Tecnologia e produzione

- Tecnologie: modi differenti per combinare input per ottenere un determinato output
- Funzione di produzione: $\underline{massimo}$ volume di produzione ottenibile con una data combinazione di input F(L,K)
- Isoquanto: combinazioni di input che consentono di ottenere un dato livello di produzione

Isoquanti

$$Q = F(L, K)$$

K

$$(L,K)|F(L,K) = Q_1$$

$$(L,K)|F(L,K) = Q_2 > Q_1$$

L

L'orizzonte di decisione

- Funzione di produzione: dati L e K posso avere al più Q
- Ma tutte le combinazioni L e K sono disponibili all'impresa?
- La disponibilità delle combinazioni di input dipende dall'orizzonte temporale della decisione
 - Fattore variabile: se all'interno dell'orizzonte di pianificazione è possibile mutarne la quantità disponibile per la produzione
 - Fattore fisso: se all'interno dell'orizzonte di pianificazione non è possibile mutarne la quantità disponibile per la produzione
 - Breve periodo: orizzonte di pianificazione in cui solo alcuni fattori sono variabili, mentre altri sono fissi
 - Lungo periodo: orizzonte di pianificazione in cui tutti i fattori sono variabili

Dato l'orizzonte di decisione, so quale combinazione di input sono disponibili Lungo periodo:

 $F(L,K) = Q_1$

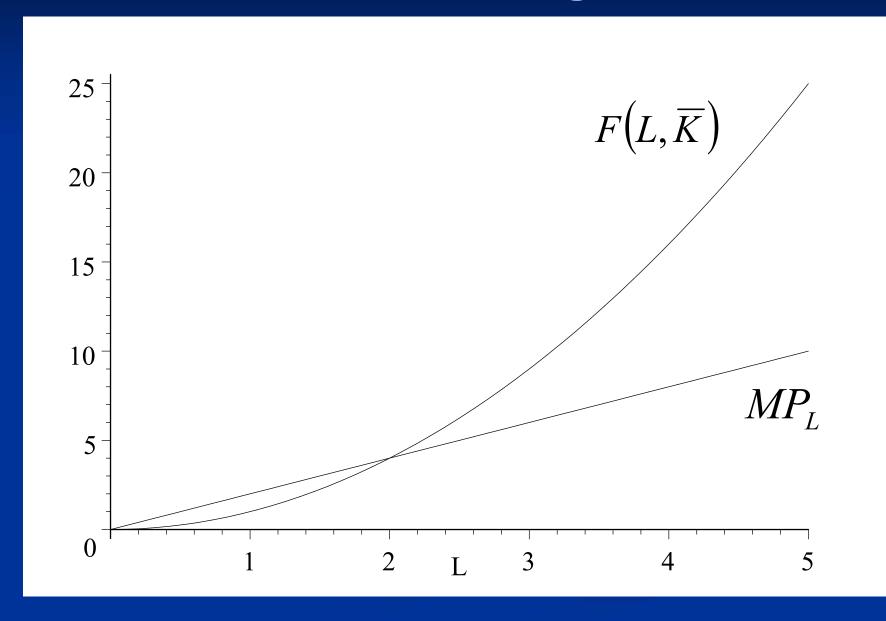
Dato l'orizzonte di decisione, so quale combinazione di input sono disponibili Breve periodo:

 $F(L,K)=Q_1$

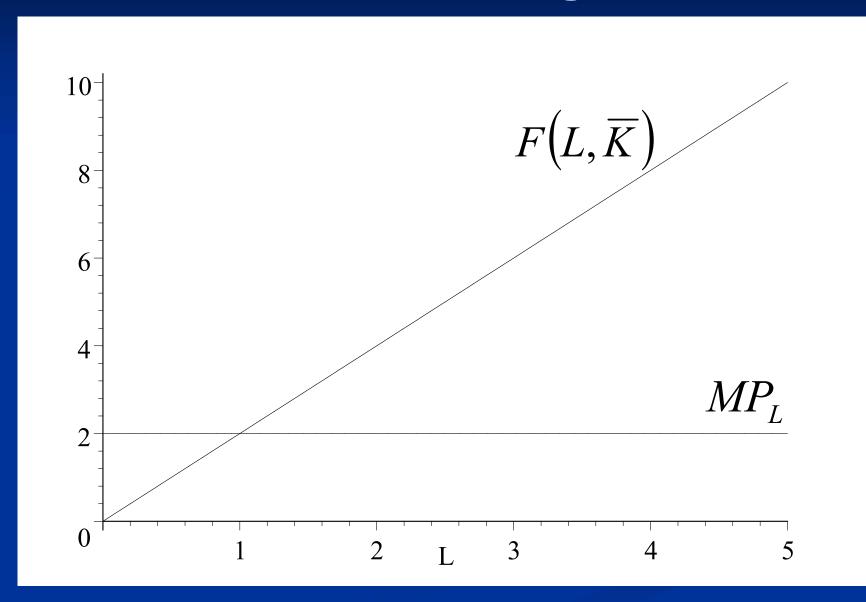
L

Proprietà della funzione di produzione

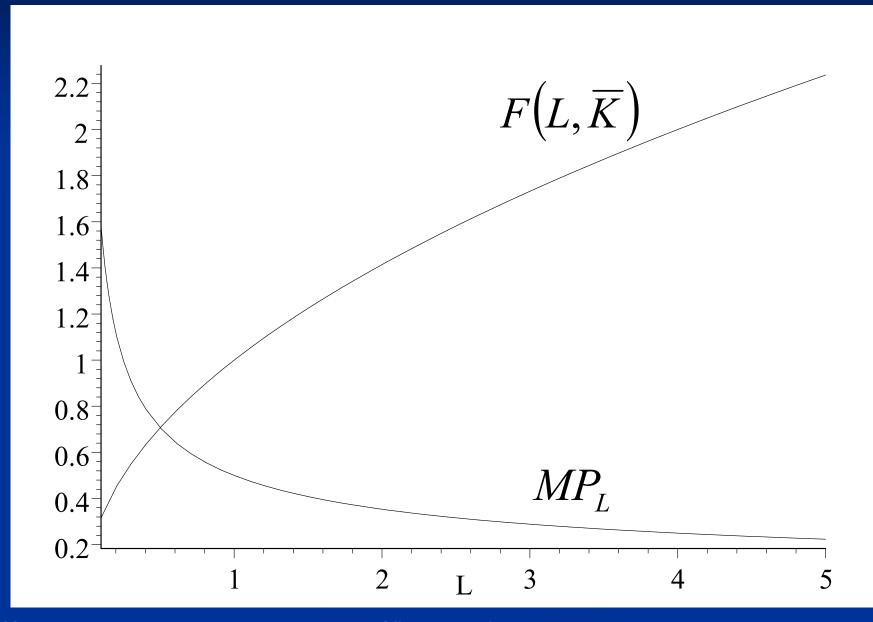
 Il prodotto marginale: quantità addizionale prodotta utilizzando un'unità aggiuntiva di input (ceteris paribus)


$$MP_K = \frac{\partial F(L,K)}{\partial K}$$
 $MP_L = \frac{\partial F(L,K)}{\partial L}$

- Rendimenti marginali
 - Crescenti: la MP aumenta al crescere della quantità utilizzata
 - Costanti: la MP è costante al crescere della quantità utilizzata
 - Decrescenti: la MP diminuisce al crescere della quantità utilizzata

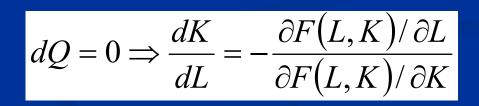

Proprietà della funzione di produzione

- Rendimenti marginali crescenti (MP aumenta al crescere della quantità utilizzata): messa a punto degli impianti, raggiungimento delle dimensioni ottimali, forme di cooperazione, ...
- Rendimenti marginali costanti (MP è costante al crescere della quantità utilizzata)
- Rendimenti marginali decrescenti (MP diminuisce al crescere della quantità utilizzata): forme di saturazione, sovraccarico, ...

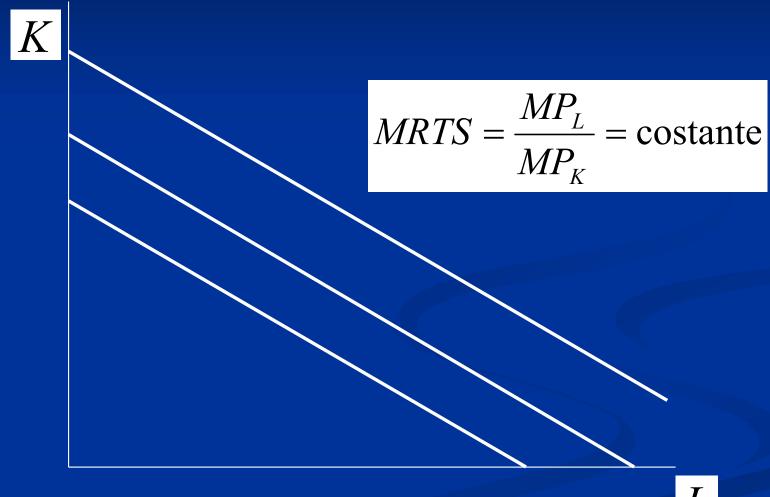

Rendimenti marginali

Rendimenti marginali

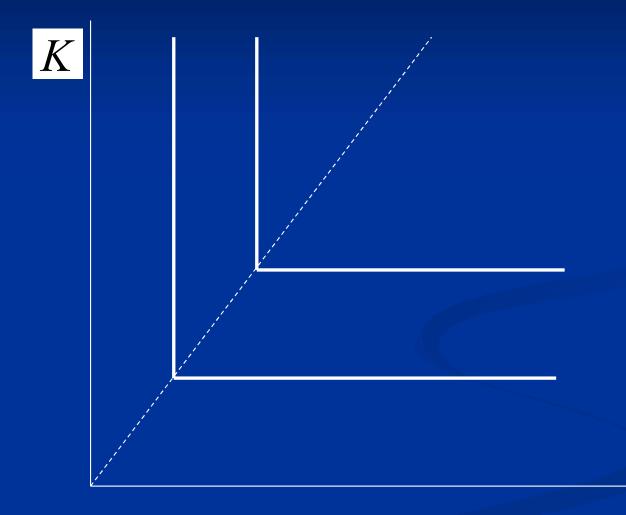
Rendimenti marginali


Saggio marginale di sostituzione tecnica

In che rapporto gli input possono essere sostituiti tra loro, mantenendo invariata la produzione totale?


$$F(L,K)=Q$$

$$dQ = \frac{\partial F(L,K)}{\partial K}dK + \frac{\partial F(L,K)}{\partial L}dL$$



$$MRTS = \frac{MP_L}{MP_K}$$

MRTS: perfetti sostituti

MRTS: non sostituibili

L

Rendimenti di scala

Cosa accade al prodotto totale se la quantità utilizzata di tutti gli input viene aumentata proporzionalmente?

 Rendimenti di scala costanti: il prodotto totale cresce esattamente nella stessa proporzione

$$F(\alpha L, \alpha K) = \alpha F(L, K)$$

Rendimenti di scala crescenti: il prodotto totale cresce più che proporzionalmente $F(\alpha L, \alpha K) > \alpha F(L, K)$

Rendimenti di scala decrescenti: il prodotto totale cresce meno che proporzionalmente

$$F(\alpha L, \alpha K) < \alpha F(L, K)$$

Rendimenti di scala e rendimenti marginali

Rendimenti marginali: vario un fattore, tutti gli altri rimangono fermi

 Rendimenti di scala: tutti i fattori aumentano nella stessa proporzione

I costi

Qual è il sistema meno costoso per produrre la quantità desiderata, data la tecnologia a disposizione?

- I costi nel breve periodo
- I costi nel lungo periodo

- Si basano sul costo opportunità dei fattori
- Nel breve periodo il capitale è fisso, e assumiamo non abbia alcun impiego alternativo
- Quindi il costo opportunità del capitale è zero
- Parliamo di <u>costo</u> economico totale di breve periodo (C_{SR}) (costi variabili di breve periodo)
- e di <u>spese</u> irrecuperabili (costi fissi di breve periodo)

- Il costo totale di breve periodo è crescente
- La posizione della curva C_{SR} dipende dal fattore fisso
- Costo marginale di breve periodo: variazione del C_{SR} conseguente alla produzione di un'unità in più
- Costo marginale del fattore: spesa aggiuntiva per l'utilizzo di un'unità in più del fattore

$\overline{MC_{SR}}$ = quantità aggiuntiva necessaria x MFC

$$dQ = \frac{\partial F(L,K)}{\partial K}dK + \frac{\partial F(L,K)}{\partial L}dL$$

$$dQ = MP_L dL$$

$$1 = MP_L dL$$

$$dL = \frac{1}{MP_L}$$

19

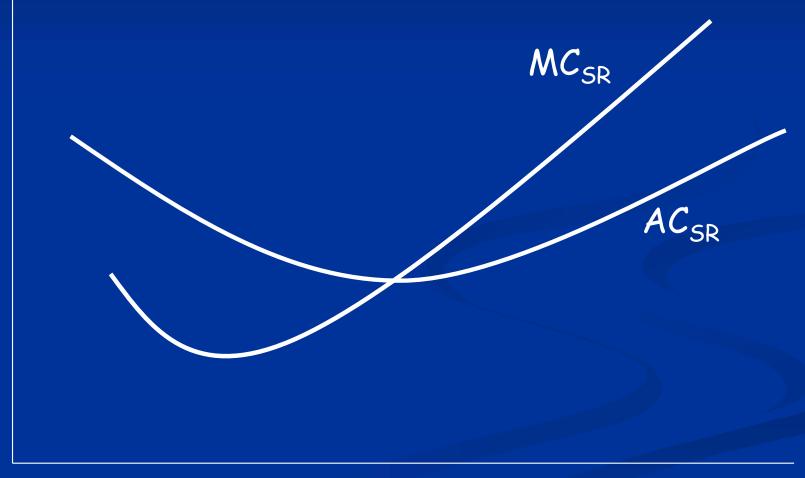
 MC_{SR} = quantità aggiuntiva necessaria x MFC

$$MC_{SR} = \frac{MFC_L}{MP_L}$$

Se l'impresa non fa il prezzo nel mercato del fattore

$$MC_{SR} = \frac{w}{MP_L}$$

$$MC_{SR} = \frac{w}{MP_L}$$


Maggiore è la produttività marginale, minore è il costo marginale

Con rendimenti marginali decrescenti, si hanno costi marginali crescenti

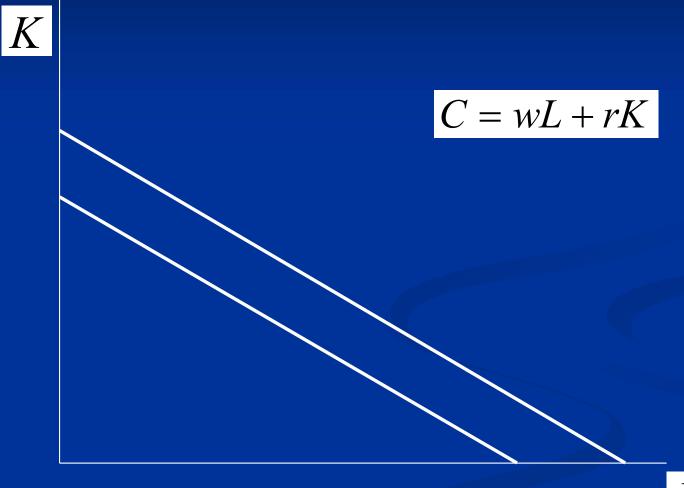
$$AC_{SR} = \frac{C_{SR}}{Q} = \frac{wL}{Q} = \frac{w}{Q/L}$$

Con rendimenti marginali decrescenti per qualunque livello di Q, si hanno costi medi crescenti

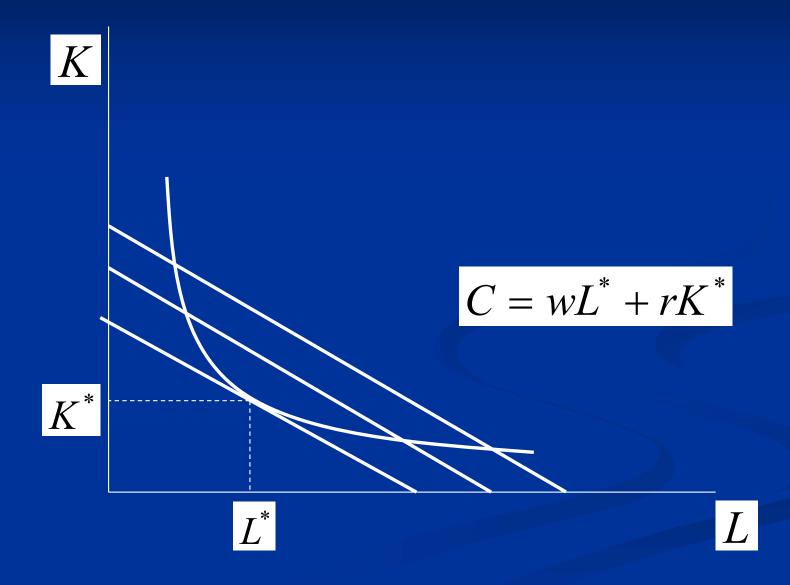
Se MC_{SR} < AC_{SR} , allora AC_{SR} è decrescente

Se MC_{SR} > AC_{SR} , allora AC_{SR} è crescente

■ $MC_{SR} = AC_{SR}$, nel punto di minimo di AC_{SR}


I costi nel lungo periodo

 Tutti i fattori sono variabili, quindi tutte le spese per gli input sono costi economici


 Poiché tutti i fattori sono variabili, l'impresa può sostituirli tra loro con maggior libertà

 L'impresa sceglie la combinazione economicamente efficiente

Linee di isocosto

Combinazioni economicamente efficienti

Combinazioni economicamente efficienti

$$MTRS = \frac{w}{r}$$

$$\frac{MP_L}{MP_K} = \frac{w}{r}$$

$$\min_{L,K} (wL + rK)$$

$$F(L,K)=Q$$

Curva di costo totale di lungo periodo

$$\min_{L,K} (wL + rK)$$
 s.v. $F(L,K) = Q$

$$L^*(Q, w, r)$$
 $K^*(Q, w, r)$

$$C(Q, w, r) = wL^* + rK^*$$

I costi nel lungo periodo

- Costi marginali e costi medi
- Economie di scala: AC_{LR} diminuisce all'aumentare della produzione
- Diseconomie di scala: AC_{LR} aumenta all'aumentare della produzione
- Rendimenti di scala ed economie di scale
- Avviamento ed economie di scala