 0 \\
& \frac{x^{2}-4 x+1}{x} \geqslant 0 \\
& {\left[\begin{array}{l}
x^{2}-4 x+1=0 \\
x_{1-2}=2 \pm \sqrt{4-1}=2 \pm \sqrt{3} \\
\vdots \\
x_{1} \approx 0.3, x_{2} \approx 3.7
\end{array}\right]}
\end{aligned}
$$

SI: $0<x \leqslant 2-\sqrt{3}$ v $x \geqslant 2+\sqrt{3}$

$$
\begin{aligned}
& \text { CASE } B: \quad x<0 \\
& \frac{(1-x)^{2}}{-x}-2 \geqslant 0 \quad \Delta \Leftrightarrow \frac{x^{2}-2 x+1+2 x}{x} \leq 0 \\
& \frac{x^{2}+1}{x} \leqslant 0 \quad \Delta<0 \Leftrightarrow x^{2}+1 \geqslant 0 \quad \forall x
\end{aligned}
$$

SD: $x<0$
$\Rightarrow D=\left(S 1 \cup S_{2}\right) \cap$ DOMAIN

SOLUTION $\quad x \leqslant 2-\sqrt{3} \quad \wedge x \neq 0$

EX 6: $\sin x(\sqrt{3} \sin x+\cos x)=0$

SOLUTION:

$$
\sin x=0 \quad v(\sqrt{3} \sin x+\cos x)=0
$$

フレレレ，ルル，

$$
\begin{equation*}
\sin x=0 \quad \vee(\sqrt{3} \sin x+\cos x)=0 \tag{B}
\end{equation*}
$$

（A）
（A）$\quad \sin x=0 \quad x=k \pi, k \in \mathbb{Z}$
（B）$\sqrt{3} \sin x+\cos x=0$

$$
\begin{aligned}
& \sqrt{3} \sin x=-\cos x \quad \Delta \Rightarrow \operatorname{tg} x=-\frac{\sqrt{3}}{3} \\
& x=-\frac{\pi}{6}+k \pi, \quad k \in \mathbb{Z}
\end{aligned}
$$

$$
\text { SOLUTION: } \quad x \in\left\{-\frac{\pi}{6}+k \pi, k \in \mathbb{Z}\right\} \cup\{k \pi, k \in \mathbb{Z}\}
$$

ADVICE：Review the most common goniomptric angles．

EX：$\quad \cos x+2 \sin x+2=0$
SOLUTION：We have a linear equation in sin and cos \Rightarrow we have to use the know substitution：

$$
\cos x=\frac{1-t^{2}}{1+t^{2}}, \sin x=\frac{2 t}{1+t^{2}}, \operatorname{tg} x=\frac{2 t}{1-t^{2}}
$$

where $t=\operatorname{tg} x / 2$

$$
\begin{aligned}
& \cos x+2 \sin x+2=0 \quad \Delta \Leftrightarrow \frac{1-t^{2}}{1+t^{2}}+\frac{4 t}{1+t^{2}}+2=0 \\
& \frac{1-t^{2}+4 t+2+2 t^{2}}{1+t^{2}}=0 \Delta \frac{t^{2}+4 t+3}{t^{2}+1}=0 \\
& t^{2}+4 t+3=0
\end{aligned}
$$

$(t+3)(t+1)=0$
$\Rightarrow \quad t=-1 \Rightarrow \operatorname{tg} x / 2=-1 \Rightarrow \frac{x}{2}=-\frac{\pi}{4}+k \pi, k \in \mathbb{H}$

$$
x=-\frac{\pi}{2}+2 k \pi, \quad k \in \mathbb{Z}
$$

- $t=-3 \Rightarrow \operatorname{tg} x / 2=-3 \Leftrightarrow \frac{x}{2}=\operatorname{arctg}(-3)+k \pi, k \in \mathbb{Z}$

$$
x=2 \operatorname{arctg}(-3)+2 k \pi, \quad k \in \mathbb{Z}
$$

$$
G_{\Delta} \operatorname{arctg}(-1)=-\frac{\pi}{4}>\operatorname{arctg}(-3)>-\frac{\pi}{2}
$$

$$
\rightarrow 2 \operatorname{arctg}(-3) \epsilon]-\pi,-\frac{\pi}{2}[
$$

SOLUTION: $\quad x=-\frac{\pi}{2}+2 k \pi \quad v \quad 2 \operatorname{arctg}(-3)+2 k \pi$

EXTRA: Solve the exercise with the geometric method: $x=\cos x$ and $y=\sin x, \ldots$.

EX: $\log (2 \cos x+\sin x)<0$
SOLUTION: Do you recall EX5?

$$
\log x<0 \triangleleft \Rightarrow 0<x<1
$$

(3) $2 \cos x+\sin x>0$
$\sin x>-2 \cos x$
(A) if $\cos x>0 \quad \Delta \Rightarrow-\frac{\pi}{2}+2 k \pi<x<\frac{\pi}{2}+2 k \pi, k \in \mathbb{Z}$

$$
\frac{\sin x}{\cos x}>-2 \Delta \Rightarrow \operatorname{tg} x>-2
$$

(B) if $\cos x<0 \quad \Delta \Rightarrow \frac{\pi}{2}+2 k \pi<x<\frac{3}{2} \pi+2 k \pi$, $\in \in \pi$ $\frac{\sin x}{\cos x}<-2 \Rightarrow \operatorname{tg} x<-2$
(c) if $\cos x=0 \quad \Rightarrow \quad x=\frac{\pi}{2}+k \pi, k \in \mathbb{R}$ $\sin x>0 \quad \sin \left(\frac{\pi}{2}+k \pi\right)>0$ iff k is even

$$
x=\frac{\pi}{2}+2 k \pi, k \in \mathbb{Z}
$$

- $\sin x>0 \quad \sin \left(\frac{\pi}{2}+k \pi\right)>0$ iff k is even $x=\frac{\pi}{2}+2 k \pi, k \in \mathbb{Z}$

SI: $-\operatorname{arctg}^{2}+2 k \pi<x<\pi-\operatorname{arctg} 2+2 k \pi, k \in \mathbb{Z}$
(2)

$$
\begin{aligned}
& 2 \cos x+\sin x<1 \\
& 2 \cos x+\sin x-1<0
\end{aligned} \rightarrow \text { variable change }
$$

$$
\begin{aligned}
& 2 \frac{1-t^{2}}{1+t^{2}}+\frac{2 t}{1+t^{2}}-1<0 \\
& \left(\begin{array}{l}
\frac{2-2 t^{2}+2 t-1-t^{2}}{1+t^{2}}<0 \\
\Delta\left[\begin{array}{l}
-3 t^{2}+2 t+1<0 \quad 3 t^{2}-2 t-1>0 \\
t_{12}=\frac{-1 \pm \sqrt{1+3}}{-3}
\end{array}\right] \frac{1 \mp 2}{3}=-\frac{1}{3}, 1
\end{array}\right] \\
& t<-\frac{1}{3} \vee t>1 \quad 1=0 \quad \operatorname{tg} \frac{x}{2}<-\frac{1}{3} \quad v \operatorname{tg} \frac{x}{2}>1
\end{aligned}
$$

$$
\Rightarrow S=S 1 \cap S 2
$$

$$
\text { SUTTON: } \begin{aligned}
& -\operatorname{arctg} 2+2 k \pi<x<-2 \operatorname{arctg} \frac{1}{3}+2 k \pi \\
& \frac{\pi}{2}+2 k \pi<x<\pi-\operatorname{arctg} 2+2 k \pi
\end{aligned}, k \in \mathbb{Z}
$$

EXTRA: Solve the first part with
the substitution used for the second part. Is it easier or more complex?

Ex 9: $\frac{\sin x+\sqrt{3} \cos x+1}{\operatorname{tg} x-1} \geqslant 0$

SOLUTION:

(N) $\sin x+\sqrt{3} \cos x+1 \geqslant 0$

$$
\frac{2 t}{1+t^{2}}+\sqrt{3} \frac{1-t^{2}}{1+t^{2}}+1 \geqslant 0 \Leftrightarrow \Rightarrow \frac{2 t+\sqrt{3}-\sqrt{3} t^{2}+1+t^{2}}{1+t^{2}} \geqslant 0
$$

$$
-1 \leqslant t \leqslant 2+\sqrt{3} \quad \Delta \Rightarrow-\frac{\pi}{4}+k \pi \leqslant \frac{x}{2} \leqslant \operatorname{arctg}(2+\sqrt{3})+k \pi
$$

$$
75^{\circ}=\frac{5}{12} \pi
$$

$N:-\frac{\pi}{2}+2 k \pi \leqslant x \leqslant \frac{5}{6} \pi+2 k \pi, \quad k \in \notin$
(D) $\operatorname{tg} x-1 \geq 0 \quad \forall \quad \operatorname{tg} x \geqslant 1 \Leftrightarrow \frac{\pi}{4}+k \pi \leqslant x<\frac{\pi}{2}+k \pi, k e \pi$
$D: \frac{\pi}{2}+k \pi \leqslant x<\frac{\pi}{2}+k \pi, \quad k \in \mathbb{Z}$
$\Rightarrow \frac{N}{D} \geqslant 0$
(D)

$$
\begin{aligned}
& \text { SOLUTION: }: \frac{\pi}{4}+2 k \pi<x<\frac{\pi}{2}+2 k \pi, \\
& \frac{5}{6} \pi+2 k \pi<x<\frac{3}{4} \pi+2 k \pi
\end{aligned}
$$

$$
\text { SOLUTION: } \begin{aligned}
\frac{\pi}{4}+2 k \pi<x<\frac{\pi}{2}+2 k \pi \\
\frac{5}{6} \pi+2 k \pi<x<\frac{3}{4} \pi+2 k \pi
\end{aligned}, k \in \mathbb{Z}
$$

EX10: $\cos 2 x+\cos ^{2}\left(\frac{x}{2}\right) \leqslant-\frac{1}{2}$

$$
\text { SOLUTION: Recall: } \begin{aligned}
\cos 2 x & =\cos ^{2} x-\sin ^{2} x \\
& =2 \cos ^{2} x-1 \\
& =1-2 \sin ^{2} x \\
\sin 2 x & =2 \sin x \cos x
\end{aligned}
$$

$\cos 2 x+\cos ^{2}\left(\frac{x}{2}\right)+\frac{1}{2} \leq 0 \quad \Delta \Rightarrow\left(2 \cos ^{2} x-1\right)+\left(\frac{1}{2} \cos x+\frac{1}{2}\right)+\frac{1}{2} \leqslant 0$
$4 \cos ^{2} x+\cos x \leq 0$ with $\cos x=t$
$4 t^{2}+t \leqslant 0 \wedge-\frac{1}{4} \leqslant t \leqslant 0$
S $-\frac{1}{4} \leqslant \cos x \leqslant 0$

$$
\begin{aligned}
\text { SOLUTION: } & \frac{\pi}{2}+2 k \pi \leq x \leq \alpha_{1}+2 k \pi \\
& -\alpha_{2}+2 k \pi \leq x \leq-\frac{\pi}{2}+2 k \pi \\
& \text { with } \alpha_{12}= \pm\left|\pi-\arccos \frac{1}{4}\right|
\end{aligned}
$$

